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Abstract. We introduce two different calculi for a first-order extension of inquis-
itive pair semantics (Groenendijk 2008): Hilbert-style calculus and Tree-sequent
calculus. These are first-order generalizations of (Mascarenhas 2009) and (Sano
2009), respectively. First, we show the strong completeness of our Hilbert-style
calculus via canonical models. Second, we establish the completeness and sound-
ness of our Tree-sequent calculus. As a corollary of the results, we semantically
establish that our Tree-sequent calculus enjoys a cut-elimination theorem.

1 Introduction

Groenendijk [1] first introduced theinquisitive pair semanticsfor a language of propo-
sitional logic to capture both classical and inquisitive meanings of a sentence. For exam-
ple, the classical meaning ofp∨q is |p∨q| and the inquisitive meaning of it is{ |p|, |q| },
where|A| is the set of all truth functions makingA true. In the first logical study for
inquisitive pair semantics [2], Mascarenhas revealed that the correspondinginquisitive
pair logic is an axiomatic extension of intuitionistic logic (however, it is not closed
under uniform substitutions) and established the completeness of it. Independently, fol-
lowing the idea of [3], the author gave a complete and cut-free Gentzen-style sequent
calculus for inquisitive pair logic [4]. After these studies, Ciardelli and Roelofsen [5]
generalized inquisitive pair semantics within the propositional level and revealed that
theirgeneralized inquisitive logichas various beautiful logical properties.

Disjunction∨ allows us to formalize an English sentence containing ‘or’. However,
in order to handle the sentences containing quantifications as well as ‘which’, ‘who’,
etc., we need a first-order extension of inquisitive semantics. Ciardelli [6] studied how
to give a recursive definition of inquisitive meaning in a first-order setting. As far as the
author knows, however, there is no complete axiomatization of first-order inquisitive
logic, though there was a preliminary study toward this direction [7, Ch.6]. This paper
contributes to this point. In this paper, we focus on a first-order extension of the original
inquisitive pair semanticsand give two different complete calculi for afirst-order in-
quisitive pair logic: Hilbert-style calculus and Gentzen-style sequent calculus. We can
regard these as first-order generalizations of [2] and [4], respectively.

There are various ways of considering first-order extensions of intuitionistic logic
for Kripke semantics: e.g. by expanding the domain or keeping it constant. Follow-
ing [7, Ch.6], this paper also concerns the constant-domain semantics, which means



that we adoptCD: ∀ x. (A ∨ B(x)) → (A ∨ ∀ x. B(x)) (x is not free inA) as our logi-
cal axiom. In the first part of this paper, we establish the correspondence between the
first-order inquisitive models and a specific class of constant-domain Kripke models
(Theorem1). After introducing the Hilbert-style axiomatization of first-order inquisi-
tive pair logic, we use the correspondence above and the canonical model method [8,
Ch.7.2] to establish the strong completeness (Corollary1). In the second part, we first
extend the sequent calculus of [4] to cover the quantifiers (CD gives us the simpler rule,
cf. [3,9]), and then, we establish the completeness (Theorem3) and soundness (The-
orem5) of our Tree-sequent calculus. By combining these with the results of the first
part, we can semantically establish the cut-elimination theorem of our sequent calculus.

In the propositional level, the generalized inquisitive logic is a ‘limit’ of a hierarchy
of inquisitive logics [7, Ch.6], one of which is the inquisitive pair logic. Therefore,
based on this study, the author hopes that we could also ‘approximate’ a generalized
first-order inquisitive logic by considering the corresponding first-order hierarchy.

2 Inquisitive Semantics and Constant-Domain Kripke Semantics

2.1 Inquisitive Pair Semantics

Our syntaxL consists of a countable setVAR = { xi | i ∈ ω } of variables, a countable
set{ ci | i ∈ ω } of constant symbols, a countable set of predicate symbolsP, the propo-
sitional connectives:⊥, ¬,→, ∧, ∨, the quantifiers:∀, ∃, and the parentheses: (,).t is
a term if t is a variable or a constant symbol. Then, theformulasof L are defined as
usual. We useΓ and∆, etc. to denote a (possibly infinite) set of formulas. For a finite
Γ,
∧
Γ (or,

∨
Γ) is defined as the conjunction (or, disjunction) of all formulas ofΓ,

if Γ is non-empty; otherwise⊤ (or, ⊥, respectively).A[t/x] denotes the result of the
simultaneous substitution oft for all free occurrences ofx in A.

An (first-order) inquisitive modelM consists of a non-empty setW, a non-empty
setD, and a valuationV satisfyingcV ∈ D andPV

w ⊆ Dn (w ∈ W), wheren is the arity
of P1. Given anyW , ∅, we say thats⊆ W is pairwiseif #s≤ 2 ands, ∅. Given any
inquisitive modelM = ⟨W,R,D ⟩, any pairwises ⊆ W, anyassignmentg : VAR → D,
and any formulaA, the satisfaction relations, g |=M A is defined by:

s, g |=M P(t1, . . . , tn) iff ⟨ g(t1), . . . , g(tn) ⟩ ∈ PV
w for anyw ∈ s;

s, g |=M ⊥ Never ;
s, g |=M ¬A iff for any pairwises′ ⊆ s: s′, g ̸|=M A;
s, g |=M A∧ B iff s, g |=M A ands, g |=M B;
s, g |=M A∨ B iff s, g |=M A or s, g |=M B;
s, g |=M A→ B iff for any pairwises′ ⊆ s: s′, g |=M A impliess′, g |=M B;
s, g |=M ∀ x.A iff for anya ∈ D: s, g(x|a) |=M A;
s, g |=M ∃ x.A iff for somea ∈ D: s, g(x|a) |=M A,

whereg(t) := g(x) (if t ≡ x); cV (if t ≡ c), andg(x|a) is the x-variant of g such that
g(x|a)(x) = a. We usually drop the subscriptM from |=M, if it is clear from the context.

1 For a propositional variablep (i.e. 0-ary predicate symbol), we definepV
w ∈ { true, false}.
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Given anyM = ⟨W,D,V ⟩, A is valid in M (notation: |=M A) if for any pairwise
s ⊆ W and for anyg : VAR → D, s, g |=M A. Let M be a class of inquisitive models.
Γ |=M A means that, for anyM ∈ M, any assignmentg and any pairwises, if s, g |=M B
for all B ∈ Γ thens, g |=M A. We say thatA is valid in M (notation:M  A) if ∅ |=M A.
DefineMall as the class ofall inquisitive models.

In [6] and [7, Ch.6], the following special class of inquisitive models are considered:
Let us fix D , ∅ and fix a mappingI : { ci | i ∈ ω } → D, i.e., aninterpretationon
D of all the constant symbols. LetW(D,I ) be the collection of all first-order classical
structures forL such that the universe ofA is D and,cA = I (c) for anyA ∈ W(D,I ).
Define the valuationV of inquisitive model by:cV := cA for some fixedA andPV

A
= PA.

Then,⟨W(D,I ),D,V ⟩ is an inquisitive model. Let us define that anintended inquisitive
modelis such a tuple⟨W(D,I ),D,V ⟩ for someD andI . Fix an assignmentg. Remark
that we can rewrite the satisfaction clause for atoms as follows:s, g |= P(t1, . . . , tn)
iff A |= P(t1, . . . , tn)[g] for anyA ∈ s, whereA |= A[g] means the ordinaryclassical
satisfaction relation.

Definition 1. Mint =
{ ⟨W(D,I ),D,V ⟩ |D , ∅ andI : { ci | i ∈ ω } → D

}
.

So,Mint is the class of all intended inquisitive models. We will show that there is no
difference betweenMall andMint with respect to the logical consequence (Theorem1).

Let us explain why this paper studies first-order inquisitive pair semantics: While
inquisitive pair semantics shows a peculiar logical-phenomena in calculating the inquis-
itive meaning ofp ∨ q ∨ r (i.e. all thepossibilities(defined below) forp ∨ q ∨ r ) in the
propositional level, it still forms a good starting point to investigatefirst-order inquis-
itive logic, i.e, all valid formulas onMint in first-order inquisitive semantics [7, Ch.6]
by Ciardelli. In what follows in this subsection, let us pay attention only toMint. Before
explaining the detail above, we would like to introduce some terminology. Define that
s⊆ W(D,I ) is n-tuplewiseif 1 ≤ #s≤ n. ‘2-tuplewise’ is the same notion as ‘pairwise’.
If we replace ‘pairwise’ with ‘n-tuplewise’ or ‘non-empty’ in the satisfaction clauses
above, then we obtainfirst-order inquisitive n-tuple semanticsor first-order inquisitive
semantics[7, Ch.6] by Ciardelli2, respectively.

Consider the propositional counterpart of our inquisitive pair semantics and define
that apossibilityfor a propositional formulaA is a⊇-maximal elementssuch thats |= A
(cf. [1]). Denote all the possibilities forA by [A]. Then, [p∨q] = { |p|, |q| } holds, where
|A| is all the truth functions makingA true. Ciardelli, however, showed that [p ∨ q ∨ r ]
, { |p|, |q|, |r | } in inquisitive pair semantics [7, Ch.5]). Inquisitive 3-tuplewise semantics
can fix this defeat forp∨q∨ r . However, in order to avoid such peculiar phenomena for
any formula containing∨, we should drop the cardinality restriction of the upper bound
of #s in the satisfaction clauses above. Such a consideration leads us to (propositional)
inquisitive semantics by Ciardelli and Roelofsen [5].

Let InqQLn (or, InqQL) be all the valid formulas onMint in first-order inquisitiven-
tuplewise semantics (or, first-order inquisitive semantics, respectively). LetInqLn and
InqL be their propositional counterparts. Then,

∩
2≤n InqLn = InqL holds [7, Corollary

2 Ciardelli also observed that the restriction #s ≤ 2 gives us the equivalent semantics to the
original inquisitive pair semantics by Groenendijk (see [7, Ch.5, pp.55-6]). In this sense, we
still call our semantics ‘(first-order) inquisitivepair semantics’.
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4.1.6.], and so,InqL2 forms a starting point of approximatingInqL. When we move
to the first-order level, we do not know whether

∩
2≤n InqQLn = InqQL in this stage.

However, it is obvious that
∩

2≤n InqQLn ⊆ InqQL. Therefore, first-order inquisitive
pair semantics still forms a good starting point to investigateInqQL.

2.2 Constant-Domain Kripke Semantics

If we extend the first-order intuitionistic logicIQL with the axiomCD in Table1 below,
then we can obtain the following simpler Kripke semantics [8, Ch.3.4]. Aconstant-
domain Kripke model(in short:cd-model) is a tuple⟨W,≤,D,V ⟩, whereW , ∅, ≤
on W is a pre-order,D , ∅, andV is a valuation satisfyingcV ∈ D, PV

w ⊆ Dn, and
PV
w ⊆ PV

v if w ≤ v (the hereditary condition). Given any cd-model⟨W,≤,D,V ⟩, any
g : VAR→ D, w ∈W, and anyA of L, the satisfaction relation is defined by:

M, w, g  P(t1, . . . , tn) iff ⟨ g(t1), . . . , g(tn) ⟩ ∈ PV
w ;

M, w, g  ⊥ Never ;
M, w, g  ¬A iff for anyw′ ≥ w:M, w′, g 1 A;
M, w, g  A∧ B iff M, w, g  A andM, w, g  B;
M, w, g  A∨ B iff M, w, g  A orM, w, g  B;
M, w, g  A→ B iff for anyw′ ≥ w: w′, g  A impliesw′, g  B;
M, w, g  ∀ x.A iff for anya ∈ D:M, w, g(x|a)  A;
M, w, g  ∃ x.A iff for somea ∈ D:M, w, g(x|a)  A.

Given any cd-modelM = ⟨W,≤,D,V ⟩, A is valid inM (notation:M  A) if for any
w ∈ W and for anyg : VAR → D, M, w, g  A. By the following procedure, we can

Table 1.All Additional Axioms for First-Order Inquisitive Pair Logic

CD ∀ x. (A∨ B(x))→ (A∨ ∀ x. B(x)), wherex is not free inA.
H2 A∨ (A→ B∨ ¬B)
W2 (A→ B) ∨ (B→ A) ∨ ((A→ ¬B) ∧ (B→ ¬A))
ADN ¬¬P(t1, . . . , tn)→ P(t1, . . . , tn) for any atomicP(t1, . . . , tn)

regard any inquisitive modelM = ⟨W,D,V ⟩ as a cd-model⟨W′,≤,D′,V′ ⟩ for first-
order intuitionistic logic with the axiomCD. PutW′ :=

{
s⊆W | s is pairwise

}
. Define

a pre-order≤ on W′ by s ≤ t iff t ⊆ s. DefineD′ := D. As for the valuationV′,
we definecV′ = cV and⟨ d1, . . . ,dn ⟩ ∈ PV′

s iff ⟨ d1, . . . , dn ⟩ ∈ PV
w for anyw ∈ s (s:

pairwise). It is easy to see thatV satisfies the hereditary condition. Then, we can show
that s, g |=M A iff ⟨W′,≤,D′,V′ ⟩, s, g  A, for any pairwises ⊆ W and anyA. This
observation allows us to say that all theorems of first-order intuitionistic logic as well
asCD are valid in any inquisitive model.

Moreover, we can specify the class of cd-models corresponding toMall as Mascaren-
has [2] did for the propositional language.⟨W′,≤,D′ ⟩ satisfies:

(h2) the maximum length of≤-chains is 2 (or, it is of depth≤ 2, simply);
(w2) each state can have no more than two distinct successors.

These observations tells us that bothH2 andW2 in Table1 are valid on any inquisitive
model ⟨W,D,V ⟩ by (h2) and (w2), respectively (see [2, Theorem 35]). There is one
more feature of the above⟨W′,≤,D′,V′ ⟩:
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Definition 2. M = ⟨W,≤,D,V ⟩ has theintersection propertyif, for anyw ∈ W, PV
w =∩{

PV
v |w ≤ v andv is an endpoint

}
.

This feature validates the axiomADN in Table1 on any inquisitive model:

Proposition 1. LetM = ⟨W,≤,D,V ⟩ be a Kripke model such that{ v |w ≤ v } is finite
(w ∈W) andM satisfies the intersection property. Then,ADN is valid inM.

Proof. Fix anyw ∈ W and any assignmentg. AssumeM, w, g  ¬¬P(t1, . . . , tn). We
showM, w, g  P(t1, . . . , tn). By assumption, for anyv ≥ w, we can find someu ≥ v
such thatM,u, g  P(t1, . . . , tn). Since{w′ |w ≤ w′ } is finite, we can findu∗ ≥ w such
that u∗ is an endpoint. Then,M,u∗, g  P(t1, . . . , tn). By the intersection property, we
can conclude thatM, w, g  P(t1, . . . , tn), as desired. ⊓⊔

Clearly, the above⟨W′,≤,D′,V′ ⟩ has the intersection property. Under (h2) and
(w2), { v |w ≤ v } is always finite (w ∈W). Therefore,ADN is valid in Mall.

Definition 3. LetVI be the class of all cd-models satisfying(w2), (h2) and the intersec-
tion property.

Γ VI A means that for anyM ∈ VI, any assignmentg and any statew in M, if
M, w, g |= B for all B ∈ Γ thenM, w, g |= A. We denote∅ VI A by VI  A. The
following is a generalization of [2, Theorem 36] to this setting.

Theorem 1. Γ |=Mall A iff Γ |=Mint A iff Γ VI A.

Proof. Γ VI A =⇒ Γ |=Mall A is clear from the above argument. By definition,Γ |=Mall

A =⇒ Γ |=Mint A. So, it suffices to showΓ |=Mint A =⇒ Γ VI A. We establish the
contrapositive implication. AssumeΓ 1VI A, i.e., there exists some cd-modelM ∈ VI,
somew inM and someg such thatM, w, g  B (B ∈ Γ) andM, w, g 1 A. Take the point-
generated submodelMw by w ofM. It is easy to see thatM, w, g  C iff Mw, w, g  C
for any formulaC. Thus,Mw, w, g  B (B ∈ Γ) andMw, w, g 1 A. Since (w2), (h2)
(and the intersection property) still hold inMw, we can state thatMw has one of the
following shapes: (i) one point reflexive model; (ii) ‘I’-shape; (iii) ‘V’-shape. Write
Mw := ⟨W,≤,D,V ⟩. First, consider the case (i). Define an interpretationI on D of
constants byI (c) = cV. Define a first-order classical structureA by: |A| = D, cA =
I (c), andPA = PV

w . Then, we can establish thatMw, w, g  C iff {A }, g |= C for
any formulaC. Therefore, we have foundA ∈ W(D,I ) such that{A }, g |= B (B ∈ Γ)
and{A }, g ̸|= A, i.e.,Γ ̸|=Mint A, as required. Second, consider the case (ii). We can put
W = {w, v }. By the intersection property, however,PV

v are the same asPV
w . So, we can

reduce this case to the case (i). Third, let us consider (iii). PutW = {w, v, u }. We regard
v andu as the ‘leaves’ of the ‘V’-shape tree with the rootw. Similarly to (i), define
an interpretationI on D of constants byI (c) = cV. In this case, however, we need to
define two first-order classical structuresA andB by: |A| = |B| = D, cA = cB=I (c), and
PA = PV

v andPB = PV
u . By induction, we can show thatMw, w, g  C iff {A,B }, g |= C

for anyC. By the similar argument to (i), we can conclude thatΓ ̸|=Mint A. ⊓⊔

By this correspondence, we can easily show the following propositions (cf. [4]).
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Proposition 2. Let s⊆ W be pairwise andw, v ∈ W distinct.(i) If s, g |= A and s′ ⊆ s
is pairwise, then s′, g |= A; (ii) {w, v }, g |= ¬A iff {w }, g ̸|= A and{ v }, g ̸|= A; (iii)
{w }, g |= ¬A iff {w }, g ̸|= A; (iv) {w }, g |= A→ B iff {w }, g |= A implies{w }, g |= B.

LetM2 := { ⟨W,D,V ⟩ | #W = 2 }, M1 := { ⟨W,D,V ⟩ | #W = 1 } andM≥2 := { ⟨W,D,V ⟩ | #W ≥ 2 }.

Proposition 3. (i) Assume that#W ≥ 2. Then, A is valid in an inquisitive modelM iff
s, g |= A for any pairwise s with#s= 2 and anyg inM. (ii) M1 |= A iff A is classically
valid. (iii) If M≥2 |= A, then A is classically valid.(iv) Mall |= A iff s, g |=⟨W,D,V ⟩ A for
any pairwise s⊆W with#s= 2, anyg, and any⟨W,D,V ⟩ ∈ M≥2.

3 A Complete Hilbert-style Calculus for Inquisitive Pair Logic

Definition 4. DefineQLV + is IQL extended with all the axioms in Table1.

The reader can find the axiomatization of the first-order intuitionistic logicIQL
in [10]. DefineΓ ⊢ A if ⊢ ∧Γ′ → A for some finiteΓ′ ⊆ Γ. If Γ = ∅, we write
QLV + ⊢ A but we usually drop ‘QLV +’ from it and write ⊢ A, when no confusion
arises. In order to show the completeness ofQLV +, we adopt the known canonical
model method as in [8]. We, however, include the detailed outline to make this section
self-contained.

Remark 1.We have two different axiomatizations of the setInqL2 of all valid propo-
sitional formulas in inquisitive pair semantics. One proposed by Mascarenhas is the
propositional intuitionistic logicIL extended withW2, H2, and atomic double negations
(¬¬p → p for any atomp). Another one proposed by Ciardelli and Roelofsen isIL ex-
tended with Kreisel-Putnam axiomKP: (¬A→ B∨C)→ (¬A→ B) ∨ (¬A→ C) and
H2, and atomic double negations. And, if we dropH2 from Ciardelli and Roelofsen’s
axiomatization, then we obtain the axiomatization ofInqL, i.e., all valid propositional
formulas in (generalized) inquisitive semantics. However, if we consider the first-order
extension withCD of these logics, strong completeness ofIQL extended withCD and
KP for constant-domain Kripke semantics seems an open problem (p.c. by Valentin
Shehtman and Silvio Ghilardi). Therefore, we choose Mascarenhas’ axiomatization as
a basis of our first-order inquisitive pair logicQLV +.

Let us expand our languageL with a countable set{ ci | i ∈ ω } of new constant
symbols. LetL+ be this expanded language ofL. We say that⟨Γ;∆ ⟩ ofL+ is consistent
if 0
∨
Γ1→

∧
∆1 for any finiteΓ1 ⊆ Γ and any finite∆1 ⊆ ∆. ⟨Γ;∆ ⟩ of L+ is maximal

if A ∈ Γ or A ∈ ∆ for any formulaA. ⟨Γ;∆ ⟩ of L+ is ∃∀-maximally consistentif it is
consistent and maximal and satisfies the following: (L∃-property ): For any formula of
the form∃ x.A, if ∃ x.A ∈ Γ, thenA[c/x] ∈ Γ for somec, and (R∀-property ): For any
formula of the form∀ x.A, if ∀ x.A ∈ ∆, thenA[c/x] ∈ ∆ for somec. By consistency
and maximality, it is obvious that∆ = Γc, the complement ofΓ 3. So, if ⟨Γ;∆ ⟩ is
∃∀-maximally consistent, then we usually say thatΓ is an∃∀-MCS.

3 Remark that we can easily derive from the consistency of⟨Γ;∆ ⟩ thatΓ ∩ ∆ = ∅.
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Lemma 1. (i) If ⟨Γ ∪ { ∃ x.A };∆ ⟩ is consistent andcdoes not occur in it, then⟨Γ ∪ { ∃ x.A,A[c/x] };∆ ⟩
is consistent.(ii) If ⟨Γ;∆ ∪ { ∀ x.A } ⟩ is consistent andc does not occur in it, then
⟨Γ;∆ ∪ { ∀ x.A,A[c/x] } ⟩ is consistent.(iii) If ⟨Γ;∆ ⟩ is consistent, then either⟨Γ ∪ {A };∆ ⟩
or ⟨Γ;∆ ∪ {A } ⟩ is consistent.

Proof. We only establish (ii), since we needCD here. Suppose for contradiction that
there exists someΓ′ ⊆ Γ and some∆′ ⊆ ∆ such that⊢ ∧Γ′ → ∨∆′ ∨ ∀ x.A∨ A[c/x].
Fix some freshy in ⟨Γ;∆ ∪ { ∀ x.A } ⟩. It is clear that (A[y/x])[c/y] ≡ A[c/x]. Sincey
andc are fresh, we obtain:⊢ ∧Γ′ → ∀ y. (∨∆′ ∨ ∀ x.A ∨ A[y/x]). We deduce from
CD that⊢ ∧Γ′ → (

∨
∆′ ∨ ∀ x.A) (remark that∀ x.A and∀ y. (A[y/x]) are equivalent),

which gives us the desired contradiction. ⊓⊔

Lemma 2. If ⟨Γ;∆ ⟩ of L is consistent, then there exists⟨Γ+;∆+ ⟩ of L+ such that
Γ ⊆ Γ+, ∆ ⊆ ∆+, andΓ+ is an∃∀-MCS.

Proof. Let us enumerate all the formulas ofL+ as (Fn)n∈ω. Recall that all the new
constant symbols{ ci | i ∈ ω } are indexed byi ∈ ω. In what follows, we define a se-
quence (⟨Γn;∆n ⟩)n∈ω such that each⟨Γn;∆n ⟩ is consistent, and obtain⟨Γ+;∆+ ⟩ :=
⟨∪n∈ω Γn;

∪
n∈ω ∆n ⟩ as its limit. (Basis) PutΓ0 := Γ and∆0 := ∆. (Inductive Step) Sup-

pose that we have defined a consistent⟨Γn;∆n ⟩. We subdivide our argument into the
following three cases: (a)Fn ≡ ∃ x.A and⟨Γn ∪ { Fn };∆n ⟩ is consistent; (b)Fn ≡ ∀ x.A
and ⟨Γn;∆n ∪ { Fn } ⟩ is consistent; (c) Otherwise. First, we show the case (c). Since
either ⟨Γn ∪ { Fn };∆n ⟩ or ⟨Γn;∆n ∪ { Fn } ⟩ is consistent by Lemma1 (iii), choose a
consistent pair and define it as⟨Γn+1, ∆n+1 ⟩. As for the case (a), let us choose a freshc in
⟨Γn ∪ { Fn };∆n ⟩ by Lemma1(i) and define⟨Γn+1, ∆n+1 ⟩ := ⟨Γn ∪ { ∃ x.A,A[c/x] };∆n ⟩.
As for the case (b) (similarly to (a)), let us choose a freshc in ⟨Γn;∆n ∪ { Fn } ⟩ by
Lemma1 (ii) and define⟨Γn+1, ∆n+1 ⟩ := ⟨Γn;∆n ∪ { ∀ x.A,A[c/x] } ⟩.

Finally, it is easy to see that⟨∪n∈ω Γn;
∪

n∈ω ∆n ⟩ is ∃∀-maximally consistent. ⊓⊔

Γ is ω-closedif, for any formula of the form∀ x.A in L+, if Γ ⊢ A[c/x] for all
constantsc thenΓ ⊢ ∀ x.A. ⟨Γ;∆ ⟩ is ω-closed-finite-consistent(in short,ω f c) if Γ is
ω-closed and∆ is finite and⟨Γ;∆ ⟩ is consistent. We can easily show the following:

Lemma 3. If Γ is an∃∀-MCS, thenΓ isω-closed.

Lemma 4. (i) If Γ isω-closed, thenΓ ∪ {A } is alsoω-closed.(ii) If ⟨Γ ∪ { ∃ x.A };∆ ⟩
is ω f c, then there exists somec such that⟨Γ ∪ { ∃ x.A,A[c/x] };∆ ⟩ is consistent.(iii)
If ⟨Γ;∆ ∪ { ∀ x.A } ⟩ is ω f c there exists somec such that⟨Γ;∆ ∪ { ∀ x.A,A[c/x] } ⟩ is
consistent.

Proof. We only establish (iii), since we needCD here. Suppose that⟨Γ;∆ ∪ { ∀ x.A } ⟩
is ω f c. Assume for contradiction that⟨Γ;∆ ∪ { ∀ x.A,A[c/x] } ⟩ is inconsistent for all
constant symbolc. By finiteness of∆, we can assume w.l.o.g. thatx does not occur in∆
(otherwise, it suffices to rename the bounded variable). Then, for all constantc, we have
Γ ⊢ ∨∆∨ (∀ x.A)∨A[c/x], i.e.,Γ ⊢ (

∨
∆∨ (∀ x.A)∨A)[c/x]. SinceΓ isω-closed,Γ ⊢

∀ x. (
∨
∆∨ (∀ x.A)∨A). By CD, ⊢ ∀ x. (

∨
∆∨ (∀ x.A)∨A)→ ∨∆∨ (∀ x.A). Therefore,

we getΓ ⊢ ∨∆ ∨ (∀ x.A), which contradicts the consistency of⟨Γ;∆ ∪ { ∀ x.A } ⟩. ⊓⊔
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Lemma 5. If ⟨Γ;∆ ⟩ ofL+ isω f c, then there exists⟨Γ+;∆+ ⟩ ofL+ such thatΓ ⊆ Γ+,
∆ ⊆ ∆+, andΓ+ is an∃∀-MCS.

Proof. The proof is similar to the proof of Lemma2. We, however, need to care about
the fact that⟨Γ;∆ ⟩ is ω f c. Fix any enumeration (Fn)n∈ω of all the formulas ofL+. In
what follows, we only describe the difference from the proof of Lemma2. Below, we
define a sequence (⟨Γn;∆n ⟩)n∈ω such thateach⟨Γn;∆n ⟩ is ω f c, and obtain⟨Γ+;∆+ ⟩
:= ⟨∪n∈ω Γn;

∪
n∈ω ∆n ⟩. The basis step is the same as before. As for the inductive step,

suppose that we have defined anω f c ⟨Γn;∆n ⟩. We subdivide our argument into the
cases (a), (b), and (c) in the same way as in the proof of Lemma2. The definition of
⟨Γn+1;∆n+1 ⟩ for each case is exactly the same as before. However, we need to check
that we can find some constantc in both the cases (a) and (b) (the most important point
is: there is no need forc to befresh) and that⟨Γn+1;∆n+1 ⟩ is alsoω f c. We can ensure
these points by Lemma4. ⊓⊔

Lemma 6. Let Γ be an∃∀-MCS. Then:(i) A ∧ B ∈ Γ iff (A ∈ Γ and B ∈ Γ), (ii)
A ∨ B ∈ Γ iff (A ∈ Γ or B ∈ Γ), (iii) ∀ x.A ∈ Γ iff A[t/x] ∈ Γ for any term t,(iv)
∃ x.A ∈ Γ iff A[t/x] ∈ Γ for some term t,(v) If A → B ∈ Γ and A∈ Γ, then B∈ Γ,
(vi) (¬A ∈ Γ and A∈ Γ) fails.

Proof. Assume that⟨Γ;∆ ⟩ is∃∀-maximally consistent. We only show (iii). By⊢ ∀ x.A→
A[t/x], we can establish the left-to-right direction. As for the right-to-left direction, as-
sume∀ x.A < Γ. By maximality,∀ x.A ∈ ∆. By R∀-property,A[c/x] ∈ ∆ for some
constantc. So, there exists a termt such thatA[t/x] < Γ by the consistency. ⊓⊔

Definition 5. Thecanonical model forQLV + M = ⟨W,≤,D,V ⟩ is defined by:(i) W =
{Γ |Γ is an∃∀-MCS} 4, (ii) Γ ≤ Π iff Γ ⊆ Π , (iii) D = { t | t is a term ofL+ }, (vi) cV

= c for any constant symbol c inL+, (v) ⟨ t1, . . . , tn ⟩ ∈ PV
Γ iff P(t1, . . . , tn) ∈ Γ.

Lemma 7 (Truth Lemma). LetM = ⟨W,≤,D,V ⟩ be the canonical model forQLV +.
Define the canonical assignmentg byg(x) = x. Then,M, Γ, g  A iff A ∈ Γ.

Proof. By induction onA. First, let us remark thatg(t) = t for any termt of L+. By
Lemma6 and the definition of the canonical model, we can easily establish the cases
whereA ≡ P(t1, · · · , tn), B∨C, B∧C, ∃ x. B or ∀ x. B (if A ≡ ∃ x. B or ∀ x. B, we need
to use:M, Γ, g(x|t)  A iff M, Γ, g  A[t/x]). So, let us only show the case where
A ≡ B → C. In order to establish the left-to-right direction, assumeB → C < Γ. By
maximality, B → C ∈ ∆, where∆ = Γc. By consistency of⟨Γ;∆ ⟩, ⟨Γ ∪ { B }; {C } ⟩
is consistent. By Lemma3 and Lemma4 (i), ⟨Γ ∪ { B }; {C } ⟩ is ω f c. It follows from
Lemma5 that there exists some⟨Γ+;∆+ ⟩ such thatΓ+ is an∃∀-MCS andΓ∪{ B } ⊆ Γ+
andC ∈ ∆+ (i.e.,C < Γ+ by the consistency). By the induction hypothesis, we obtain:
M, Γ, g  B andM, Γ, g 1 C. SinceΓ ⊆ Γ+, we conclude thatM, Γ, g 1 B→ C. Finally,
let us show the right-to-left direction. AssumeM, Γ, g 1 B→ C, i.e., there exists some
∃∀-MCSΓ′ such thatM, Γ′, g  B andM, Γ′, g 1 C. By the induction hypothesis, we
obtain:B ∈ Γ′ andC < Γ′. It follows from Lemma6 (v) thatB→ C < Γ′. ⊓⊔

4 Remark that any MCSΓ is a QLV +-theory. This is shown as follows: Given any MCSΓ,
assume thatφ ∈ Γ andφ ⊢ ψ. Suppose for contradiction thatψ < Γ. By maximality,ψ ∈ ∆. By
consistency, we get0 φ→ ψ, which contradictsφ ⊢ ψ.
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Lemma 8. LetM = ⟨W,≤,D,V ⟩ be the canonical model forQLV +. Then,(i) M satis-
fies(h2), (ii) M satisfies(w2), (iii) M has the intersection property.

Proof. We can show (i) and (ii) in the same way as in the propositional case [2, The-
orem 35] (for (i), the reader can also refer to [8, Lemma 7.3.3 (1)]). So, we only show
(iii). Let Γ be an∃∀-MCS. It suffices to show that:P(t1, . . . , tn) ∈ Γ iff P(t1, . . . , tn) ∈∩{

Γ′ |Γ ⊆ Γ′ andΓ′ is an endpoint
}

(remark that (w2) and (h2) assure us that, for any
Γ in M, there exists some endpointΓ′ ⊇ Γ). We can easily show the left-to-right di-
rection. So, let us establish the right-to-left direction. Assume thatP(t1, . . . , tn) ∈ Γ′ for
anyΓ′ ⊇ Γ such thatΓ′ is an endpoint. By (w2) and (h2), we can state that, for any
stateΠ ⊇ Γ, there exists an endpointΘ ⊇ Π . Thus, we deduce from Truth Lemma
thatM, Γ, g  ¬¬P(t1, . . . , tn), i.e., ¬¬P(t1, . . . , tn) ∈ Γ. Since⊢ ¬¬P(t1, · · · , tn) →
P(t1, . . . , tn), we can conclude thatP(t1, . . . , tn) ∈ Γ. ⊓⊔

Theorem 2. Γ VI A iff Γ ⊢ A.

Proof. We can easily show thatΓ ⊢ A impliesΓ VI A. So, let us establish the left-to-
right direction. We show the contrapositive implication. AssumeΓ 0 A (remark thatΓ
might be infinite). Then,⟨Γ,A ⟩ is consistent. By Lemma2, there exists some⟨Γ+;∆+ ⟩
such thatΓ ⊆ Γ+, A ∈ ∆+, andΓ+ is an∃∀-MCS. By consistency of⟨Γ+;∆+ ⟩, A < Γ+.
It follows from Truth Lemma thatM, Γ+, g  B (B ∈ Γ) andM, Γ+, g  A. By Lemma
8, Γ 1VI A, as desired. ⊓⊔

Corollary 1. The following are all equivalent:(i) Γ VI A; (ii) Γ |=Mall A; (iii) Γ |=Mint A;
(iv) Γ ⊢ A.

Proof. Theorem1 gives us the equivalence among (i), (ii), and (iii). Theorem2 ensures
the equivalence between (i) and (iv). ⊓⊔

4 Tree-Sequent Calculus for First-Order Inquisitive Pair Logic

In this section, we first introduce a tree-sequent calculus forInqQL2 = {A |Mall |= A },
as a special form of Labelled Deductive Systems [11].

Let T = ⟨ {0,1,2 },≤ ⟩ be the tree equipped with the order≤ := { ⟨ 0,1 ⟩, ⟨0, 2 ⟩ } ∪
{ ⟨ x, x ⟩ | x ∈ {0,1,2 } }. A label is an element of{0,1,2 }. We use lettersα, β, etc. for
labels. Alabelled formulais a pairα : A, whereα is a label andA is a formula of the
languageL. In what follows in this paper, we useΓ, ∆, etc. to denote a set oflabelled
formulas. A tree-sequentis an expressionΓ ⇒ ∆ whereΓ and∆ are finite sets of
labelled formulas.

Now, let us introduce the tree-sequent calculusTInqQL2 for first-order inquisitive
pair logicInqQL2. This system defines inference schemes which allow us to manipulate
tree-sequents. The axioms ofTInqQL2 are of the following forms:

α : A, Γ ⇒ ∆, α : A (Ax) α : ⊥, Γ ⇒ ∆ (⊥L).

The inference rules ofTInqQL2 are the following:

0 : P(t1, . . . , tn), Γ ⇒ ∆

1 : P(t1, . . . , tn),2 : P(t1, . . . , tn), Γ ⇒ ∆
(Atom L)

1 : A, 2 : A, Γ ⇒ ∆

0 : A, Γ ⇒ ∆
(Move)
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α : A, α : B, Γ ⇒ ∆

α : A∧ B, Γ ⇒ ∆
(∧L)

Γ ⇒ ∆, α : A Γ ⇒ ∆, α : B
Γ ⇒ ∆, α : A∧ B

(∧R)

α : A, Γ ⇒ ∆ α : B, Γ ⇒ ∆

α : A∨ B, Γ ⇒ ∆
(∨L)

Γ ⇒ ∆, α : A, α : B
Γ ⇒ ∆, α : A∨ B

(∨R)

Γ ⇒ ∆, α : A
α : ¬A, Γ ⇒ ∆

(¬L)
α : A, Γ ⇒ ∆

Γ ⇒ ∆, α : ¬A
(¬R1,2) whereα , 0

1 : A, Γ ⇒ ∆ 2 : A, Γ ⇒ ∆

Γ ⇒ ∆,0 : ¬A
(¬R0)

Γ ⇒ ∆, α : A α : B, Γ ⇒ ∆

α : A→ B, Γ ⇒ ∆
(→ L)

α : A, Γ ⇒ ∆, α : B
Γ ⇒ ∆, α : A→ B

(→ R1,2) whereα , 0

0 : A, Γ ⇒ ∆,0 : B 1 : A, Γ ⇒ ∆,1 : B 2 : A, Γ ⇒ ∆,2 : B
Γ ⇒ ∆,0 : A→ B

(→ R0)

α : A[t/x], Γ ⇒ ∆

α : ∀ x.A, Γ ⇒ ∆
(∀L)

Γ ⇒ ∆, α : A[z/x]
Γ ⇒ ∆, α : ∀ x.A

(∀R)†

α : A[z/x], Γ ⇒ ∆

α : ∃ x.A, Γ ⇒ ∆
(∃L)† Γ ⇒ ∆, α : A[t/x]

α : Γ ⇒ ∆,∃ x.A
(∃R)

Γ ⇒ ∆, α : A α : A, Γ ⇒ ∆

Γ ⇒ ∆
(Cut)

where† means theeigenvariable condition: z does not occur in the conclusion. The
tree-sequent calculuscutfreeTInqQL2 is obtained by dropping (Cut) fromTInqQL2.
Whenever a tree-sequentΓ ⇒ ∆ is provable inTInqQL2 (or, in cutfreeTInqQL2), we
write TInqQL2 ⊢ Γ ⇒ ∆ (or, cutfreeTInqQL2 ⊢ Γ ⇒ ∆, respectively).

4.1 Completeness of Tree-Sequent Calculus

In this subsection, we show that the tree-sequent calculuscutfreeTInqQL2 is sufficient
to prove all formulas that are valid inMall.

In the following,Γ,∆ are possibly infinite in the expressionΓ ⇒ ∆ of a tree-sequent.
In the case whereΓ, ∆ are all finite, the tree-sequentΓ ⇒ ∆ said to befinite. A (possibly
infinite) tree-sequentΓ ⇒ ∆ is provablein cutfreeTInqQL2, if cutfreeTInqQL2 ⊢ Γ′ ⇒
∆′ for some finite tree-sequentΓ′ ⇒ ∆′ such thatΓ′ ⊆ Γ and∆′ ⊆ ∆. In what follows,
we extend our notationcutfreeTInqQL2 ⊢ Γ ⇒ ∆ to cover any possibly infinite tree-
sequent in the sense explained above.

Definition 6. A tree-sequentΓ ⇒ ∆ is saturatedif it satisfies the following:

(consistency) (i) If α : A ∈ Γ, thenα : A < ∆, (ii) α : ⊥ < Γ.
(persistence condition) If 0 : A ∈ Γ, then1 : A ∈ Γ and2 : A ∈ Γ.
(atom l) If 1 : P(t1, . . . , tn) ∈ Γ and2 : P(t1, . . . , tn) ∈ Γ, then0 : P(t1, . . . , tn) ∈ Γ.
(∧l) If α : A∧ B ∈ Γ, thenα : A ∈ Γ andα : B ∈ Γ.
(∧r) If α : A∧ B ∈ ∆, thenα : A ∈ ∆ or α : B ∈ ∆.
(∨l) If α : A∨ B ∈ Γ, thenα : A ∈ Γ or α : B ∈ Γ.
(∨r) If α : A∨ B ∈ ∆, thenα : A ∈ ∆ andα : B ∈ ∆.
(¬l) If α : ¬A ∈ Γ, thenα : A ∈ ∆.
(¬r1,2) If α : ¬A ∈ ∆ andα , 0, thenα : A ∈ Γ.
(¬r0) If 0 : ¬A ∈ ∆, then1 : A ∈ Γ or 2 : A ∈ Γ.
(→l) If α : A→ B ∈ Γ, thenα : A ∈ ∆ or α : B ∈ Γ.
(→r1,2) If α : A→ B ∈ ∆ andα , 0, thenα : A ∈ Γ andα : B ∈ ∆.
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(→r 0) If 0 : A→ B ∈ ∆, then(α : A ∈ Γ andα : B ∈ ∆) for someα ∈ { 0, 1, 2 }.
(∀l) If α : ∀ x.A ∈ Γ, thenα : A[t/x] ∈ Γ for any term t.
(∀r) If α : ∀ x.A ∈ ∆, thenα : A[z/x] ∈ ∆ for some variable z.
(∃l) If α : ∃ x.A ∈ Γ, thenα : A[z/x] ∈ Γ for some variable z.
(∃r) If α : ∃ x.A ∈ ∆, thenα : A[t/x] ∈ ∆ for any term t.

Lemma 9. If a finite tree-sequentΓ ⇒ ∆ is not provable incutfreeTInqQL2, then there
exists a saturated tree-sequentΓ+ ⇒ ∆+ such thatΓ ⊆ Γ+ and∆ ⊆ ∆+ andΓ+ ⇒ ∆+ is
not provable incutfreeTInqQL2.

The proof of this lemma can be found in AppendixA. Each nodeα of a tree-sequent
Γ ⇒ ∆ is associated with a sequentΓα ⇒ ∆α whereΓα (or, ∆α) is the set of formulas
such thatα : A ∈ Γ (or,α : A ∈ ∆, respectively). We define a translation of tree-sequents
into formulas ofL. In the following definition, tree-sequents are all finite. LetΓ ⇒ ∆
be a tree-sequent ands, t be freshpropositional variablesin Γ ⇒ ∆. The formulaic
translationJΓ ⇒ ∆K is defined as (note that the following formulaic translation depends
on the choice ofsandt):

JΓ ⇒ ∆K ≡∧Γ0→
(
(s∨ t) ∨∨∆0 ∨ JΓ ⇒ ∆K1 ∨ JΓ ⇒ ∆K2

)
where:JΓ ⇒ ∆K1 ≡ s∧∧Γ1→ t ∨∨∆1; JΓ ⇒ ∆K2 ≡ t ∧∧Γ2→ s∨∨∆2.

An idea behind freshs andt is to namethree pairwise subsets (corresponding to 0,
1, 2 in our fixed tree) in an inquisitive model. Recall thatMint is the class of allintended
inquisitive models.

Theorem 3. If Mint |= JΓ ⇒ ∆K, thencutfreeTInqQL2 ⊢ Γ ⇒ ∆. Therefore, ifMall |=JΓ ⇒ ∆K, thencutfreeTInqQL2 ⊢ Γ ⇒ ∆.

Proof. It suffices to establish the first part. We show the contrapositive implication of it.
Assume thatΓ ⇒ ∆ is unprovable incutfreeTInqQL2. Then, by Lemma9, there exists
some saturated tree-sequentΓ+ ⇒ ∆+ such that 0 :A ∈ ∆+ andcutfreeTInqQL2 0
Γ+ ⇒ ∆+. DefineD = { t | t is a term ofL }. We define an interpretationI of constant
symbols onD by I (c) := c and an assignmentg by g(x) = x. Let us define the following
two first-order classical structureA1 andA2: |A1| = |A2| = D, cA1 = cA2 = I (c), PA1 =

{ ⟨ t1, . . . , tn ⟩ |1 : P(t1, . . . , tn) ∈ Γ+ }, PA2 = { ⟨ t1, . . . , tn ⟩ | 2 : P(t1, . . . , tn) ∈ Γ+ }. Now
we show by induction onX of L that:

– (i) If 0 : X ∈ Γ+ then{A1,A2 }, g |= X; (ii) If 0 : X ∈ ∆+ then{A1,A2 }, g ̸|= X.
– (iii) If α : X ∈ Γ+ andα , 0, then{Aα }, g |= X; (iv) If α : X ∈ ∆+ andα , 0, then
{Aα }, g ̸|= X.

Here we consider only the cases whereX is of the formP(t1, . . . , tn) and of the form
∀ x. B (for the casesX is of the form¬B and of the formB→ C, the reader can find an
essential argument in the proof of [4, Theorem 1]).
(The case whereX is of the form P(t1, . . . , tn)) We only show the cases (i) and (ii). (i)
Suppose that 0 :P(t1, . . . , tn) ∈ Γ+. SinceΓ+ ⇒ ∆+ is saturated, 1 :P(t1, . . . , tn),2 :
P(t1, . . . , tn) ∈ Γ+ ∈ Γ+ by (persistence condition). So,⟨ t1, . . . , tn ⟩ ∈ PA1 and⟨ t1, . . . , tn ⟩ ∈
PA2. Sinceg(t) = t, we can deduce that{A1,A2 }, g |= P(t1, . . . , tn). (ii) Suppose that
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0 : P(t1, . . . , tn) ∈ ∆+. SincecutfreeTInqQL2 0 Γ+ ⇒ ∆+ andΓ+ ⇒ ∆+ is sat-
urated, 0 : P(t1, . . . , tn) < Γ+ by (consistency). 0 : P(t1, . . . , tn) < Γ+ means that
1 : P(t1, . . . , tn) < Γ+ or 2 : P(t1, . . . , tn) < Γ+ by (atoml). So,⟨ t1, . . . , tn ⟩ < PA1 or
⟨ t1, . . . , tn ⟩ < PA2. Therefore, byg(t) = t, {A1,A2 }, g |= P(t1, . . . , tn), as desired.
(The case whereX is of the form ∀ x. B) We only show the cases (i) and (ii). (i)
Suppose that 0 :∀ x. B ∈ Γ+. SinceΓ+ ⇒ ∆+ is saturated, 0 :B[t/x] ∈ Γ+ for any
term t by (∀l). By the induction hypothesis, we have: for any termt, {A1,A2 }, g |=
B[t/x], i.e., {A1,A2 }, g(x|t) |= B. Therefore,{A1,A2 }, g |= ∀ x. B. (ii) Suppose that
0 : ∀ x. B ∈ ∆+. SinceΓ+ ⇒ ∆+ is saturated, 0 :B[z/x] ∈ ∆+ for any some variablezby
(∀r ). By the induction hypothesis, we have: for some variablez, {A1,A2 }, g |= B[z/x],
i.e., {A1,A2 }, g(x|z) |= B. Therefore,{A1,A2 }, g ̸|= ∀ x. B.

Let us choose freshs andt in Γ+ ⇒ ∆+ for JΓ ⇒ ∆K and expand our model above
so thats is true only underA1 andt is true only underA2. Then, we can conclude thatJΓ ⇒ ∆K is not valid inMint by construction of our model and (i) - (iv) above. ⊓⊔

4.2 Cut-Elimination Theorem and Soundness of Tree-Sequent Calculus

In this subsection, we establish that the tree-sequent calculusTInqQL2 (i.e.,cutfreeTInqQL2
with (Cut)) enjoys a cut-elimination theorem and that it is sound with respect to the class
Mall of all inquisitive models.

Lemma 10. If TInqQL2 ⊢ Γ ⇒ ∆, thenMall |= JΓ ⇒ ∆K.
The proof of this lemma can be found in AppendixB.

Theorem 4. If TInqQL2 ⊢ Γ ⇒ ∆, thencutfreeTInqQL2 ⊢ Γ ⇒ ∆.

Proof. It follows from Lemma10and Theorem3. ⊓⊔

In order to establish the soundness through our formulaic translation with fresh
variables, we need to show the following, which lets us use the fresh propositional
variabless andt to namethree pairwise subsets (corresponding to 0, 1, 2 in our fixed
tree) in an inquisitive model.

Lemma 11. If Mall |= (s∨ t) ∨ A∨ (s→ t) ∨ (t → s), thenMall |= A, wheres and t are
fresh in A.

Proof. AssumeMall ̸|= A. By Proposition3 (iv), there exists some inquisitive modelM
= ⟨W,D,V ⟩, somew, v ∈ W and some assignmentg such thatw , v and #W ≥ 2 and
{w, v }, g ̸|=M A. Let V′ be the same valuation asV except thats is true only atw andt
is true only atv underV′. WriteM′ = ⟨W,D,V′ ⟩. Then,s, g |=M B iff s, g |=M′ B, for
any s ⊆ {w, v } and any subformulaB of A. Thus,{w, v }, g ̸|=M′ A. By definition ofV′,
{w, v }, g ̸|=M′ (s∨ t) ∨ A∨ (s→ t) ∨ (t → s), as required. ⊓⊔

Theorem 5. If TInqQL2 ⊢⇒ 0 : A, thenMall |= A.

Proof. By Lemma10, J⇒ 0 : AK is valid in Mall, i.e., (s∨ t) ∨ A∨ (s→ t) ∨ (t → s) is
valid in Mall. It follows from Lemma11 thatA is valid in Mall. ⊓⊔
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5 Conclusion

Corollary 2. The following are equivalent:(i) cutfreeTInqQL2 ⊢⇒ 0 : A; (ii) TInqQL2 ⊢⇒
0 : A; (iii) Mall |= A; (iv) Mint |= A; (v) VI  A; (vi) QLV + ⊢ A.

Proof. By Corollary1, we establish the equivalence among (iii), (iv), (v) and (vi) (put
Γ = ∅). By Theorem3, (iii) ⇒ (i). Trivially, (i) ⇒ (ii). By Theorem5, (ii) ⇒ (iii). ⊓⊔

Our proof process for Corollary2 also reveals thatTInqQL2 corresponds toQLV +

extended with the following non-standard proof rule: From (s∨t)∨A∨(s→ t)∨(t → s),
we may inferA, wheres andt are fresh propositional variables inA. One of the main
causes of such logical phenomena consists in the fact that we use the fixed treeT ,
unlike the previous studies [12,9] which employ ‘growing’ tree-sequents. Therefore,
this study also contributes to witness a logical connection between labelled deductive
systems with afixed set of labelsand Hilbert-style axiomatizations withnon-standard
proof-rules5 6.
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A A Proof of Lemma 9

Proof. The idea of this proof is essentially the same as in the proof of [4, Lemma 1].
The difference is: we need to care about∀ and∃. So, we basically concentrate on stating
the difference from the proof of [4, Lemma 1] below. Suppose that a finite tree-sequent
Γ ⇒ ∆ is not provable incutfreeTInqQL2. In the following, we construct a sequence
(Γi ⇒ ∆i)i∈ω of finite tree-sequents and obtainΓ+ ⇒ ∆+ as the union of them.

Let (αi : Fi)i>1 be an enumeration of all labelled formulas such that each formula of
L appears infinitely many times. We also enumerate all variables as (xi)i∈ω and all terms
as (ti)i∈ω. From now on, we construct (Γi ⇒ ∆i)i∈ω such thatcutfreeTInqQL2 0 Γ

i ⇒ ∆i .
(Basis) LetΓ0⇒ ∆0 ≡ Γ ⇒ ∆. By assumption,cutfreeTInqQL2 0 Γ

0⇒ ∆0.
(Inductive step) Suppose that we have already definedΓk−1 ⇒ ∆k−1 such thatcutfreeTInqQL2 0
Γk−1 ⇒ ∆k−1. In this k-th step, we defineΓk ⇒ ∆k so that unprovability of the tree-
sequent is preserved. The operations executed in thek-th step are as follows: First, for
any 0 :A ∈ Γk, we add 1 :A and 2 :A to Γk−1. Unprovability is preserved because of
the rule (Move). We denote the result of this step by (Γk−1)′ ⇒ ∆k−1. Second, according
to the form ofαk : Fk, one of the following operation is executed:

(1) The case whereFk ≡ P(t1, . . . , tn) andαk , 0 andαk : Fk ∈ (Γk−1)′. Define:

Γk ⇒ ∆k ≡
0 : P(t1, . . . , tn), (Γk−1)′ ⇒ ∆k−1 if (3 − αk) : P(t1, . . . , tn) ∈ (Γk−1)′;

(Γk−1)′ ⇒ ∆k−1 o.w.

Unprovability is preserved because of (Atom L).
(2) The case whereFk ≡ A∧ B andαk : Fk ∈ (Γk−1)′. See [4].
(3) The case whereFk ≡ A∧ B andαk : Fk ∈ ∆k−1. See [4].
(4) The case whereFk ≡ A∨ B andαk : Fk ∈ (Γk−1)′. Similar to (3).
(5) The case whereFk ≡ A∨ B andαk : Fk ∈ ∆k−1. Similar to (2).
(6) The case whereFk ≡ ¬A andαk : Fk ∈ (Γk−1)′. See [4].
(7) The case whereFk ≡ ¬A andαk : Fk ∈ ∆k−1. See [4].
(8) The case whereFk ≡ A→ B andαk : Fk ∈ (Γk−1)′. See [4].
(9) The case whereFk ≡ A→ B andαk : Fk ∈ ∆k−1. See [4].

(10) The case whereFk ≡ ∀ x.A andαk : Fk ∈ (Γk−1)′. DefineΓk ⇒ ∆k ≡ αk : A[t0/x],
. . . ,αk : A[tk−1/x], (Γk−1)′ ⇒ ∆k. Unprovability is preserved because of (∀L).

(11) The case whereFk ≡ ∀ x.A andαk : Fk ∈ ∆k−1. Take a fresh variablez, and define
Γk ⇒ ∆k ≡ (Γk−1)′ ⇒ ∆k, αk : A[z/x]. Unprovability is preserved because of (∀R).
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(12) The case whereFk ≡ ∃ x.A andαk : Fk ∈ (Γk−1)′. Similar to (11).
(13) The case whereFk ≡ ∃ x.A andαk : Fk ∈ ∆k−1. Similar to (10).
(14) Otherwise. It suffices to defineΓk ⇒ ∆k ≡ (Γk−1)′ ⇒ ∆k−1.

Now letΓ+ ⇒ ∆+ be (
∪

i∈ω Γ
i)⇒ (

∪
i∈ω ∆

i). It is easy to verify that the tree-sequent
Γ+ ⇒ ∆+ is saturated. ⊓⊔

B A Proof of Lemma 10

By induction on the derivation ofΓ ⇒ ∆ in TInqQL2. First, let us choose some fresh
propositional variabless, t not occurring in the derivation. We assume that all formulaic
translations in this proof depend ons and t. All cases in our induction immediately
follow from the following Lemmas12 and13. We can easily establish Lemma12 by
definition ofJΓ ⇒ ∆K.
Lemma 12. If Mall |= JΓ ⇒ ∆Kα for someα ∈ {1,2 }, thenMall |= JΓ ⇒ ∆K.
Lemma 13. The following formulas are valid inMall.
(ax) A∧C→ A∨ D.
(⊥left) ⊥ ∧C→ D.
(atom left) X1 → X2, where:

X1 ≡ P(t1, . . . , tn)→ (S ∨ T) ∨ D ∨ (S ∧ E→ T ∨ F) ∨ (T ∧G→ S ∨ H);
X2 ≡ (S ∨ T) ∨ D ∨ (P(t1, . . . , tn) ∧ S ∧ E→ T ∨ F) ∨ (P(t1, . . . , tn) ∧ T ∧G→ S ∨ H).

(move) ((E ∧ A→ F) ∨ (G∧ A→ H))→ (A→ (E→ F) ∨ (G→ H)).
(∧right ) (C→ D ∨ A) ∧ (C→ D ∨ B)→ (C→ (D ∨ (A∧ B))).
(∨left) (A∧C→ D) ∧ (B∧C→ D)→ (((A∨ B) ∧C)→ D).
(¬left) (C→ D ∨ A)→ (¬A∧C→ D).
(¬right 1,2) (C ∧ A→ D)→ (C→ D ∨ ¬A).
(¬right 0) X3 ∧ X4 → X5, where:

X3 ≡ (S ∨ T) ∨ D ∨ (S ∧ E ∧ A→ F ∨ T) ∨ (T ∧G→ S ∨ H);
X4 ≡ (S ∨ T) ∨ D ∨ (S ∧ E→ F ∨ T) ∨ (T ∧G∧ A→ S ∨ H);
X5 ≡ (S ∨ T) ∨ ¬A∨ D ∨ (S ∧ E→ F ∨ T) ∨ (T ∧G→ S ∨ H).

(→ left) (C→ D ∨ A) ∧ (C ∧ B→ D)→ (C ∧ (A→ B)→ D).
(→ right 1,2) (C ∧ A→ D ∨ B)→ (C→ (D ∨ (A→ B))).
(→ right 0) (X6 ∧ X7 ∧ X8)→ X9, where:

X6 ≡ A→ ((S ∨ T) ∨ D ∨ B∨ (S ∧ E→ T ∨ F) ∨ (T ∧G→ S ∨ H));
X7 ≡ (S ∨ T) ∨ D ∨ (S ∧ E ∧ A→ T ∨ F) ∨ (T ∧G→ S ∨ H);
X8 ≡ (S ∨ T) ∨ D ∨ (S ∧ E→ T ∨ F) ∨ (T ∧G∧ A→ S ∨ H);
X9 ≡ (S ∨ T) ∨ (A→ B) ∨ D ∨ (S ∧ E→ T ∨ F) ∨ (T ∧G→ S ∨ H).

(∀left) (C ∧ A[t/x] → D)→ (C ∧ ∀ x.A→ D).
(∀right ) (C→ D ∨ A[z/x]) → (C→ D ∨ ∀ x.A), where z is fresh in C, D and∀ x.A.
(∃left) (C ∧ A[z/x] → D)→ (C ∧ ∃ x.A→ D), where z is fresh in C, D and∃ x.A.
(∃right ) (C→ D ∨ A[t/x]) → (C→ D ∨ ∃ x.A).
(cut) (C→ D ∨ A) ∧ (C ∧ A→ D)→ (C→ D).

Proof. Formulas except (atom left), (¬ right 0) and (→ right 0) are all theorems of first-
order intuitionistic logic withCD (we needCD for (∀ right)). Therefore, they are all
valid in Mall. So, it suffices to check (atom left), (¬ right 0) and (→ right 0). The essential
arguments for these are the same as in the propositional case [4, p.373, Lemma 3]. ⊓⊔
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