Higher Order Proof Engineering

Higher Order Proof Engineering

Robert White

ILLC/INRIA

Cool Logic, ILLC

< □ > < @ > < ≧ > < ≧ > < ≧ > ○ Q () 1/23

Outline

Introduction

HOL Light and HOL Proof Checking OpenTheory Holide and Dedukti

ProofCloud

HOLALA HOL Kernel Attempts HOLALA

Results and Benchmarks

Future Work

Higher Order Logic

- Simple type theory (STT) is also known as Higher order logic (HOL).
- HOL = simply typed λ-Calculus + boolean types + axioms + inference rules.
- Most mathematical objects/theories can be expressed in HOL.
- Interactive and automatic theorem provers & proof checkers.
- ▶ HOL Light, ProofPower, HOL4, HOL Zero ... [HOL family].

OpenTheory

- ▶ HOL family: HOL Light, ProofPower, HOL4, Isabelle
- ▶ Need a platform to reuse proofs from different systems.
- ► OpenTheory has a standard format of proofs (*.art).
- Export proofs and import proofs (in article files).
- OpenTheory HOL Light: a modified version of HOL Light which allows import and export of proofs.

Higher Order Proof Engineering HOL Light and HOL Proof Checking Holide and Dedukti

Holide and Dedukti

- OpenTheory has a repository of proof packages (articles).
- Holide translates proofs from OpenTheory articles to Dedukti.

5/23

Dedukti is a proof checker (for proof checking).

Higher Order Proof Engineering HOL Light and HOL Proof Checking Holide and Dedukti

Workflow of OpenTheory, Holide and Dedukti

Figure: Work Flow of OpenTheory, Holide and Dedukti

Higher Order Proof Engineering └─ProofCloud

ProofCloud

- A Proof Retrievel Engine: http://airobert.github.io/proofcloud/
- 2. 1700+ pages of proofs with analysis.
- 3. A representation of proof checking results by Holide and Dedukti.

・ ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 9 9 7/23

4. Which proofs are constructive?

Packages and Dependency

Figure: Dependency of Packages of OpenTheory

ProofCloud DEMO

Proof Search Engine which represents the analysis and proof checking results.

Figure: Index Page of ProofCloud (version 1)

It's version 2 now!!!

Structural Analysis

the combination of the subst and eqmp rule takes over 45% of all the inferences rules.

Inference Rules	Count
subst	93667
eqmp	92617
appthm	53155
proveHyp	47728
betaConv	21485
absThm	15096
trans	26727
assume	16986
Overall	413207

Statistical Results

1209 proofs in the standard library.541 constructive proofs v.s. 668 classical proofs44.75% of them constructive proofs.

(However) The *natural-divides* package has only 10 constructive proofs out of 136 proofs, making only 7.35% of them constructive.

Next, these 668 proofs to their constructive form?

Proof Translation and Proof Checking

The size of proof articles got reduced by around 7%. The proof checking time reduced by around 5%. ... not fun :(

Kernel

HOL syntax:

Polymorphic Typed constant:

$$=: \alpha \rightarrow \alpha \rightarrow o$$

(ロ)

Primitive Inference Rules

Structural	$\overline{\{A\} \vdash A}$ ASSUME
λ Calculus	$\frac{\Gamma \vdash A = B}{\Gamma \vdash \lambda x.A = \lambda x.B} ABS$ $\frac{\Gamma \vdash \lambda x.A = \lambda x.B}{(\lambda x.A)x = A} BETA$
Instantiation	$\frac{[\mathbf{r}[\mathbf{x}_{1},\ldots,\mathbf{x}_{n}] \vdash A[\mathbf{x}_{1},\ldots,\mathbf{x}_{n}]}{[\mathbf{r}[\mathbf{t}_{1},\ldots,\mathbf{t}_{n}] \vdash A[\mathbf{t}_{1},\ldots,\mathbf{t}_{n}]} INST$ $\frac{[\mathbf{r}[\alpha_{1},\ldots,\alpha_{n}] \vdash A[\alpha_{1},\ldots,\alpha_{n}]}{[\mathbf{r}[\gamma_{1},\ldots,\gamma_{n}] \vdash A[\gamma_{1},\ldots,\gamma_{n}]} INST_TYPE$
Bi-implication	$ \begin{array}{c c} \hline \Gamma \vdash A = B & \Delta \vdash A \\ \hline \Gamma \cup \Delta \vdash B \\ \hline \Gamma \vdash A & \Delta \vdash B \\ \hline (\Gamma \setminus \{B\}) \cup \Delta \setminus \{A\}) \vdash A = B \end{array} DEDUCTANTISYMRULE $
Equality	$ \begin{array}{c} \hline \vdash A = A \\ \hline \vdash A = B \\ \hline \Gamma \vdash A = B \\ \hline \Box \Box \land \vdash A(C) = B(D) \\ \hline \Gamma \vdash A = B \\ \hline \Box \Box \land \vdash B = C \\ \hline \Gamma \cup \Delta \vdash A = C \end{array} MK_COMB $

Kernel of OpenTheory HOL Light

OpenTheory HOL Light has a small and reliable kernel. This kernel is based on = Double negation requires taking \forall and \Rightarrow as primitive symbol. Thus, kernel hacking! Higher Order Proof Engineering HOLALA Attempts

HOLALA

OpenTheory HOL Light

HOL-intermediate

HOLIU

Higher Order Proof Engineering HOLALA HOLALA

HOLALA

OpenTheory HOL Light

HOLALA

Structural Results

Two primitive deduction rule (subst and eqmp) combined is over 45%

Main Inference Rules of OpenTheory Articles

Figure: Frequency of Main Inference Rules of OpenTheory Articles

18/23

Structural Results

Introducing \Rightarrow and \forall reduce the overall size of proofs by 40.87% (standard library with 1199 proofs).

Figure: Frequency of Main Inference Rules of HOLALA Articles

Proof Checking

Figure: Work Flow of HOLALA, Holide, OpenTheory and ProofCloud

Poof Checking Results

- ► Fully verified all the libraries in OpenTheory.
- ► Little difference between version 5 and version 6.
- ► The size of article files of HOLALA reduced to 23.63%.
- The translation time improved by 41.81%.
- ► The size of Dedukti files reduced to 64.33%.
- ► The proof checking time improved by 38.04%.

Higher Order Proof Engineering └─Future Work

Future Work

HOL-Modulo, a joint project at ILLC & INRIA.

- More proof analysis (for machine learning).
- ProofCloud
 - More packages
 - Better GUI
 - Coq, Agda ... libraries?

The Actual Future Work

- Epistemic Learning and Planning for MAS.
- Multi-agent Motion Planning.
- O-et-O (a start-up based in Amsterdam Science Park)
- An advertisement for INRIA: a paid student internship opportunity (next summer).

◆□▶★@▶★≣▶★≣▶ ≣ の≪⊙