
Antecedents of counterfactuals

violate de Morgan’s law

Lucas Champollion

champollion@nyu.edu

Joint work with Ivano Ciardelli and Linmin Zhang

LUSH talk (Utrecht)

November 13, 2015

1 Introduction
• Formulas (1a) and (1b) are equivalent in classical propositional logic (de Morgan’s law),

since they are true at the same possible worlds.

(1) a. ¬A ∨ ¬B
b. ¬(A ∧ B)

• In other systems, such as alternative semantics (Alonso-Ovalle, 2009) and inquisitive logic

(Ciardelli, Groenendijk, and Roelofsen, 2013), they are not equivalent (see Figure 1).

• In inquisitive logic, an atomic proposition A denotes the set of all sets of A-worlds. (1a)
denotes the set that contains:

1. all sets of A-worlds and all sets of B-worlds

2. but none of the remaining sets of A∨ B-worlds (such as the set of all worlds in which

A ∨ B holds)

• As for (1b), it denotes a larger set: all the sets of ¬(A ∧ B)-worlds.
• �at is, it contains all classical propositions that classically entail (¬A ∨ ¬B) even if they

don’t tell us which disjunct is the case.

• In inquisitive logic, the denotations of the disjuncts can usually be recovered from the de-

notation of the disjunction. In propositional logic, they cannot.

• �e starting point of our work is the question whether the second view (recoverable dis-
juncts) is needed.
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Figure 1: the disjunction of (a) and (b), as construed in truth-conditional semantics (c), and as

construed in alternative and inquisitive semantics (d).

2 Counterfactuals

• Alonso-Ovalle (2009) suggested that the SDA law provide evidence for recoverable disjuncts

(2) Simpli�cation of disjunctive antecedents (SDA)

a. If Alice or Bob had come to the party, it would have been fun.

b. �erefore, if Alice had come to the party, it would have been fun.

• �e similarity-based account of counterfactuals by Lewis (1973) can’t derive SDA unless it

is patched up so the counterfactual can run separately on each disjunct.

• �is essentially is the crux of Alonso-Ovalle’s argument for recoverable disjuncts.

• But as we will see, these accounts are themselves problematic. We sought a stronger argu-

ment that does not rely on a particular account of counterfactuals.

• To this end, we decided to compare (1a) and (1b) directly in an experiment.

3 �e switches scenario

• Schulz (2007):

Imagine a long hallway with a light in the middle and with two switches, one at each end. One
switch is called switch A and the other one is called switch B. As the following wiring diagram
shows, the light is on whenever both switches are in the same position (both up or both down);
otherwise, the light is o�. (a�er Lifschitz, 1990)

• Test your intuitions (you may want to write them down):

(3) a. If switch A and switch B were both down, the light would be o�.

b. If switch A and switch B were not both up, the light would be o�.

c. If switch A was down, the light would be o�.

d. If switch A or switch B was down, the light would be o�.
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Figure 2: Lifschitz’ switches

4 Our experiment

• We used MTurk to collect truth value judgments in the context shown above (including the

picture).

• Participants could choose between true, false and indeterminate.

• We were mainly interested in these two sentences:

(4) a. If switchA and switch Bwere not both up, the light would be o�. ¬(A∧B) > off

b. If switch A or switch B was down, the light would be o�. (¬A ∨ ¬B) > off

• We intuitively felt a di�erence between these sentences: we were much more hesitant to

judge (4a) true than (4b).

• To control for naturalness, we ran a pre-test and found that the two sentences did not

signi�cantly di�er in naturalness as judged on a 7-point scale with no scenario supplied

(N=55).

• We also tested the following sentences:

(5) a. If switch A was down, the light would be o�. (¬A) > off

b. If switch B was down, the light would be o�. (¬B) > off

• From our own intuitions, we expected that these sentences should both be judged true.

Finally we also tested this sentence:

(6) a. If switch A and switch Bwere not both up, the light would be on. ¬(A∧B) > on

• We expected this to be judged false or indeterminate.

• We only showed people one of the sentences above at a time.

• We also showed everyone a �ller sentence that we take to be uncontroversially false:
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(7) If switch A and switch B were both down, the light would be o�. (¬A ∧ ¬B) > off

• All our subjects were based in the US. We eliminated subjects who participated more than

once or didn’t �nish (less than 1%), didn’t speak American English natively (about 4%), or

didn’t judge the �ller sentence false (about 38%).

• �e results are shown in Table 1.

Table 1: Results

Conditions Total number True (%) False (%) Indet. (%)

(¬A) > off 255 169 66.27% 6 2.35% 80 31.37%

(¬B) > off 234 153 65.38% 7 2.99% 74 31.62%

(¬A ∨ ¬B) > off 346 242 69.9% 12 3.5% 92 26.6%

¬(A ∧ B) > off 356 80 22.5% 129 36.2% 147 41.3%
¬(A ∧ B) > on 200 43 21.5% 63 31.5% 94 47.0%

• (¬A) > off, (¬B) > off, and (¬A∨¬B) > offwere all judged true. By contrast, ¬(A∧B) >
off was generally judged false or indeterminate. �is di�erence was highly signi�cant

(p < 0.0001 on a chi-square test).

• �e similarity between (¬A) > off, (¬B) > off, and (¬A ∨ ¬B) > off is striking. None of

these conditions di�ered signi�cantly.

5 Discussion

• We draw the following pretheoretical conclusions from the experiment:

• “If A or B then C” is interpreted in the same way as “If A then C, and if B then C”, in

accordance with SDA.

• When “If A or B then C” is interpreted, A and B are changed only one at a time. We consider

two counterfactual scenarios: what if A but not B; what if B but not A.

• When “If (not both A and B) then C” is interpreted, we consider three counterfactual sce-

narios: what if A but not B; what if B but not A; what if neither A nor B.

• �ese results constrain our theories: De Morgan’s law does not hold in the antecedents of

counterfactuals.

• Propositional logic needs to be either supplemented or replaced in order to account for this.
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6 �ick primer on counterfactuals
(8) If kangaroos had no tails, they would topple over. (Lewis, 1973)

• Material implication at the actual world is not an option.

• Nor is material implication at all possible worlds:

(9) a. If kangaroos had no tails but used crutches, they would topple over.

b. A > C ; (A ∧ B) > C

– �ere will generally be some A-worlds which are very odd and remote

– It should not ma�er whether such worlds are also C-worlds

• Stalnaker (1968), Lewis (1973): worlds are ordered based on how similar they are to the

actual world

• “In any possible state of a�airs in which kangaroos have no tails, and which resembles our

actual state of a�airs as much as kangaroos having no tails permits it to, the kangaroos

topple over.” (Lewis, 1973)

• Simplifying Lewis’s proposal a bit, it says:

– A > C is true i� C is true at every closest A-world.

• In case there is exactly one closest A-world, this amounts to:

– A > C is true i� C is true at the closest A-world (Stalnaker, 1968)

• One problem: counterfactuals involving drastic changes should never be true (Fine, 1975)

(10) a. If Nixon had pressed the bu�on, there would have been a nuclear holocaust.

b. �e closest A-worlds will be worlds where the wire is cut etc.

• For this to work, a cut wire must mean a bigger di�erence than a nuclear explosion.

• Another problem (Schulz, 2007): similarity needs to conspire to simulate causal e�ects

(11) a. If switch A was down, the light would be o�. true
b. If switch A was down, switch B would be down as well. false

• For this to work, a changed switch must mean a bigger di�erence than a changed light.

• Only the light causally depends on switch A. Switch B does not. But this fact is not relevant

for Stalnaker and Lewis.

• Lewis (1979) responded by introducing a system ofweights thatmakes the nuclear-holocaust

world more similar to ours than the world in which the wire is cut.
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• But our results are incompatible with the Stalnaker/Lewis system on any similarity metric.

(12) a. Most of our speakers judged (¬A) > C and (¬B) > C true.

b. So the closest ¬A-worlds and the closest ¬B-worlds are C-worlds.
c. Most of our speakers judged (¬(A ∧ B)) > C false or indeterminate.

d. So not every closest ¬(A ∧ B)-worlds can be a C-world.
e. But every closest ¬(A∧ B)-world is either a closest ¬A-world or a closest ¬B-

world, and by (12b) must be a C-world.

• Pearl (2000), Schulz (2007), Kaufmann (2013), and Briggs (2012) replace the similarity or-

dering on worlds by a causal network (a directed acyclic graph over propositions).

• I will describe Kaufmann’s system here because it builds on Kratzer’s familiar premise se-

mantics, and because it can be extended to account for our results.

7 Simpli�ed version of Kaufmann (2013)

• Causal dependencies are described by a causal structure and a set of causal laws.

• �e causal structure is a directed acyclic graph whose nodes (the variables) are partitions
over the set of possible worlds.

• Figure 7 shows the causal structure for the switches scenario. Its variables are “whether

switch A is up” (independent), “whether switch B is up” (independent), and “whether the

light is on” (dependent).

A L B

Figure 3: �e causal structure for the switches scenario

• �e cells of a variable are called se�ings: e.g. a (“switch A is up”), a (“switch A is down”).

• A set of variable se�ings that are true in the actual world is called a premise set. A causal
premise set is a premise set that is closed under the ancestor relation.

• To evaluate a counterfactual, we �rst compute the causal premise background: the set of all
causal premise sets.

• Suppose both switches are up and the light is on. Our true variable se�ings are a, b, and l .
Our causal premise background is {∅, {a}, {b}, {a,b}, {a,b, l}}.

• �en we identify the set of all those causal premise sets that are consistent with the an-

tecedent.
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• If our antecedent is “if switch A was down” (a), this set is {∅, {b}}.
• When considering an antecedent we typically hold constant all facts that don’t causally

depend on it:

(13) If switch A was down, switch B would still be up. true

• Accordingly, we are only interested in the maximal causal premise sets. Of ∅ and {b} only
{b} is maximal.

• We call the set of maximal causal premise sets a modal base.

• In the simplest case, causal laws are material conditionals whose arrows go from parents

to children in the causal network:

(14) a. (a ∧ b)→ l
b. (a ∧ b)→ l
c. (a ∧ b)→ l
d. (a ∧ b)→ l

• A > C is true i� for every set S in its modal base,1 C is entailed by the conjunction ofA, the
propositions in S , and the causal laws that S is consistent with.

• We need to conjoin our antecedent a with our sole maximal set, {b}, and with the four laws,
in particular (a ∧ b)→ l . �e result is equivalent to a ∧ b ∧ l .

• �e sentence If switch A was down, the light would be o� is predicted true.

8 Extending Kaufmann (2013) to complex antecedents

• To model our results we will need to modify the procedure somewhat.

• We have seen that we got the same results for ¬a ∨ ¬b as we did for ¬a and for ¬b.

• �is suggests that a separate instance of the counterfactual is run on each disjunct.

• Suppose we have a counterfactual operator A I C that is de�ned only for noninquisitive

meaning, e.g. that of Stalnaker, Lewis, or Kaufmann.

• We can li� it into inquisitive semantics in the following way (where Alt(ϕ) returns the set
of maximal subsets of ϕ):

(15) Inquisitive counterfactual conditional

[[ϕ > ψ ]] = {p | for all A ∈ Alt(ϕ) there is a C ∈ Alt(ψ ) such that p ⊆ AIC}
1Kaufmann only considers those sets which are compatible with as many laws as possible (ordering source). We

can ignore this step in our scenario because no causal laws ever get broken.
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• In the cases of interest,ψ has only one alternativeC (“the light is o�”), but ϕ may have two

alternatives (A1 =“switch A is down”, A2 = “switch B is down”).

• �en this de�nition amounts to separately testing Ai IC for each Ai .

• �e case of ¬(a ∧ b) needs more work: we have to change Kaufmann’s operator itself.

(16) If switch A and switch B were not both up, the light would be o�. – judged false

• As before, our causal premise background is {∅, {a}, {b}, {a,b}, {a,b, l}}.
• Given this, the modal base of (16) is {∅, {a}, {b}}, of which {a} and {b} are maximal.

• Kaufmann would now conjoin each of these sets with the antecedent and the causal laws:

(17) a. a ∧ ¬(a ∧ b) ∧ [laws] ≡ a ∧ b ∧ l
b. b ∧ ¬(a ∧ b) ∧ [laws] ≡ a ∧ b ∧ l

• In each of these cases, the light is o�. So the sentence is predicted true, contrary to fact.

• When we built the modal base, we treated the antecedent A as a whole.

• Instead we will consider separately each of the three “ways of making A true”, or what we

will call the grounds forA: {a,b}, {a,b}, {a,b}. �is forces a�ention to the case where both

switches are down.

– Given a proposition ϕ, a setV of partitions over worlds (i.e. of causal variables), and a

nonempty set S of se�ings of some of these variables, S controls ϕ i�

⋂
S entails ϕ but

there is a set S′ of se�ings of the same variables such that

⋂
S′ is inconsistent with

ϕ. S is a ground for ϕ (a “way of making ϕ true”) if S is minimal among the sets that

control ϕ.

– Let ϕ = [[a]], V = {A,B,L}, S = {a,b}, S′ = {a,b}. Now ⋂ S entails ϕ but

⋂
S′ is

inconsistent with ϕ. �erefore S controls ϕ. But so does {a}, hence S is not a ground

for ϕ. Rather, {a} is the only ground for ϕ.

– Let ϕ = [[¬(a ∧ b)]], V = {A,B,L}, S1 = {a,b}, S2 = {a,b}, S3 = {a,b}, S′ = {a,b}.
Now each

⋂
Si entails ϕ but

⋂
S′ is inconsistent with ϕ. �erefore each Si controls ϕ.

As for {a}, {b}, {a}, {b}, none of them controls ϕ, hence each Si is a ground for ϕ.

• For each ground of A, we separately compute the set of maximal causal premise sets con-

sistent with it.

(18) a. For {a,b}, that set is {{a}}.
b. For {a,b}, that set is {{b}}.
c. For {a,b}, that set is {∅}.

• Our updated recipe is now as follows:
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• A > C is true i� for each groundG of A, for each maximal causal premise setM consistent

with G, the causal laws together with G andM entail C .

• Now (16) requires us to consider three grounds for the antecedent:

(19) a. Ground 1: Switch A is up and switch B is down.

b. Its only maximal causal premise set says that switch A is up.

c. Given the causal laws, the light is o�.

(20) a. Ground 2: Switch A is down and switch B is up.

b. Its only maximal causal premise set says that switch B is up.

c. Given the causal laws, the light is o�.

(21) a. Ground 3: Both switches are down.

b. Its only maximal causal premise set does not say anything.

c. Given the causal laws, the light is on.

• Since on ground 3 the light is on, (16) is predicted false, as desired.

9 What about implicatures?

• We now have an account of our results, and it relies on recoverable disjuncts. But it is

certainly not the only possible account.

• What if or means XOR?

(22) If switch A XOR switch B was down, the light would be o�.

⇔ If switch A or switch B was down but not both, the light would be o�.

• �is would explain why not A or not B is not equivalent to not (A and B).

• Now, or certainly does not literally mean XOR:

(23) It is not the case that switch A XOR switch B is down.

⇔ Either they are both up or they are both down.

• But what if or is enriched from ∨ to XOR by implicature? Cf. the top-level implicature in a

disjunction:

(24) Switch A or switch B is down.

{�ey are not both down.

• Maybe the antecedent is locally strengthened to only A or B.

(25) (¬A ∨ ¬B) > C is interpreted as (EXH(¬A ∨ ¬B)) > C , where EXH ≈ “only”.
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• Presumably, what breaks the symmetry is this inequality:

(26) EXH(¬A ∨ ¬B) , EXH(¬(A ∧ B))

• �is predicts that a certain implicature should not hold:

(27) Switch A and switch B are not both up.

6{�ey are not both down.

• We are not sure that this implicature is absent. But suppose it is, (26) shows that in a sense,

de Morgan’s law fails to hold even at the root level – but it only shows up as implicatures.

• �ere is a question how to derive (26). One possibility is that EXH has no e�ect on ¬(A∧B).
• �is depends on what the syntactic alternatives of that expression are.

10 Conclusion

• Our experiment shows that de Morgan’s law fails to hold in the antecedents of counterfac-

tuals.

• It also fails in inquisitive semantics. �is provides us with an intuitive explanation for the

contrast, which is then put to work in our semantics.

• Our experiment also shows that (¬A) > C and (¬B) > C do not entail (¬(A ∧ B)) > C ,
contra the Stalnaker/Lewis account.

• An antecedent of the form ¬(A∧ B) invites contemplation of three “grounds”: A but not B,
B but not A, and crucially, neither A nor B.

• An antecedent of the form ¬A ∨ ¬B only invites contemplation of the �rst two cases.

• We have also provided empirical support for SDA: (A∨B) > C entailsA > C . �is is a good

�t for inquisitive semantics and other frameworks with recoverable disjuncts.
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