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1 Inquisitive semantics: propositions as proposals
Traditionally, the meaning of a sentence is identified with its informative content.
In much recent work, this notion is given a dynamic twist, and the meaning of
a sentence is taken to be its potential to change the ‘common ground’ of a con-
versation. The most basic way to formalize this idea is to think of the common
ground as a set of possible worlds, and of a sentence as providing information by
eliminating some of these possible worlds.

Of course, this picture is limited in several ways. First, when exchanging infor-
mation sentences are not only used to provide information, but also—crucially—
to raise issues, that is, to indicate which kind of information is desired. Second,
the given picture does not take into account that updating the common ground
is a cooperative process. One conversational participant cannot simply change
the common ground all by herself. All she can do is propose a certain change.
Other participants may react to such a proposal in several ways. In a cooperative
conversation, changes of the common ground come about by mutual agreement.

In order to overcome these limitations, inquisitive semantics starts with a dif-
ferent picture. It views propositions as proposals to update the common ground.
Crucially, these proposals do not always specify just one way of updating the
common ground. They may suggest alternative ways of doing so, among which

∗This an abridged version of a paper in the making, used as a handout for a seminar in Amherst
on Feb 22, 2010. Earlier version were presented at the ILLC in Amsterdam (Feb 5, 2010) and at
the ICS in Osnabrück (Jan 13, 2010).
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the addressee is then invited to choose. Formally, a proposition consists of one
or more possibilities. Each possibility is a set of possible worlds and embodies a
possible way to update the common ground. If a proposition consists of two or
more possibilities, it is inquisitive: it invites other participants to provide informa-
tion in such a way that one or more of the proposed updates may be established.
Inquisitive propositions raise an issue. They indicate which kind of information is
desired. In this way, inquisitive semantics directly reflects the idea that informa-
tion exchange consists in a cooperative dynamic process of raising and resolving
issues.

Our starting point here is the implementation of inquisitive semantics that is
provided in (Groenendijk and Roelofsen, 2009; Ciardelli and Roelofsen, 2009).1

We will argue that this system, to which we will refer as conservative inquisitive
semantics, only partially captures the central underlying conception of sentences
as expressing proposals to update the common ground. Subsequently, an enriched
implementation will be presented and illustrated in some detail.

2 Positive and negative responses
Conceiving of a proposition as a set of possibilities makes it possible to character-
ize, at least to some extent, what the positive responses to a given sentence are. For
instance, (1) expresses a proposition consisting of two possibilities, corresponding
with the two positive responses in (2):

(1) Pete will play the piano, and Sue will sing or Mary will dance.

(2) a. Yes, Pete will play the piano and Sue will sing.
b. Yes, Pete will play the piano and Mary will dance.

However, if sentences are taken to express proposals, then preferably our seman-
tics should not only allow us to characterize positive responses, which accept the
proposal in question, but also negative responses, which reject the proposal. For
instance, besides characterizing the responses in (2) as positive responses to (1),
we would also like to characterize the responses in (3) as negative responses to (1).

(3) a. No, Pete will not play the piano.
b. No, Sue will not sing and Mary will not dance.

1The historical context of the paper will be discussed in more detail in a separate section.
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Conservative inquisitive semantics does not provide the means to establish such
a characterization. It formally represents a proposal as a set of possibilities, and
these possibilities correspond to positive responses. Negative responses are not
always just negations of positive responses. For instance, the negative responses
in (3) are not simply obtained by negating the positive responses in (2). Nor do
they correspond in any other systematic way with the possibilities for (1).

Thus, in order to characterize both positive and negative responses, the se-
mantics really has to be enriched. One way to do this is to respresent a pro-
posal not just as a set of possibilities, but rather as a set of possibilities plus a set
of counter-possibilities, where possibilities correspond to positive responses and
counter-possibilities to negative responses. This approach will be explored below.
We will see that it deals with the above examples in a straightforward way, and
that it has some interesting further consequences, especially for the interpretation
of conditional sentences.

3 Radical inquisitive semantics
We consider a propositional language.

Definition 1 (Language). We consider a language whose formulas are built up
from a finite set of proposition letters P, using the standard operators ¬,∧,∨
and →, and an additional operator ÷. We will refer to ÷ as inversion, and for
any formula ϕ, we will refer to ÷ϕ as the inverse of ϕ. Finally, we will use ?ϕ as
an abbreviation of ϕ ∨ ÷ϕ.

The basic ingredients of the semantics are possible worlds and possibilities.

Definition 2 (Possible worlds and possibilities). A possible world is a function
from P to {0, 1}. A possibility is a set of possible worlds.

For any possibility α, α will denote the complement of α, i.e., the set of all worlds
not in α. For any formula ϕ, |ϕ| will denote the possibility consisting of all worlds
that make ϕ true in a classical setting. We will refer to |ϕ| as the truth-set of ϕ.

Definition 3 below recursively defines, for every sentence ϕ in our language,
the proposition dϕe expressed by ϕ, and the counter-proposition bϕc for ϕ. Both
dϕe and bϕc will be sets of possibilities. We will refer to the elements of dϕe as
the possibilities for ϕ, and to the elements of bϕc as the counter-possibilities for ϕ.
The clauses of the definition will be illustrated right below.
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Definition 3 (Radical inquisitive semantics).

1. dpe B { |p| }

bpc B { |p| }

2. d¬ϕe B {
⋂

α∈dϕe α }

b¬ϕc B dϕe

3. dϕ ∨ ψe B dϕe ∪ dψe

bϕ ∨ ψc B {α ∩ β | α ∈ bϕc and β ∈ bψc}

4. dϕ ∧ ψe B {α ∩ β | α ∈ dϕe and β ∈ dψe}

bϕ ∧ ψc B bϕc ∪ bψc

5. dϕ→ ψe B {γ f | f ∈ dψedϕe } where γ f B
⋂

α∈dϕe (α⇒ f (α))

bϕ→ ψc B {α⇒ β | α ∈ dϕe and β ∈ bψc}

6. d÷ϕe B bϕc

b÷ϕc B dϕe

The clause for implication is defined in terms of a two-place operator ⇒, which
remains to be specified. Notice that ⇒ takes two possibilities as its input and
yields a third possibility as its output. For concreteness and simplicity, we will
define ⇒ as material implication here. But in principle, any more sophisticated
existing analysis of non-inquisitive conditionals could be ‘plugged in’ here. We
will return to this point in section 4.1.

Definition 4 (⇒). α⇒ β B α ∪ β.

The remainder of this section is entirely devoted to explaining and illustrating the
semantics specified in definition 3. We start with the clauses for atomic sentences,
disjunction and conjunction. These clauses will immediately give us a handle on
our initial example, (1), which was used to motivate our move to a more radical
inquisitive semantics.
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3.1 Atoms, disjunction, and conjunction
A natural translation of example (1) into our formal language is:

(4) p ∧ (q ∨ r)

According to the atomic clause of definition 3, the proposition expressed by the
first conjunct p is { |p| }, and similarly for the atomic sentences q and r. The clause
for disjunction tells us that:

(5) dq ∨ re = dqe ∪ dre = { |q|, |r| }

And the clause for conjunction yields:

(6) dp ∧ (q ∨ r)e = { |p ∧ q|, |p ∧ r| }

So there are two possibilities for p ∧ (q ∨ r). The sentence is inquisitive, and its
inquisitiveness can be resolved by providing the information that p and q are the
case or the information that p and r are the case. This explains the fact that (2a)
and (2b) are positive responses to (1).

Now let us turn to the counter-proposition for (4). First, the atomic clause
says that the counter-proposition for p is { |p| }, which is the same as { |¬p| }, and
similarly for q and r. The clause for disjunction tells us that:

(7) bq ∨ rc = { |¬q| ∩ |¬r| } = { |¬q ∧ ¬r| }

And the clause for conjunction yields:

(8) bp ∧ (q ∨ r)c = bpc ∪ bq ∨ rc = { |¬p| , |¬q ∧ ¬r| }

Thus, there are two counter-possibilities for (4), corresponding exactly to the two
negative responses in (3a) and (3b).

3.2 Negation and inversion
Consider a simple sentence involving negation:

(9) Sue will not sing or dance.
a. Primary positive response:

Right, she will not sing or dance.
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b. Primary negative responses:
No, she wı́ll sing.
No, she wı́ll dance.

Suppose that we translate (9) into our logical language as ¬(q∨r). The proposition
expressed by a negated sentence ¬ϕ always consists of a single possibility, which
is the intersection of the complements of all the possibilities for ϕ (or, equivalently,
the complement of the union of all the possibilities for ϕ). Thus, for the particular
case of ¬(q ∨ r), we get:

(10) d¬(q ∨ r)e = { |¬q| ∩ |¬r| } = { |¬q ∧ ¬r| }

That is, the proposition expressed by ¬(q∨r) consists of a single possibility, which
corresponds with the primary positive response in (9a).

Now let us turn to the counter-proposition for ¬(q∨ r). The counter-clause for
negation tells us that, in general, the counter-proposition for ¬ϕ is the proposition
expressed by ϕ. Thus for the case of ¬(q ∨ r) we get:

(11) b¬(q ∨ r)c = dq ∨ re = { |q|, |r| }

This means that there are two counter-possibilities for ¬(q ∨ r), corresponding to
the two primary negative responses in (9b).

The final clause of definition 3 says that the proposition expressed by the in-
verse ÷ϕ of a sentence ϕ is the counter-proposition for ϕ itself. And vice versa, the
counter-proposition for the inverse of ϕ is the proposition expressed by ϕ itself.

Notice that negation and inversion are closely related. First, for any sentence
ϕ, the counter-proposition for ÷ϕ is exactly the same as the counter-proposition
for ¬ϕ, namely the proposition expressed by ϕ itself:

Fact 5 (Counter-possibilities, negation, inversion). For any ϕ: b¬ϕc = b÷ϕc = dϕe

The proposition expressed by ÷ϕ is not generally the same as the one expressed
by ¬ϕ. This is easy to see: the proposition expressed by ¬ϕ always consists of a
single possibility, while the proposition expressed by ÷ϕ may in principle contain
any number of possibilities. However, as long as ϕ does not involve implication,
there is a straightforward connection between d¬ϕe and d÷ϕe:

Fact 6 (Possibilities for negation and inversion).
For any ϕ that does not involve implication:

d¬ϕe = {
⋃
d÷ϕe } = {

⋃
bϕc }
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That is, whenever ϕ does not contain implication, the single possibility for ¬ϕ is
the union of all the possibilities for ÷ϕ, which is the same as the union of all the
counter-possibilities for ϕ itself.

3.3 Atomic, conjunctive, and disjunctive questions
Recall that ?ϕ is defined as an abbreviation of ϕ ∨ ÷ϕ. To illustrate what the
consequences are of this definition, let us first consider the interpretation of an
atomic polar question ?q. By definition, ?q abbreviates q∨÷q. So d?qe = dq∨÷qe.
The clause for disjunction tells us that dq ∨ ÷qe = dqe ∪ d÷qe. By the clause for
inversion, we have that dqe ∪ d÷qe = dqe ∪ bqc, which, by the atomic clause,
amounts to { |q| } ∪ { |q| }, and that is the same as { |q|, |¬q| }. So:

(12) d?qe = { |q|, |¬q| }

This means that there are two positive responses to the atomic question ?q, corre-
sponding to yes and no.

As for the counter-proposition expressed by ?q, we have, by definition of ?q
as an abbreviation of q ∨ ÷q, that b?qc = bq ∨ ÷qc. By the counter-clause for
disjunction, we have that bq ∨ ÷qc = { α ∩ β | α ∈ bqc and β ∈ b÷qc }, which
reduces to { α ∩ β | α ∈ { |¬q| } and β ∈ { |q| } }. So, what we end up with is:

(13) b?qc = { ∅ }

This means that there are no non-contradictory negative responses to ?q.
Thus, the analysis of atomic polar questions does not yield any surprises.

However, as questions are defined in terms of inversion here, and inversion is
a novel concept, our general treatment of questions is bound to diverge from pre-
vious analyses. In conservative inquisitive semantics, for instance, questions are
defined in terms of negation rather than inversion. That is, ?ϕ is defined as an
abbreviation of ϕ ∨ ¬ϕ rather than ϕ ∨ ÷ϕ. This happens to give exactly the same
results for atomic polar questions. But the two theories start to make different
predictions as soon as we go beyond the atomic case. Take, for instance, a simple
conjunctive polar question:

(14) Will both Sue and Mary sing?

We translate (14) into our logical language as ?(q ∧ r). In radical inquisitive
semantics, there are not just two, but three possibilities for this sentence, |q ∧ r|,
|¬q|, and |¬r|, which correspond to the following primary positive responses:
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(15) Primary positive responses in radical inquisitive semantics:
a. Yes, both Sue and Mary will sing. q ∧ r
b. No, Sue won’t sing. ¬q
c. No, Mary won’t sing. ¬r

In conservative inquisitive semantics, the proposition expressed by ?(q∧r) consists
of just two possibilities, |q ∧ r| and |¬(q ∧ r)|, corresponding to the following
primary positive responses:

(16) Primary positive responses in conservative inquisitive semantics:
a. Yes, both Sue and Mary will sing. q ∧ r
b. No, either Sue or Mary won’t sing. ¬q ∨ ¬r

So, both systems generate the same yes-answer, but radical inquisitive semantics
generates more specific primary no-answers than conservative inquisitive seman-
tics does. In conservative inquisitive semantics (15b) and (15c) cannot be clas-
sified as positive responses in any straightforward way, because the proposition
assigned to ?(p ∧ q) is too coarse-grained. This is clearly a shortcoming, which,
for all we know, is shared by any other previous account of questions.

3.4 Conditionals with disjunctive consequents
The first example that we will use to illustrate the clause for implication is the con-
ditional in (17). Notice that the consequent of this conditional is disjunctive (and
therefore inquisitive). We want to derive that the positive and negative responses
to (17) are the ones specified in (17a) and (17b), respectively.

(17) If Pete plays the piano, then Sue will sing or Mary will dance.
a. Positive responses:

Yes, if Pete plays the piano, Sue will sing.
Yes, if Pete plays the piano, Mary will dance.

b. Negative response:
No, if Pete plays the piano, Sue won’t sing and Mary won’t dance.

We translate (17) into our formal language as (18), and we will show that the
proposition expressed by (18) and the counter-proposition for (18) are the ones
in (18a) and (18b), respectively, which correspond exactly with the positive and
negative responses specified in (17a) and (17b).
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(18) p→ (q ∨ r)

a. dp→ (q ∨ r)e = { |p→ q|, |p→ r| }
b. bp→ (q ∨ r)c = { |p→ (¬q ∧ ¬r)| }

First consider the proposition dp → (q ∨ r)e. For convenience, let us repeat the
clause for implication:

(19) dϕ→ ψe B {γ f | f ∈ dψedϕe } where γ f B
⋂

α∈dϕe (α⇒ f (α))

The idea behind this clause is the following. The proposal expressed by a sentence
can in general be realized in one or more ways. That is, if a proposal consists of
just one possibility, then it proposes just one update, and it can be realized in
exactly one way, namely by establishing that update. If a proposal consist of
several possibilities, it proposes several possible updates, and this means that it
can be realized in several ways, namely by establishing either one (or more) of the
proposed updates. What we take to be the ‘positive responses’ to a given proposal
are sentences that do exactly this: they realize one of the proposed updates.

Now, under this perspective, a conditional sentence ϕ → ψ can be thought of
as expressing a proposal to establish a certain implicational dependency between
the ways in which ϕ may be realized and the ways in which ψ may be realized, or,
in more neutral terms, between the possibilities for ϕ and the possibilities for ψ.
Such a dependency links every possibility α ∈ dϕe to some possibility f (α) ∈ dψe,
in such a way that for all α ∈ dϕe, α⇒ f (α) holds.

How many potential implicational dependencies there are depends on the num-
ber of possibilities for ϕ and ψ. If there are m possibilities for ϕ and n possibilities
for ψ then there are nm functions from dϕe to dψe. Each of these functions f
links every possibility α ∈ dϕe to some possibility f (α) ∈ dψe. Thus, each of
these functions corresponds with a potential implicational dependency between
the possibilities for ϕ and the possibilities for ψ.

In order to establish the implicational dependency corresponding to some
function f from dϕe to dψe, we have to establish that α ⇒ f (α) holds for all
α ∈ dϕe. This means that we have to establish

⋂
α∈dϕe (α ⇒ f (α)).Notice that this

intersection is a possibility, which is called γ f in the clause for implication. For
each function f : dϕe → dψe, then, there is a corresponding possibility γ f , and
together, these possibilities make up the proposition expressed by ϕ→ ψ.

Now let us return to our example, p → (q ∨ r). We have already seen that
dpe = { |p| } and dq∨re = { |q|, |r| }. Thus, there are two functions from dpe to dq∨re,
one that maps |p| to |q|, and another one that maps |p| to |r|. Call the first one fq
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and the second one fr. Then, the clause for implication tells us that dp→ (q ∨ r)e
consists of two possibilities, γ fq and γ fr , where γ fq = |p| ⇒ |q| = |p → q| and
γ fr = |p|⇒|r| = |p→ r|. Thus, we obtain the desired result:

(20) dp→ (q ∨ r)e = { |p→ q|, |p→ r| }

Next we turn to the counter-proposition for p → (q ∨ r). Again, let us pause
one moment to repeat the counter-clause for implication, and briefly explain the
intuition behind it.

(21) bϕ→ ψc B {α⇒ β | α ∈ dϕe and β ∈ bψc}

As specified above, we think of ϕ→ ψ as expressing a proposal to establish a cer-
tain implicational dependency between the possibilities for ϕ and the possibilities
for ψ. Rejecting such a proposal, then, amounts to saying that none of the potential
dependencies could possibly be established. This means that there must be some
way of realizing ϕ that leads to the rejection of ψ. Thus, to reject ϕ→ ψ, we must
point out that the realization of some possibility α for ϕ implies the realization of
some counter-possibility β for ψ. This is why for every α ∈ dϕe and every β ∈ bψc,
α ⇒ β is a counter-possibility for ϕ → ψ, corresponding to a negative response.
So if there are m possibilities for ϕ and n counter-possibilities for ψ then there are
(at most) m × n counter-possibilities for ϕ→ ψ.

Returning to our concrete example, the counter-possibilities for p → (q ∨ r)
are possibilities of the form α ⇒ β, where α ∈ dpe and β ∈ bq ∨ rc. Recall that
bq ∨ rc = { |¬q ∧ ¬r| }. So, since there is only one possibility for the antecedent
p and only one counter-possibility for the consequent q ∨ r, there is also only one
counter-possibility for the implication as a whole, which indeed corresponds with
the negative response in (17b):

(22) bp→ (q ∨ r)c = { |p→ (¬q ∧ ¬r)| }

3.5 Conditionals with disjunctive antecedents
If we reverse the antecedent and the consequent of example (17) we arrive at (23).
Notice that the number of the positive and negative responses is also reversed.

(23) If Sue sings or Mary dances, then Pete will play the piano.
a. Positive response:

Yes, if Sue sings, Pete will play, and if Mary dances, he’ll play too.
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b. Negative responses:
No, if Sue sings Pete will not play.
No, if Mary dances Pete will not play.

We translate (23) as (24). The proposition expressed by (24) is (24a) and the
counter-proposition for (24) is (24b), which correspond exactly with the positive
and negative responses specified in (23a) and (23b).

(24) (q ∨ r)→ p

a. d(q ∨ r)→ pe = { |q→ p| ∩ |r → p| }
b. b(q ∨ r)→ pc = { |q→ ¬p|, |r → ¬p| }

Since there is only a single possibility |p| for the consequent of (24), there is only
one function f that maps both possibilities |q| and |r| for the inquisitive antecedent
of (24) to |p|. Thus, the single possibility γ f for (24) is (|q| ⇒ |p|) ∩ (|r| ⇒ |p|),
which, as (24a) reports, is the same as |q→ p| ∩ |r → p|.

The counter-possibilities for (24) are of the form α ⇒ β, where α is a possi-
bility for the antecedent, q ∨ r, and β is a counter-possibility for the consequent,
p. The possibilities for q ∨ r are |q| and |r|, and the only counter-possibility for p
is |¬p|. So there are two counter-possibilities for (24): |q| ⇒ |¬p| and |r| ⇒ |¬p|,
which, as (24b) reports, can also be written as |q→ ¬p| and |r → ¬p|.

3.6 Conditional questions
Next consider the conditional question in (25). The positive responses that we
would like to derive are listed in (25a), and the negative response, which is a
denial of the antecedent of the conditional question, is given in (25b).2

(25) If Pete plays the piano, will Sue sing?
a. Positive responses:

Yes, if Pete plays the piano, then Sue will sing.
No, if Pete plays the piano, then Sue will not sing.

b. Negative response:
Well, Pete will not play the piano.

2There is an ongoing controversy in the literature about the exact status of responses that deny
the antecedent of a conditional question, such as (25b) (see, for instance, Isaacs and Rawlins,
2008).
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We translate (25) into our logical language as p→ ?q, which expresses the propo-
sition specified in (26a) and has the counter-proposition in (26b):3

(26) p→ ?q ≡ p→ (q ∨ ÷q) ≡ p→ (q ∨ ¬q)

a. dp→ ?qe = { |p| ⇒ |q|, |p| ⇒ |¬q| } = { |p→ q|, |p→ ¬q| }

b. bp→ ?qc = { |p| ⇒ (|q| ∩ |¬q|) } = { |p| ⇒ ∅ } = { |¬p| }

As is to be expected, p→ ?q is inquisitive: dp→ ?qe consists of two possibilities,
which correspond to the two positive responses in (25a).

Perhaps more surprisingly, whereas we saw earlier that atomic questions do
not license any sensible negative response, we now see that conditional questions
do. In particular, the counter-proposition for p → ?q contains exactly one possi-
bility, which corresponds with the negative response in (25b).

3.7 Denying the antecedent of a conditional assertion
The present framework also offers a new perspective on responses that deny the
antecedent of a conditional assertion, like our earlier example (17). Such re-
sponses do not count as negative responses to the conditional itself, but they do
count as negative responses to the ‘question behind’ the conditional. If we take
the question behind any sentence ϕ to be ?ϕ, then the question behind (17) is (27),
which is translated into our logical language as (28). The first two positive re-
sponses to (27) are also positive responses to (17), the third positive response to
(27) is a negative response to (17), and the negative response to (27) denies the
antecedent of (17).

(27) Will Sue sing or Mary dance, if Pete plays the piano?
a. Positive responses:

Yes, if Pete plays the piano, Sue will sing.
Yes, if Pete plays the piano, Mary will dance.
No, if Pete plays the piano, Sue won’t sing and Mary won’t dance.

b. Negative response:
Well, Pete will not play the piano.

(28) ?(p→ (q ∨ r))

3Incidentally, we could just as well have translated (25) as ?(p → q), which is equivalent with
p → ?q in the present system (in the sense that it expresses exactly the same proposition, and has
exactly the same counter-proposition).
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a. d?(p→ (q ∨ r))e = { |p→ q|, |p→ r|, |p→ (¬q ∧ ¬r)| }

b. b?(p→ (q ∨ r))c = { |¬p| }

In general we may distinguish three types of responses to a sentence ϕ. First,
there are the positive and negative responses specified directly by the proposi-
tion expressed by ϕ and the counter-proposition for ϕ. Together these responses
also form the positive responses to the question ?ϕ behind ϕ. The third class of
responses to ϕ are the negative responses to ?ϕ, which can be looked upon as
responses that refuse the question behind ϕ.

3.8 Refusals and supposition failure
The following definition characterizes responses to a sentence ϕ that refuse the
question behind ϕ, which we generally take to be ?ϕ.

Definition 7 (Refusal). ψ refuses the question behind ϕ iff
⋃
dψe ⊆

⋃
b?ϕc.

In many cases b?ϕc = {∅}, and there is no sensible way to refuse the question
behind ϕ. But as we have seen, for conditional questions, for example, there may
be non-absurd counter-possibilities, and hence the question behind a conditional
sentence can be sensibly refused. E.g., according to the definition of refusal, ¬p
is a refusal of the question behind p→ q.

Another way to put this is that ¬p goes against the possibility to suppose the
antecedent of p → q, that ¬p reports supposition failure of p → q. We explicitly
define the notion of the supposition of a sentence ϕ as the complement of the
union of the counter-possibilities for ϕ. At the same time we introduce a notation
for the informative content of ϕ, given by

⋃
dϕe.

Definition 8 (Information and supposition).

1. The supposition of ϕ is sup(ϕ) =
⋃
b?ϕc.

2. The informative content of ϕ is info(ϕ) =
⋃
dϕe.

Note that in case there are no (non-absurd) counter-possibilities for ?ϕ, the suppo-
sition of ϕ corresponds to ω, the set of all worlds, the supposition of ϕ is trivial.
Having the notion of the supposition of a sentence at hand gives us another way
of saying that ψ refuses the question behind ϕ.

Proposition 9 (Refusal is inconsistence with supposition).
ψ refuses the question behind ϕ iff info(ψ) ∩ sup(ϕ) = ∅.
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In case ϕ is itself a question ?χ, the question behind it is ??χ. In general the two
are not fully equivalent. For example, in case b?χc = {∅}, we have that d??χe =

d?χe∪{∅}, but nothing changes with respect to the counter-possibilities: b??χc = ∅.
As long as there is a single counter-possibility α for ?ϕ, whether α is absurd
or not, the situation will be like this. The only thing that changes with respect
to ??ϕ is that now α is added to the possibilities for ??ϕ, α remains the only
counterpossibility for ??ϕ.

However, that there is no difference between the counter-possibilities for ??ϕ
and for ?ϕ, no longer needs to be the case if there is more than one counter-
possibility for ?ϕ. But all counter-possibilities for ?ϕ remain to be counter-possiblities
for ??ϕ, and any newly added counter-possibility for ??ϕ is included in one of the
counter-possibilities for ?ϕ. This means that the following holds.

Lemma 10 (?-Iteration). For every sentence sup(?ϕ) = sup(??ϕ)

Proof. The counter-propositions for ?ϕ and ??ϕ are as in (a) and (b), respectively:

(a) b?ϕc = {α ∩ β | α ∈ dϕe, β ∈ bϕc}

(b) b??ϕc = {α ∩ β ∩ γ | α ∈ dϕe, β ∈ bϕc, γ ∈ dϕe ∪ bϕc}

For any counter-possibility α ∩ β ∈ b?ϕc where α ∈ dϕe and β in bϕc, one of the
choices for γ in forming a counter-possibility α ∩ β ∩ γ ∈ b??ϕc is that γ = α or
γ = β, in which case α ∩ β ∩ γ = α ∩ β. This means that we always have that
b?ϕc ⊆ b??ϕc.

Furthermore, for all other choices of γ ∈ dϕe ∪ bϕc, where γ , α and γ , β,
it will be the case that α ∩ β ∩ γ ⊂ α ∩ β. Hence, it will always hold for any
α ∈ b?ϕc : α < b?ϕc, that there is some β ∈ b??ϕc : α ⊆ β. Since we have also seen
that b?ϕc ⊆ b??ϕc, we can conclude that ϕ :

⋃
b?ϕc =

⋃
b??ϕc. �

Concerning questions behind questions this results in the fact that:

Proposition 11 (Questions behind questions).
ψ refuses the question behind ϕ iff ψ refuses the question behind ?ϕ

We can also put this result as follows:

Theorem 12 (Supposition and Question). ϕ and ?ϕ have the same supposition.

Putting any number of question marks in front of a sentence makes no change in
supposition. On the basis of this fact, we can also show that no matter how many
times we take the inversion of a sentence, the supposition is preserved.
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Theorem 13 (Supposition and inversion). ϕ and ÷ϕ have the same supposition.

This clearly shows the presuppositional nature of suppositions. Being preserved
under negation, and questions, is taken to be the hallmark of presuppositions. For
our notion of the supposition of a sentence, and the standard notion of negation it
does not hold that ¬ϕ and ϕ always have the same supposition. As we have just
shown, it does hold for inversion. What is interesting, we think, is that this rests
upon the more basic fact that ϕ and ?ϕ have the same supposition, which in turn
is triggered by the notion of the refusal of a sentence as relating to the question
behind a sentence.

3.9 Ramsey on conditionals
In the present framework, the conditional assertions in (29) and (30) contradict
each other in a sense: (30) is a negative response to (29), i.e., it rejects the proposal
expressed by (29). And vice versa, (29) rejects the proposal expressed by (30).

(29) If Pete plays the piano, then Sue will sing.

(30) If Pete plays the piano, then Sue will not sing.

This corresponds exactly to what Frank Ramsey wrote in his famous footnote in
1929, which is generally referred to as the Ramsey test for conditionals:

If two people are arguing “If p will q?” and are both in doubt as
to p, they are adding p hypothetically to their stock of knowledge and
arguing on that basis about q; so that in a sense “If p, q” and “If p, ¬q”
are contradictories.

In fact, in line with Ramsey’s footnote, radical inquisitive semantics takes (29) and
(30) to be the two opposing answers to the conditional question in (31) (which is
the ‘question behind’ both (29) and (30)):

(31) If Pete plays the piano, will Sue sing?

Moreover, the framework sheds new light on Ramsey’s ‘precondition’, which says
that the people who are arguing “If p will q?” are both in doubt as to p. In
particular, it makes predictions about certain situations in which this precondition
is not met, namely those situations in which one of the participants is in a position
to deny p. We have seen that this corresponds to being able to report supposition
failure. In that case, (31) will be contested immediately with the negative response
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in (32), rejecting the conditional question and preventing other participants from
hypothetically updating their ‘stock of knowledge’ with p.

(32) Pete will not play the piano.

So our semantics predicts that if two people are to argue, or more cooperatively,
are to investigate “If p will q?”, then neither of them should be in a position to
deny p. Only if the supposition that p does not fail for either of them, it makes
sense for both of them to hypothetically update their stock of knowledge with p,
and investigate on that basis whether q.

4 Minimal change semantics for conditionals

4.1 Unconditionals
Consider (33), in a sense the reverse of the conditional question (25):4

(33) Whether Pete plays the piano or not, Sue will sing.

Sentences of this kind are referred to as concessive conditionals, or uncondi-
tionals. Rawlins (2008) argues that they are conditional sentences whose an-
tecedent is a question. This suggests translating (33) as ?p → q, which abbre-
viates (p∨÷p)→ q. In our system, this is equivalent with (p∨¬p)→ q and with
(p → q) ∧ (¬p → q). From these equivalences, it should immediately be clear
that we predict (33) to license the following positive and negative responses:

(34) a. Positive response:
Yes, if Pete plays the piano Sue will sing,
and if he doesn’t play, she will sing too.

b. Negative responses:
No, if Pete plays the piano, Sue won’t sing.
No, if Pete doesn’t play the piano, Sue won’t sing.

In principle, these predictions are correct. However, there is a subtlety to note
here. We defined⇒ as material implication, and as a result of this the proposition
expressed by (p→ q) ∧ (¬p→ q) is actually the same as the one expressed by q.

4The benefit of using inquisitive semantics to analyze this type of sentences was pointed out to
us by Stefan Kaufmann, and the particular analysis to be presented below follows, in essence, his
insight. See Kaufmann (2009) for a slightly different account, largely in the same spirit.
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In a classical setting, and in conservative inquisitive semantics, these two formu-
las are in fact completely equivalent. That is not the case here, because the two
formulas are assigned different counter-propositions. But we do predict that (33)
expresses exactly the same proposition as (35), and this is clearly a problematic
prediction.

(35) Sue will sing.

However, identifying the source of the problem, and fixing it in the obvious way,
leads to a promising analysis. The source of the problem is that ⇒ is defined
as material implication. And the obvious fix is to redefine it along the lines of
a more sophisticated existing analysis of conditionals. Suppose for instance, that
we make the standard assumption, originating in the work of Stalnaker (1968) and
Lewis (1973), that⇒ is sensitive to a similarity order between worlds:

(36) α⇒ β B {w | minw(α) ⊆ β}

where minw(α) is the set of worlds that belong to α and
do not differ more from w than any other world in α.

Under this assumption, dqe and d?p → qe differ in exactly the right way. The
former still consists of a single possibility containing all worlds where q holds.
d?p→ qe, however, becomes stronger:

(37) d?p→ qe = { γ }

where γ = {w | minw|p| ⊆ |q| and minw|¬p| ⊆ |q| }

To see whether w belongs to γ we should not just check whether q holds at w,
but rather we should look at all p-worlds that minimally differ from w and all
¬p-worlds that minimally differ from w, and check whether q holds in all those
worlds. In the terms of our original natural language example, we should not
just check whether Sue sings at w, but we should look at all worlds minimally
different from w where Pete plays the piano, and at all worlds minimally different
from w where Pete doesn’t play the piano, and check whether Sue sings in all
those worlds. This indeed appears to be the correct analysis of (33).

4.2 Dependency statements and questions
Unconditionals can function as negative responses to ‘dependency statements’.
Consider the following example:

17



(38) Whether Sue will sing depends on whether Pete will play the piano.
a. Positive responses:

Yes, Sue will sing if and only if Pete will play the piano.
Yes, Sue will sing if and only if Pete will not play the piano.

b. Negative responses:
No, whether Pete will play the piano or not, Sue will sing.
No, whether Pete will play the piano or not, Sue will not sing.

‘Whether Pete plays the piano’ and ‘whether Sue sings’ are translated into our
logical language as ?p and ?q, respectively. To say that ?q depends on ?p is to
say that p implies q and ¬p implies ¬q, or vice versa, that p implies ¬q and ¬p
implies q. Thus, (38) as a whole is translated as a disjunction δ B δ1 ∨ δ2, where:

(39) δ1 B (p→ q) ∧ (¬p→ ¬q)

δ2 B (p→ ¬q) ∧ (¬p→ q)

There is a unique possibility for δ1 and a unique possibility for δ2, and together
these two possibilities constitute the proposition expressed by δ:

(40) dδe =

{
|p|⇒|q| ∩ |¬p|⇒|¬q|
|p|⇒|¬q| ∩ |¬p|⇒|q|

}
The elements of dδe correspond exactly with the positive responses in (38a). To
compute the counter-possibilities for δ we first have to compute the counter-
possibilities for δ1 and for δ2, and then take pairwise intersections. This gives
us:

(41) bδc =


|p|⇒|q| ∩ |¬p|⇒|q|
|p|⇒|¬q| ∩ |¬p|⇒|¬q|

∅


The first two counter-possibilities correspond to the two unconditional negative
responses in (38b); the third counter-possibility, ∅, does not correspond to any
sensical response and can therefore be ignored.

Now consider the dependency question behind (38):

(42) Does whether Sue will sing depend on whether Pete will play the piano?

There are four positive responses to (42): the two that count as positive responses
to (38) and the two that count as negative responses to (38). There are no sensical
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negative responses to (42). This is exactly what our semantics predicts:

(43) a. d?δe =


|p|⇒|q| ∩ |¬p|⇒|q|
|p|⇒|¬q| ∩ |¬p|⇒|¬q|
|p|⇒|q| ∩ |¬p|⇒|¬q|
|p|⇒|¬q| ∩ |¬p|⇒|q|


b. b?δc = { ∅ }

4.3 Strengthening the antecedent: a tension resolved
In the literature on conditionals there has always been a tension between two par-
ticular rules of inference, strengthening the antecedent (sta) and simplification of
disjunctive antecedents (soda).sta says that strengthening the antecedent of a con-
ditional is truth-preserving. For instance, it allows us to infer from q → r that
(p ∧ q)→ r, for any p. It is widely agreed, based on examples like the following,
that this should not be a valid inference rule.

(44) If Mary has an essay to write, she will study late in the library.
6{ If the library is closed and Mary has an essay to write, she will study
late in the library.

Indeed, the fact that material and strict implication validate sta is often presented
as a decisive shortcoming of these analysis, and as a basic argument in favor of an
order-sensitive semantics, along the lines of Stalnaker (1968) and Lewis (1973),
which does not validate sta.
soda is a weaker inference rule than sta: it does not make a claim about

strengthening the antecedent in general, but is concerned with one particular way
of strengthening the antecedent: replacing a disjunctive antecedent with one of
the individual disjuncts. For instance, it allows us to infer from (p ∨ q) → r that
p→ r and q→ r. And this is widely agreed to be a valid inference pattern.

A standard order-sensitive semantics, however, does not validate soda. Thus,
there is a dilemma: one important feature of order-sensitive semantics is that it
does not validate sta, but at the same time one of its weaknesses is that it does
not validate soda either. As we have seen, this dilemma is resolved if an order-
sensitive semantics of conditionals is incorporated into the general framework
proposed here, which does not equate semantic meaning with informative content,
but takes inquisitive content into account as well. The inquisitive treatment of
disjunction and implication validates soda, while the stronger sta remains invalid.

19



References
Ciardelli, I. (2009a). A first-order inquisitive semantics. In M. Aloni and

K. Schulz, editors, Proceedings of the Seventeenth Amsterdam Colloquium.

Ciardelli, I. (2009b). Inquisitive semantics and intermediate logics. Master Thesis,
University of Amsterdam.

Ciardelli, I. and Roelofsen, F. (2009). Inquisitive logic. To appear
in the Journal of Philosophical Logic, available via www.illc.uva.nl/
inquisitive-semantics.

Groenendijk, J. (2009). Inquisitive semantics: Two possibilities for disjunction.
In P. Bosch, D. Gabelaia, and J. Lang, editors, Seventh International Tbilisi
Symposium on Language, Logic, and Computation. Springer-Verlag.

Groenendijk, J. and Roelofsen, F. (2009). Inquisitive semantics and pragmatics.
In J. M. Larrazabal and L. Zubeldia, editors, Meaning, Content, and Argument:
Proceedings of the ILCLI International Workshop on Semantics, Pragmatics,
and Rhetoric. www.illc.uva.nl/inquisitive-semantics.

Isaacs, J. and Rawlins, K. (2008). Conditional questions. Journal of Semantics,
25, 269–319.

Kaufmann, S. (2009). Unconditionals are conditionals. University of Chicago
workshop on Semantics and Philosophy of Language.

Lewis, D. (1973). Counterfactuals. Blackwell.

Mascarenhas, S. (2009). Inquisitive semantics and logic. Master Thesis, Univer-
sity of Amsterdam.

Rawlins, K. (2008). (Un)conditionals: an investigation in the syntax and se-
mantics of conditional structures. Ph.D. thesis, University of California, Santa
Cruz.

Stalnaker, R. (1968). A theory of conditionals. In N. Resher, editor, Studies in
Logical Theory. Blackwell, Oxford.

20


