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Scientific philosophy—in the sense of an attempt to revolutionize philosophy as a 

whole and as a discipline under the guidance of such an idea—is a characteristically 

twentieth century phenomenon, but, like so many aspects of twentieth century culture, it 
has deep roots in the nineteenth century.  In particular, the idea of a scientific philosophy 

first arose in the second half of the nineteenth century, as a self-conscious intellectual 

reaction to what was then perceived as the “speculative” and “metaphysical” excesses of 
post-Kantian German idealism.  In this context, a number of late nineteenth century 

natural scientists and mathematicians, faced with radically new problems within the 
shifting intellectual foundations of their own disciplines, turned to philosophy for 

conceptual resources.  Repelled by the speculative metaphysics of post-Kantian idealism, 

they looked in what they took to be healthier philosophical directions—partly towards a 
return to the more sober, more scientifically oriented philosophizing of Kant himself, and 

partly towards a parallel return to the earlier anti-metaphysical stance represented by 
British empiricism.  But the late nineteenth century scientific thinkers in question—

principally Hermann von Helmholtz, Ernst Mach, and Henri Poincaré—were also faced 

with the problem of adapting such earlier philosophical ideas to a revolutionary new 
situation within the mathematical and physical sciences.  Both Kantianism and 

empiricism had now to be adjusted to the development of non-Euclidean geometries, 
closely related fundamental changes in logic and the foundations of mathematics, the 

emergence of physiology and psycho-physics as experimental scientific disciplines, and 

novel, non-Newtonian styles of physical theorizing in such new areas as 
thermodynamics, the statistical-molecular theory of matter, and electro-magnetism. 

In the early years of the twentieth century a new philosophical movement arose 
against this fertile background.  Coming of age in the heady days of the Weimar 

Republic, the movement we now know as logical empiricism was primarily centered in 

Vienna and Berlin.  In Vienna Moritz Schlick—a student of Max Planck’s and an early 



 2 

apologist for and expositor of Albert Einstein’s theory of relativity—took the Chair for 

the Philosophy of the Inductive Sciences originally held by Mach.  A Philosophical 
Circle—now known as the Vienna Circle—quickly formed around Schlick, including 

such figures as Rudolf Carnap, Otto Neurath, Kurt Gödel, and Friedrich Waismann.  At 
the University of Berlin a complementary philosophical circle, the Society for Empirical 

Philosophy, gathered around Hans Reichenbach (also an early apologist for and expositor 

of Einstein’s theory), including such figures as Walter Dubislav, Kurt Grelling, and Carl 
Hempel.  This new form of scientific philosophy—logical empiricism—took Einstein’s 

theory of relativity as the culmination of the late nineteenth century developments in both 
the sciences and scientific philosophy exemplified in the thought of Helmholtz, Mach, 

and Poincaré; and its aim, accordingly, was to effect a similar revolutionary 

transformation of philosophy as a whole.  Unlike Helmholtz, Mach, and Poincaré, 
however, Schlick, Carnap, and Reichenbach, although originally trained within the 

sciences, were themselves professional philosophers, and their attention had shifted from 

specific problems within the sciences to the problem of laying new foundations for the 
discipline of philosophy that would enable it, like the sciences, to achieve cumulative 

consensus and stable results entirely unencumbered by the sterile and endless 
controversies afflicting traditional metaphysics. 

The logical positivist movement reached its apogee in Europe in the years 1928-34, 

but the Nazi seizure of power in 1933 marked the effective end of this phase.  Thereafter, 
however, many of its most important representatives—including Reichenbach and 

Carnap—emigrated to the United States.  Reichenbach, who had fled to Istanbul in 1933, 
moved in 1938 to UCLA.  Carnap, who had taken a position in Prague in 1931, moved to 

the University of Chicago in 1935; and, after Reichenbach’s death in 1953, Carnap took 

over his position at UCLA beginning in 1954 (where he remained until his death in 
1970).  Reichenbach’s last book, published in 1951, was a popular work, The Rise of 

Scientific Philosophy, intended persuasively to encapsulate the results of the new 
philosophy for a general audience.  Writing with characteristic clarity and verve, and with 

very few sacrifices of accuracy and rigor, Reichenbach fully succeeded in this aim—as 

can be inferred from the fact that the book was quickly translated into a large number of 
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languages throughout the world, including German, French, Spanish, Swedish, Italian, 

Japanese, Polish, Yugoslavian, and Korean (all between 1953 and 1960).   
I will focus the argument I want to make today on this last book of Reichenbach’s, 

because of the clarity and widespread influence of this particular presentation of the aims 
and methods of twentieth century scientific philosophy—authored, in addition, by one of 

the founders and most accomplished practitioners of this philosophy.  And this contrast 

sharply, for example, with that other “best seller” of logical empiricism—A. J. Ayer’s 
Language Truth and Logic (1936)—for Ayer himself was neither a founder nor a 

particularly accomplished practitioner of the new scientific philosophy he did so much to 
popularize.  Moreover, I myself have a personal connection with twentieth century 

scientific philosophy and with Reichenbach:  my dissertation advisor (at Princeton) was 

Clark Glymour; Glymour’s dissertation advisor (at Indiana) was Wesley Salmon; and 
Salmon’s dissertation advisor (at UCLA) was Hans Reichenbach.  I thus bear what 

scientifically minded modern logicians call the ancestral of the graduate student relation 

to Reichenbach.  Since completing my dissertation I have become increasingly involved 
with studying the history of scientific philosophy, and, on the basis of this study, I have 

recently arrived at a revisionist understanding of the subject which, as we shall see, 
would be anathema from the point of view of Reichenbach’s book.*  

Reichenbach vividly states the point of his book in the very first paragraph of the 

Preface: 

Philosophy is regarded by many as inseparable from speculation.  

They believe that the philosopher cannot use methods which establish 
knowledge, be it knowledge of facts or of logical relations; that he 

must speak a language which is not accessible to verification—in 

short, that philosophy is not a science.  The present book is intended to 
establish the contrary thesis.  It maintains that philosophic speculation 

is a passing stage, occurring when philosophic problems are raised at a 
time which does not possess the logical means to solve them.  It claims 

that there is, and always has been, a scientific approach to philosophy.  

And it wishes to show that from this ground has sprung a scientific 
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philosophy which, in the science of our time, has found the tools to 

solve those problems that in earlier times have been the subject of 
guesswork only.  To put it briefly:  this book is written with the 

intention of showing that philosophy has proceeded from speculation 
to science.  (p. vii)  

And, at the end of the book, Reichenbach sums up what he has achieved in terms of now 

attained “results” of philosophical research comparable to the results of the sciences:  

This is a collection of philosophic results which have been 

established by means of a philosophical method as precise and 
dependable as the method of science.  The modern empiricist may 

quote these results when he is invited to supply evidence that scientific 

philosophy is superior to philosophical speculation.  There is a body of 
philosophical knowledge. . . . Philosophy is scientific in its method; it 

gathers results accessible to demonstration and assented to by those 

who are sufficiently trained in logic and science.  If it still includes 
unsolved problems subject to controversy, there is good hope that they 

will be solved by the same methods as those which, for other 
problems, have led to solutions commonly accepted today. (p. 308) 

 

The overall structure of the book expresses this same sharp contrast between the 
“results” of scientific philosophy, on the one side, and the contrastingly unscientific 

“guesswork” of traditional speculative philosophy, on the other.  In the first part, on “The 
Roots of Speculative Philosophy,” Reichenbach discerns two main unscientific 

temptations that have been responsible for the confusions and mistakes of traditional 

philosophy:  the search for generality and the search for certainty.  The first temptation 
arises when the legitimate search for scientific explanations of particular empirical 

phenomena under increasingly general empirical laws reaches an impasse at some point, 
and we are then tempted to invent spurious analogical or pictorial “pseudo explanations” 

to make up for this defect.  The Aristotelian metaphysics of form and matter, and the 
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Hegelian metaphysics of reason realizing itself in history, are both, according to 

Reichenbach especially good examples of the temptation in question, and Reichenbach 
has nothing but contempt, more generally, for this philosophical tendency.  The second 

temptation, by contrast, arises from being excessively impressed with the very real 
achievements of mathematical science—beginning with the development of axiomatic 

geometry and mathematical astronomy by the ancient Greeks and continuing up to the 

great synthesis of these two traditions effected by Newton’s Mathematical Principles of 

Natural Philosophy at the end of the seventeenth century.  It is no wonder, then, that 

rationalist philosophers from Plato to Kant, whose philosophies were reflections of the 
best available mathematical science of their own times, were led to the conviction that we 

could attain absolutely certain knowledge of reality, as exemplified in pure mathematics, 

entirely independently of all empirical information supplied by the senses.  Nevertheless, 
the further progress of the mathematical sciences themselves, especially in the nineteenth 

century, decisively undercut this rationalist vision.  In particular, we now know that there 

are a multiplicity of mathematical geometries—not solely the traditional type of 
geometry originally axiomatized by Euclid—and that the choice between such geometries 

must, in the end, by empirical.  And we know, in addition, that pure mathematics—as 
opposed to the applied mathematics coordinated to the physical and empirical world—

owes its characteristic form of certainty entirely to its emptiness:  it is essentially a purely 

tautologous or analytic branch of formal logic saying nothing whatsoever about reality.  
Reichenbach makes it very clear that he greatly prefers the rationalist philosophies 

of Plato and Kant to what he takes to be the pseudo scientific, entirely misguided 
speculations of a Hegel or an Aristotle.  He makes it very clear, in particular, that, of all 

the traditional “speculative” philosophers, Kant was by far the best.  For, on the one 

hand, Kant grasped the problem posed by the existence of mathematical geometry much 
more clearly than did Plato:  the problem is precisely to understand how an apparently 

pure and entirely a priori science can nevertheless apply to empirical reality.  And, on the 
other hand, Kant appealed to the unprecedentedly successful application of mathematics 

to empirical nature articulated in Newton’s Principia to give an exact formulation, for the 

first time, of both the problem in question and a possible solution.  The problem, in 
Kant’s now famous formulation, is how are synthetic a priori propositions—propositions 
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that are both true independently of experience and necessarily applicable to experience—

possible?  And Kant’s equally famous solution states that  synthetic a priori 
propositions—such as the laws of Euclidean geometry and the fundamental laws of 

motion governing Newtonian dynamics—are possible because they express a priori 
cognitive structures (a priori forms of intuition and concepts or categories of rational 

thought) internal to the human mind, on the basis of which alone the mind can order and 

process the a posteriori empirical data supplied by the senses. 
Kant’s intimate relation with the best available science of his own time—

Newtonian mathematical physics—is responsible for both the strength and the weakness 
of his philosophical position: 

What makes Kant’s position so strong is its scientific background.  

His search for certainty is not of the mystical type that appeals to an 
insight into a world of ideas, nor of the type that resorts to logical 

tricks which extract certainty from empty presuppositions, as a 

magician pulls a rabbit out of an empty hat.  Kant mobilizes the 
science of his day for the proof that certainty is attainable; and he 

claims that the philosopher’s dream of certainty is borne out by the 
results of science.  From the appeal to the authority of the scientist 

Kant derives his strength. 

But the ground on which Kant built was not so firm as he believed 
it to be.  He regarded the physics of Newton as the ultimate stage of 

knowledge of nature and idealized it into a philosophical system.  In 
deriving from pure reason the principles of Newtonian physics, he 

believed he had achieved a complete rationalization of knowledge, had 

attained a goal which his predecessors had been unable to reach.  The 
title of his major work, Critique of Pure Reason, indicates his program 

of making reason the source of synthetic a-priori knowledge and thus 
to establish as a necessary truth, on a philosophical ground, the 

mathematics and physics of his day. (pp. 42-3) 
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The weakness, of course, is that Newtonian mathematical physics has now been 

overthrown: 

Had Kant lived to see the physics and mathematics of our day he 

might very well have abandoned the philosophy of the synthetic a 
priori.  So let us regard his books as documents of their time, as the 

attempt to appease his hunger for certainty by his belief in the physics 

of Newton.  In fact, Kant’s philosophical system must be conceived as 
an ideological superstructure erected on the foundations of a physics 

modeled for an absolute space, an absolute time, and an absolute 
determinism of nature.  This origin explains the system’s success and 

its failure, explains why Kant has been regarded by so many as the 

greatest philosopher of all time, and why his philosophy has nothing to 
say to us who are witnesses of the physics of Einstein and Bohr. (p. 

44) 

In the end, therefore, we are ultimately left with a new form of scientific empiricism.  All 
the results of modern mathematical physical science, no matter how sophisticated and 

refined, are nothing but empirical descriptions of our sensory experience, based, like all 
such descriptions, on inductive generalization from this experience.  At the same time, 

however, we must nevertheless continue to recognize that pure mathematics itself—

mathematics considered independently of its application to physical reality—is just as 
certain and a priori as traditional rationalism always held; it is just that such mathematics, 

by itself, is nothing but an empty formalism, a purely analytic branch of formal logic.—
Hence logical empiricism. 

The second part of Reichenbach’s book, on “The Results of Scientific Philosophy,” 

continues to develop these themes.  The eighth chapter, for example, further articulates 
the solution offered by the new empiricism to the age-old problem of the nature of 

geometry—a problem which, as Reichenbach emphasizes, has always provided 
traditional rationalism with its strongest motivation.  Echoing famous words of Einstein’s 

from a celebrated paper entitled “Geometry and Experience” from 1921, the heart of 
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Reichenbach’s solution is a sharp distinction between two essentially different types of 

geometry, pure or mathematical geometry and applied or physical geometry.  The former 
is an uninterpreted formal calculus having no intrinsic relation with spatial intuition or 

any other type of experience.  Geometry in this sense is not about space at all, but is 
merely an analytic system of logical implications of the form:  if the axioms are true, then 

the theorems are as well.  Applied or physical geometry, by contrast, results from a 

particular interpretation of such an axiomatic system set up by coordinating its 
uninterpreted formal symbols with real objects of experience—for example, the behavior 

of light rays or rigid rods—and Reichenbach calls such interpretations coordinative 
definitions.  The applied or interpreted geometry that results is then true or false of 

physical reality, but the question of its truth is now straightforwardly empirical—only 

experience can tell us whether the resulting physical geometry is Euclidean or non-
Euclidean.  In no sense, therefore, is geometry synthetic a priori:  

This consideration shows that we have to distinguish between 

mathematical and physical geometry.  Mathematically speaking, there 
exist many geometrical systems.  Each of them is logically consistent, 

and that is all a mathematician can ask.  He is interested not in the 
truth of the axioms, but in the implications between axioms and 

theorems:  “if the axioms are true, then the theorems are true”—of this 

form are the geometrical statements made by the mathematician.  But 
these implications are analytic; they are validated by deductive logic.  

The geometry of the mathematician is therefore of an analytic nature.  
Only when the implications are broken up, and axioms and theorems 

are asserted separately, does geometry lead to synthetic statements.  

The axioms then require an interpretation through coördinative 
definitions and thus become statements about physical objects; and 

geometry is thus made into a system which is descriptive of the 
physical world.  In that meaning, however, it is not a priori but of an 

empirical nature.  There is no synthetic a priori of geometry:  either 

geometry is a priori, and then it is mathematical geometry and 
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analytic—or geometry is synthetic, and then it is physical geometry 

and empirical.  The evolution of geometry culminates in the 
disintegration of the synthetic a priori. (pp. 139-40) 

The famous words of Einstein’s which Reichenbach here echoes are:  “In so far as the 
propositions of mathematics refer to reality they are not certain; and in so far as they are 

certain they do not refer to reality.”  Einstein, like Reichenbach, here has geometry 

specifically in mind—and, indeed, the radically new non-Euclidean geometry of variable 
curvature Einstein has himself just used to describe the physical world in his general 

theory of relativity.  And it is clear, in context, that Einstein, like Reichenbach, intends 
his statement precisely as a refutation of the Kantian synthetic a priori.  I should note, 

before continuing, that this kind of answer to Kant’s theory of geometry became 

“common knowledge” within those philosophical circles influenced by logical 
empiricism—but I am going to argue here that there is actually still a sense in which 

geometry is close to being synthetic a priori after all, and this is an essential first step in 

my revisionist understanding of scientific philosophy. 
The thirteenth chapter of Reichenbach’s book, on modern logic, then develops the 

solution to the problem of the nature of pure or unapplied mathematics offered by the 
new empiricist philosophy articulated by logical empiricism.  Unlike the more traditional 

empiricist theory of pure mathematics found in John Stuart Mill, for example, this new 

form of empiricism does not hold that pure mathematics is itself empirical—where Mill 
held that the science of arithmetic, in particular, is just as empirical as any other, 

recording the most general empirical properties of groups of discrete physical objects, 
such as pebbles used in counting.  On the contrary, as the work of such logicians as 

Gottlob Frege and Bertrand Russell has now shown, all of mathematics—including 

especially arithmetic—is, in the end, a branch of formal logic; so it, too, is analytic rather 
than synthetic a priori: 

The construction of symbolic logic made it possible to investigate 
from a new angle the relations between logic and mathematics.  Why 

do we have two abstract sciences dealing with the products of thought?  
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The question was taken up by Bertrand Russell and Alfred N. 

Whitehead, who arrived at the answer that mathematics and logic are 
ultimately identical, that mathematics is but a branch of logic 

developed with special reference to quantitative applications.  This 
result was set forth in a lengthy book, written almost completely in the 

symbolic notation of logic.  The decisive step in the proof was made 

by Russell’s definition of number.  Russell showed that the integers, 
the numbers 1, 2, 3, and so forth, can be defined in terms of the 

fundamental concepts of logic alone. . . .  With his reduction of 
mathematics to logic, Russell completed the evolution which began 

with the development of geometry and which I described above as a 

disintegration of the synthetic a priori.  Kant believed not only 
geometry but also arithmetic to be of a synthetic a-priori nature.  With 

his proof that the fundamentals of arithmetic are derivable from pure 

logic, Russell has shown that mathematical necessity is of an analytic 
nature.  There is no synthetic a priori in mathematics. (pp. 221-2) 

 
However, as Reichenbach himself goes on to point out, the situation is actually 

considerably more complicated.  For the original reduction of arithmetic to logic 

developed by Frege in the nineteenth century turned out to suffer from a fatal 
mathematical flaw:  the system of logic Frege used turned out to be inconsistent!  It was 

Russell, in a famous letter to Frege of 1902, who first exposed this inconsistency, and 
Russell’s own system, developed in his Principia Mathematica written with Whitehead, 

avoided this particular problem by the so-called theory of types.  However, in order then 

to be able to derive the truths of arithmetic from this essentially weaker logical system, 
Russell had to introduce controversial new axioms—such as the axiom of infinity—

which were not clearly of a logical nature.  Since one of the central mathematical features 
of arithmetic, that there are an infinity of integers, is now simply assumed at the 

beginning, one may very well wonder how much this “reduction” actually achieves.  

Moreover, since the axioms Russell has to add to his system are now mathematically 
quite strong, one may also still wonder whether his system, like Frege’s original system, 
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may not, after all, be inconsistent.  How do we know that a logical contradiction may not 

some day be found?  And note that the very same problem arises with respect to 
geometry:  How, even if we avoid the problem of the truth of the axioms, do we know 

that they in fact are consistent?  Geometry, like arithmetic, assumes an infinity of objects, 
and so the problem is certainly non-trivial. 

In the late 1920s the problems arising here shook the world of scientific philosophy 

to its very foundations.  Three positions were developed in response to this “crisis in the 
foundations of mathematics.”  Logicism attempted to preserve the insights of Frege and 

Russell in the face of the new developments.  Intuitionism, developed by the Dutch 
mathematician L. E. J. Brouwer, attempted to address the problem of infinity by 

weakening the laws of classical logic so that the law of excluded middle is no longer 

universally valid.  Finally, the so-called formalism developed by the great German 
mathematician David Hilbert attempted to preserve classical logic (and thus classical 

mathematics) in the face of Brouwer’s challenge by looking for a consistency proof of the 

logical system first articulated by Russell—where this system is now viewed as an 
entirely uninterpreted formal calculus consisting of strings of formal symbols 

representing the sentences and logical derivations constructible in this system.  To show 
that the system is consistent is therefore to show that no strings of formal symbols 

representing derivations in the system can terminate in both a sentence and the negation 

of this sentence.  Unfortunately, however, it was soon proved by Kurt Gödel, in his 
celebrated incompleteness theorems of 1931, that no such proof of consistency can be 

given—unless the logical system in which the proof is to be carried out is at least as 
strong as the very system whose consistency is at issue.  And, although this is all familiar 

ground to those trained within the tradition of scientific philosophy; it is less well known 

what the logical empiricist response to this situation actually was.  My revisionist 
understanding depends on starting with this response and then connecting it with a 

descendant of Kant’s original synthetic a priori.   
So how did logical empiricism respond to this situation?  Reichenbach himself did 

not participate; and it fell to Carnap, in his Logical Syntax of Language of 1934, to 

develop an appropriate response.  What Carnap came up with, moreover, was 
astonishingly radical.  There is no such thing as the “correct” logical system at all.  
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Instead, the three classical positions in the foundations of mathematics (logicism, 

formalism, and intuitionism) are to be reconceived as proposals to formulate the total 
language of science in one or another way—using one or another set of formal rules as 

providing the underlying logic of this language.  Intuitionism is the proposal to use only 
the weaker rules of the intuitionistic logical calculus, so as thereby to reduce the chances 

of finding a contradiction at some point.  Formalism is the proposal to use the stronger 

rules of classical logic, but only if an appropriate consistency proof is possible.  
Logicism, finally, is the proposal to use both classical logic and mathematics, in a 

formulation that makes it clear that logical and mathematical rules are of the same kind—
that they are both, in an appropriate sense, analytic.  Since Gödel’s results have shown 

that the consistency proof envisioned by formalism is very unlikely, Carnap himself 

prefers the logicist proposal.  We formulate both classical logic and mathematics within a 
single system of total science—leaving aside, at this stage, the question of consistency—

because this provides us with the simplest and most convenient version of the 

mathematics needed for empirical science.  Our reasons for using classical logic and 
mathematics are therefore, in the end, purely pragmatic.  Nevertheless, even through we 

can no longer aim to reduce classical mathematics to logic à la Frege and Russell, we still 
hope to preserve the insight of classical logicism that logical and mathematical sentences, 

unlike empirical and physical sentences, are analytic—entirely dependent on the 

meanings of their logical (as opposed to non-logical or descriptive) terms. 
I will not pursue these developments further, except to note that the prospects for 

taking mathematics to be analytic, even in Carnap’s greatly attenuated sense, are 
currently very much in doubt.  In particular, Carnap’s student W. V. Quine has appealed 

to further difficulties arising from Carnap’s proposal in arguing—in a celebrated paper 

entitled “Two Dogmas of Empiricism” published in 1951—that there is in fact no 
distinction between analytic and synthetic sentences after all.  So it is clear, in any case, 

that Reichenbach’s presentation of the logical empiricist solution to the problem of the 
nature of pure mathematics is subject to severe limitations.  What I would now like to 

argue, against this background, is that Reichenbach’s presentation of the logical 

empiricist solution to the nature of applied mathematics—such as applied or physical 
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geometry—is subject, as well, to parallel limitations; and here we will see how a 

descendent of Kant’s synthetic a priori arises in both cases, pure as well as applied. 
To see this, it is first necessary to observe that Carnap’s solution to the classical 

debate in the foundations of mathematics developed in Logical Syntax can be seen as the 
natural generalization of a relativized and dynamical version of the original Kantian 

conception of the a priori developed by Reichenbach himself in his very first published 

book.  In this book, The Theory of Relativity and A Priori Knowledge, published in 1920, 
Reichenbach by no means concludes, as he does in 1951, that “[Kant’s] philosophy has 

nothing to say to us who are witnesses of the physics of Einstein and Bohr.”  On the 
contrary, Reichenbach here argues (in 1920) that at least one essential element of the 

Kantian a priori can still be maintained.  In particular, in order to effect the necessary 

coordination of abstract mathematical structure to concrete empirical reality we need a 
special class of mathematical-physical principles—coordinating principles or axioms of 

coordination—whose role is precisely to insure that the coordination we are attempting to 

set up is uniquely defined.  And such principles, Reichenbach argues, are therefore to be 
sharply distinguished from mere empirical laws—which Reichenbach calls axioms of 

connection.  In Newtonian physics, for example, the coordinating principles are the 
Newtonian laws of motion; the mathematically expressed empirical law made possible by 

this coordination (which picks out, for example, the center of mass of the solar system as 

the proper frame of reference for defining the true motions within this system) is the law 
of universal gravitation.  And so far, then, Kant’s original conception appears to be 

correct.  But, and this is now Reichenbach’s key innovation (in 1920), it is necessary to 
change our coordinating principles as mathematical physics develops.  When we move to 

special relativity we replace the Newtonian laws of motion with Einstein’s revised 

version thereof (which define, as we would now put, the new structure of Minkowski 
space-time replacing the original spatio-temporal framework described by Newton); and 

when we move to general relativity, finally, we use Einstein’s principle of equivalence to 
effect an entirely new type of coordination relating the abstract four-dimensional 

geometry of variable curvature defined by Einstein’s field equations of gravitation to the 

empirical behavior of freely falling bodies subject only to the influence of gravity. 
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Reichenbach distinguishes, on this basis, between two meanings of the a priori 

originally combined in Kant:  necessary and unrevisable, fixed for all time, on the one 
hand, and “constitutive of the concept of the object of knowledge,” on the other.  

Coordinating principles cannot be a priori in the first sense, of course, because we have 
just seen that they change from theory to theory as our scientific knowledge grows and 

develops.  Nevertheless, they are still a priori in the second sense, for unless they are 

antecedently in place our mathematical theories have no empirical content—no 
coordination with physical reality—at all.  Without the principle of equivalence, for 

example, the abstract four-dimensional space-time geometry defined by Einstein’s 
equations would belong wholly to the realm of pure mathematics:  it would not yet make 

an assertion about physical and empirical phenomena such as gravitation.  Therefore, 

according to Reichenbach (in 1920), we still need a priori principles in one important 
meaning of Kant’s original term—we still need constitutively a priori principles—but 

such principles, as Kant did not and could not see, change and develop as mathematical-

physical theorizing progresses. Carnap’s Logical Syntax conception of the principles of 
logic and mathematics is a generalization of this view, in so far as the principles of logic 

and mathematics themselves—the very principles that are similarly constitutive, in 
particular, of our most general inferential practices—are now seen as subject to a parallel 

relativization:  there is no longer a uniquely correct set of a priori (analytic) rules of logic, 

but rather a multiplicity of such rules (classical, intuitionistic, and so on) definitive of a 
multiplicity of what Carnap now calls formal languages or linguistic frameworks.  

I myself believe that Reichenbach’s original, 1920, conception is much closer to the 
truth than the more starkly empiricist position he articulates in 1951, and I believe that 

this conception is further confirmed by Carnap’s extension of it to the nature of logic and 

mathematics, more generally, in his Logical Syntax of 1934.  For me, the central 
contribution of logical empiricism in this regard does not lie in a logically sophisticated 

revival of more traditional inductivist empiricism, but rather in a new version of the 
original Kantian insight that a proper interpretation of modern mathematical science 

requires a carefully balanced synthesis of both rationalism and empiricism.  In particular, 

we still need to acknowledge the fundamental importance of a priori constitutive 
principles—both logical and mathematical principles, on the one side, and physical 
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coordinating principles, on the other—and there is no longer any clear sense, moreover, 

in which a priori principles of either kind are empty, tautologous, or analytic.  What 
makes them a priori is rather their characteristically Kantian constitutive function of first 

making possible the properly empirical knowledge of nature (Carnap’s synthetic 
sentences or Reichenbach’s axioms of connection) thereby structured and framed by such 

principles.  But these constitutive principles, as Kant did not see, are also relativized and 

dynamical:  they change and develop as mathematical natural science develops, 
especially in deep conceptual revolutions such as the transition from Newtonian physics 

to Einsteinian relativity theory.  So it is precisely here, I believe, that a clear 
philosophical descendent of Kant’s original synthetic a priori remains—but, unlike 

Kant’s original conception, it is relativized, historicized, and dynamical.   

This revisionist understanding of the central contribution of logical empiricism 
leads to an at first sight rather surprising coincidence between at least one strand of 

twentieth century scientific philosophy and Thomas Kuhn’s theory of the nature and 

character of scientific revolutions.  Indeed, one of Kuhn’s central examples of 
revolutionary scientific change, just as it was for the logical empiricists, is precisely 

Einstein’s theory of relativity.  Moreover, Kuhn’s central distinction between change of 
paradigm or revolutionary science, on the one side, and normal science, on the other, 

closely parallels the Carnapian distinction between change of language or linguistic 

framework and change of empirical or synthetic sentences formulated within such a 
framework (or, as Reichenbach puts it, between change of coordinating principles or 

axioms of coordination and change of mere empirical laws or axioms of connection).  
Just as, for Carnap, the logical rules of a linguistic framework are constitutive of the 

notion of “correctness” or “validity” relative to this framework, so a particular paradigm 

governing a given episode of normal science, for Kuhn, yields generally-agreed-upon 
(although perhaps only tacit) rules constitutive of what counts as a “valid” or “correct” 

solution to a problem within this episode of normal science.  Just as, for Carnap, 
questions concerning which linguistic framework to adopt are not similarly governed by 

logical rules, but rather require a much less definite appeal to purely pragmatic 

considerations, so changes of paradigm in revolutionary science, for Kuhn, do not 
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proceed in accordance with generally-agreed-upon rules as in normal science, but rather 

require something more akin to a conversion experience. 
On second sight, however, this coincidence is not so surprising at all, when we 

remind ourselves that Kuhn’s The Structure of Scientific Revolutions was originally 
published in 1962 in the Encyclopedia of Unified Science, which served as the logical 

empiricists’s official monograph series in the new world.  Indeed, Carnap himself acted 

as editor of Kuhn’s volume for this series, and, in correspondence with Kuhn, expressed 
his warm appreciation for Kuhn’s achievement.  And it is also worth noting, finally, that, 

towards the end of his career, Kuhn expressed regret that he had originally taken 
Carnap’s statements of approval as “mere politeness,” and Kuhn acknowledged the point, 

accordingly, that his own view—which he then often characterized as “Kantianism with 

movable categories”—was very similar in fact to the relativized and dynamical 
conception of constitutively a priori principles earlier developed within the logical 

empiricist tradition.  Had Kuhn known of this coincidence in 1962, The Structure of 

Scientific Revolutions would certainly have been very different from a philosophical 
point of view.  

Now Kuhn’s theory of scientific revolutions, as is well known, has more recently 
led to skeptical and relativistic conclusions regarding the ultimate rationality of 

mathematical scientific knowledge.  For, if scientific change can no longer simply be 

understood, in accordance with traditional inductivist empiricism, as the continuous 
accumulation of more and more observable facts, and, in periods of deep conceptual 

revolution or paradigm-shift, it must rather be likened to a conversion experience or 
Gestalt-switch, then it would appear that the development of science as a whole can no 

longer be conceived as an essentially rational enterprise.  Since deep conceptual 

revolutions or paradigm-shifts, by hypothesis, do not proceed against the background of 
common generally-taken-for-granted rules, as does normal science (they do not proceed, 

in Carnapian terminology, against the background of a single system of logical rules or 
linguistic framework), then (so the argument goes) it would appear that there is no sense 

left in which these scientific transitions (by far the most interesting ones) can still be 

conceived as rational—as driven by good reasons.  Modern mathematical science, in the 
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end, is just as ultimately subjective and historically relative as any other aspect of human 

culture:  all knowledge is local.  
The twentieth century tradition of scientific philosophy I have been examining did 

not, of course, explicitly address this issue.  But it is still worth asking ourselves, at 
precisely this point, whether it has the resources to resolve it.  I believe that careful 

attention to the history of scientific philosophy points the way towards a proper 

resolution—by means of a further elaboration of what I want to call the dynamics of 
reason.  To see this, however, we need to look at the history of scientific philosophy I 

sketched at the beginning from a slightly different point of view, and we need to ask, in 
particular, how Einstein’s creation of the theory of relativity in the early years of the 

twentieth century was intimately entangled with this history.  When we do this, I shall 

argue, we will see that the rationality of the radical conceptual revolution effected by 
Einstein was in fact essentially mediated precisely by developments in scientific 

philosophy.  Kuhn himself, I note, left out this parallel history of scientific philosophy, 

and this is precisely why, from my point of view, he himself had no adequate solution to 
the problem of conceptual relativism raised by his own historiography of science. 

Einstein’s finished theory of relativity—including the special theory of relativity 
formulated in 1905 and the general theory of relativity formulated in 1915—constituted a 

deep conceptual revolution relative to the pre-existing conceptual framework of classical 

Newtonian physics.  The special theory abandoned the notion of absolute time or absolute 
simultaneity lying at the basis of Newtonian kinematics and gravitation theory (where, 

according to the theory of universal gravitation, gravitating bodies attract one another 
immediately—instantaneously—across arbitrarily large spatial distances), and it replaced 

this classical notion of simultaneity with a new, relativized notion defined in terms of the 

invariance of light signals (more generally, electro-magnetic processes) in different 
inertial frames.  Einstein was then faced with the problem of reconceiving the theory of 

gravitation, so that it, too, avoided instantaneous action at a distance and employed, in its 
stead, a truly dynamical field propagating at the speed of light.  Einstein attacked this 

problem by means of his principle of equivalence, which appealed to the already well-

established equality of gravitational and inertial mass to conclude that gravity and inertia 
are the very same physical phenomenon.  Einstein exploited this insight by investigating 
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the accelerative forces arising in non-inertial frames of reference (such as centrifugal and 

Coriolis forces arising in rotating frames of reference), within the new inertial structure of 
what we now call Minkowski space-time, and he developed, on this basis, relativistically 

acceptable models of the gravitational field.  The finished result, the general theory of 
relativity, uses a variably curved version of the four-dimensional space-time geometry 

arising in special relativity (the geometry of Minkowski space-time), where the curvature 

of space-time now represents the gravitational field, and freely falling bodies affected 
only by gravitation follow geodesics or straightest possible paths of this new, non-

Euclidean space-time geometry. 
This finished theory of relativity uses radically new conceptual resources that were 

simply unavailable to classical physics.  Indeed, the mathematics required for formulating 

a non-Euclidean geometry of variable curvature was not itself available until the second 
half of the nineteenth century, and so Newton himself, for example, could not even have 

formulated the idea of Einstein’s theory.  Moreover, even after the pure mathematics here 

deployed by Einstein (the general theory of n-dimensional manifolds) had been 
introduced by Bernhard Riemann in 1854 (although it was not actually published until 

1867), one still had no notion at all how to apply such a geometry to the physical world 
until Einstein himself explored the principle of equivalence in the years 1907-12.  In 

Kuhn’s terminology, therefore, there is an important sense in which the new theory is 

incommensurable or non-intertranslatable with the old, in that, as I myself would put it, 
the new theory involves a genuine expansion of our space of intellectual possibilities—

not simply the discovery of a new fact (or actuality) within an already existing space of 
possibilities.  In my view, once the new space of possibilities is accepted (once it is 

accepted, for example, that gravitation may be represented by a variably curved four-

dimensional version of Minkowski geometry) empirical facts can then be invoked to 
settle the question of which possibility is actually realized (as the anomaly in the advance 

of the perihelion of Mercury, for example, then favors Einstein’s field equations of 
gravitation over Newton’s).  The crucial question, however, is how does a new space of 

intellectual possibilities—a new constitutive framework defining such new possibilities—

itself become accepted in the first place?  How did Einstein, in particular, somehow 
contrive to expand the constitutive framework of classical physics? 
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Einstein appealed to conceptual resources that were already present and available in 

pre-relativistic scientific thought—what else could he appeal to?—but these were not so 
much resources already present in classical Newtonian physics, but rather those available 

in pre-relativistic scientific philosophy.  For, in the first place, problems arising from the 
concepts of absolute space, time, and motion were already intensively discussed 

considerably before Einstein’s work—indeed, these problems had been already 

intensively discussed since the time of Newton’s original creation of his theory in the 
seventeenth century.  Moreover, at the philosophical or meta-scientific level at which this 

discussion proceeded there was very little consensus on the proper answers to the 
questions at issue—relativistic views of space, time, and motion perpetually opposed 

absolutist views with no clear resolution in sight—but it would nevertheless be wrong to 

assert that no progress of any kind was made.  On the contrary, by the end of the 
nineteenth century there had been considerable clarification of the role of the problematic 

concepts within Newtonian physics—by, among others, Ernst Mach—and, in particular, 

the crucial concept of inertial frame had been articulated by a number of late nineteenth 
century classical physicists.  It is no wonder, then, that when Einstein was faced with the 

radically new situation vis-à-vis the relativity of motion created by the surprising 
empirical discovery of the invariance of the velocity of light, he appealed to both the 

concept of inertial frame and the critical analysis of Newtonian absolute motion due to 

Mach in developing first the special theory of relativity and then the general theory. 
Further, and in the second place, in creating the general theory of relativity, in 

particular, Einstein explicitly appealed to a preceding tradition of reflection on the nature 
and character of geometry within nineteenth century scientific philosophy.  This was the 

famous debate between Helmholtz and Poincaré, in which empiricist and conventionalist 

interpretations of the new non-Euclidean geometries opposed one another against the 
ever present backdrop of Kant’s original theory.  Both Helmholtz and Poincaré rejected 

Kant’s theory in its original form, according to which Euclidean geometry itself 
expresses the necessary structure or form of our spatial intuition.  Nevertheless, they 

agreed that there is a generalization of Kant’s theory (to spaces of constant curvature) in 

which a more general principle—the principle of free mobility permitting arbitrary 
continuous motions of rigid bodies—replaces the particular axioms of Euclid.  They 
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disagreed, however, on how the more specific geometry of physical space (of positive, 

negative, or zero curvature) was then to be determined.  For Helmholtz it was to be 
determined empirically, by actually carrying out measurements with rigid bodies; for 

Poincaré, by contrast, it could only be determined by a convention or stipulation—such 
that, for example, Euclidean geometry is laid down by stipulation on the basis purely of 

its greater mathematical simplicity. 

I do not have time to go into this adequately here, but it emerges from Einstein’s 
celebrated paper on “Geometry and Experience,” cited earlier, that his own application of 

non-Euclidean geometry to a relativistic theory of gravitation grew naturally out of 
precisely this late nineteenth century debate—as Einstein reinterprets this debate in the 

context of the new non-Newtonian mechanics of special relativity.  The key transition to 

a non-Euclidean geometry of variable curvature, in particular, results from applying the 
Lorentz contraction arising in special relativity to the geometry of a rotating disk (and 

thus to a particular example of a non-inertial frame of reference), as Einstein 

simultaneously delicately positions himself within the debate on the foundations of 
geometry between Helmholtz and Poincaré.  Thus, whereas Einstein had earlier made 

crucial use of Poincaré’s idea of convention in motivating the transition, on the basis of 
mathematical simplicity, from Newtonian space-time to what we currently call 

Minkowski space-time (for, following Poincaré, Einstein took the critical relation of 

simultaneity to be determined by neither reason nor experience, but rather by a 
convention or definition of our own), now, in the case of the rotating disk, Einstein rather 

follows Helmholtz in taking the behavior of rigid measuring rods to furnish us with a 
straightforwardly empirical determination of the underlying geometry—in this case, a 

non-Euclidean geometry.  This, in fact, is how non-Euclidean geometry was actually 

applied to physics in the first place, and so without Einstein’s delicate engagement with 
the preceding philosophical debate between Helmholtz and Poincaré, it is indeed hard to 

imagine how the idea of such an application could have ever been envisioned as a real 
possibility—as a genuinely live alternative. 

What we see here, I finally want to suggest, is that there is a fundamental ambiguity 

in the notion of a scientific philosophy—an ambiguity that is clearly present in 
Reichenbach’s 1951 book.  On the one hand, it can mean a philosophy that is intimately 



 21 

engaged with the very deepest results of the best available science of its time—in this 

sense, Kant, on Reichenbach’s telling, was himself a scientific philosopher, as were 
Helmholtz, Mach, Poincaré, and the logical empiricists (including Reichenbach himself, 

of course).  On the other hand, and this is Reichenbach’s preferred sense, it can mean a 
philosophy that emulates the sciences, in so far as it aims for cumulative consensus and 

stable “results” comparable to the results of the sciences themselves.  The notion of a 

scientific philosophy, in this second sense, is, I believe, an illusion.  Indeed, since the role 
of scientific philosophy, in the first sense, is to reflect, at the meta-level, on the 

fundamental conceptual frameworks constitutive of the best available science of the time, 
and since precisely such frameworks, in periods of deep conceptual revolution, then 

undergo fundamental revision, it is clear that scientific philosophy, in this sense, neither 

can nor should aim at definitive “results”—those characteristic, at the scientific level, of 
normal science.  Thus Kant, in articulating the most fundamental constitutive principles 

of Newtonian mathematical physics, thought that he had achieved stable and definitive 

results in philosophy comparable to Newton’s achievements in physics:  he thought, in 
particular, that he had finally set philosophy or metaphysics on what he called “the secure 

path of a science.”  We now know, however, that Kant’s hope was in vain and that his 
true historical mission was rather, precisely by delving so deeply into the conceptual 

foundations of specifically Newtonian mathematical physics, to prepare the ground for 

later revisions of the Newtonian conceptual structure when the situation at the scientific 
level demanded it.  The further fertilization of this soil was then carried out by nineteenth 

century scientific thinkers such as Helmholtz, Mach, and Poincaré; and, although no 
stable consensus, at the philosophical or meta-scientific level, was actually achieved by 

these thinkers either, they nonetheless essentially advanced the process of conceptual 

clarification and expansion as their epistemological reflections interacted with nineteenth 
century scientific results such as the development of non-Euclidean geometries, the 

emergence of physiology and psycho-physics, and so on.  This nineteenth century process 
of philosophical or meta-scientific fertilization ultimately bore spectacular fruit in the 

early years of the twentieth century, when Einstein, against this essential background, 

created a radically new constitutive framework at the scientific level—on the basis of 
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which, at least for a time, we could then achieve stable and definitive scientific results 

(that is, normal science).  
The scientific philosophy of logical empiricism, which took its distinctive task to be 

precisely the fuller articulation and clarification of the radically new scientific conceptual 
framework created by Einstein, took itself, understandably, to be in a similar position 

with respect to Einsteinian physics that Kant was in vis-à-vis Newtonian physics.  And, 

like Kant, the logical empiricists thought that they had finally achieved the ideal of a 
scientific philosophy in our second sense—philosophy, once again, was to be in a 

position to achieve (at least temporarily) stable and definitive results.  Philosophy, once 
again, was finally to be set on “the secure path of a science.”  But, as we have seen, this 

hope, too, was in vain.  In particular, no stable and definitive general theory of the 

character of pure mathematical knowledge, and its application to nature in modern 
mathematical physical science, has in fact been achieved.  Yet there is no denying, at the 

same time, that considerable progress has nevertheless been make, in that we have a 

much better understanding of the deep mathematical, physical, and conceptual problems 
involved in attempting to articulate such a general understanding than ever before—better 

than was achieved in either Kant’s original theory, for example, or in the starkly 
empiricist position Reichenbach himself represents in The Rise of Scientific Philosophy.  

I myself believe, as I have explained, that a descendent of Kant’s original synthetic a 

priori—a relativized, historicized, and dynamical descendent—is what emerges most 
clearly in our present conceptual situation.  I freely acknowledge, however, that we have 

no stable and definitive philosophical theory of the a priori—no scientific theory in the 
second sense of “scientific philosophy”—to underwrite this view.  What we have instead 

is a chapter of philosophical and scientific history, embracing the parallel evolution of 

both scientific philosophy from Kant through Reichenbach and Carnap, and the 
mathematical exact sciences from Newton through Einstein and Gödel, on the basis of 

which it finally becomes clear, as I have argued, that a relativized and dynamical 
descendent of the Kantian synthetic a priori is what remains standing, as it were, at the 

end of the historical dialectic.  In this sense, what I am calling the dynamics of reason can 

itself only end—perhaps not too surprisingly—on a frankly Hegelian note.  
 



 23 

Note 
                                                
* My revisionist understanding of logical empiricism is developed in Reconsidering 

Logical Positivism (Cambridge: Cambridge University Press, 1999).  I begin to articulate 

the resulting reconceptualization of the nature and goals of “scientific philosophy” in 

Dynamics of Reason (Stanford: CSLI, 2001).  The reader may consult these two works 
for further details and references.  I here explain the basic ideas of what I call the 

dynamics of reason against the background of Reichenbach’s The Rise of Scientific 

Philosophy (Berkeley and Los Angeles: University of California Press, 1951).  All 

parenthetical page references are to this volume.    


