INTRODUCTION BASIC NOTIONS EPISTEMIC MODALS IMPLICATION DEONTICS A SEMANTIC SOLUTION OTHER PUZZLES 0000000000 000000000 000 000000000 000

DEONTIC AND EPISTEMIC MODALS IN SUPPOSITIONAL [INQUISITIVE] SEMANTICS

Martin Aher¹ Joint work with Jeroen Groenendijk²

Thank you to Floris Roelofsen²

¹University of Tartu

²Institute for Logic, Language and Computation University of Amsterdam

19.09.2014 Questions in Discourse Georg August University at Göttingen → <=→ <=→ <=→ <=> → <<

INTRODUCTION	BASIC NOTIONS	Epistemic modals	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

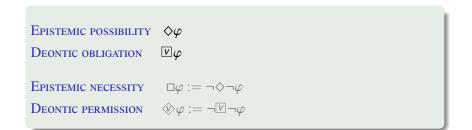
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

01 Introduction

Aims

INTRODUCTION •••••••	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
Aims						
Aims						

GOALS OF THE TALK


- Introduce a suppositional [inquisitive] semantics for a propositional language which contains epistemic modals.
- Add an Andersonian treatment of deontic modals.
- Give a suppositional semantic solution to a Jackson inspired puzzle which involves both types of modals.

SUPPOSITIONAL [INQUISITIVE] SEMANTICS

- By suppositional [inquisitive] semantics we mean the reduced version of suppositional inquisitive semantics that results from only considering the fragment of the propositional language that lacks conjunction and disjunction
- In the full inquisitive version, disjunction and conjunction are the only sources of inquisitiveness

INTRODUCTION OOOOOOOOOOOO	Epistemic modals	Implication 000	Deontics 00000	A SEMANTIC SOLUTION	Other puzzles
Aims					
ът		D			

NOTATION FOR EPISTEMIC AND DEONTIC MODALS

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						
THE SITU	ATION					

A review request: does the following hold?

(1) You ought to accept the request to write a review.

Vр

T		<u>^</u>	D			
The puzzle						
INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000

The situation at Questions in Discourse

A review request: does the following hold?

(2) Should you accept the request to write a review?

?⊻p

・ロト・四ト・ヨト・ヨト・ 日・ つへぐ

INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						
THE SITU	JATION					

AN INSTANTIATION OF A GENERAL RULE

(3) If you accept the request to write a review, you ought to write it.

 $p \rightarrow v q$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

INTRODUCTION	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
The puzzle						
THE SITU	TATION					

ADDING A SPECIFIC RULE

- (4) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \forall q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \forall p$

Paraphrases of (4-b)

- (5) a. If it is epistemically possible that you write the review, ...
 - b. If you might write the review, ...
 - c. If it is supposable that you write the review, ...
 - d. Unless it is impossible that you write the review, ...

Introduction	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
The puzzle						
THE SITU	IATION					

ADDING A SPECIFIC RULE

- (4) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \nabla q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \boxed{p}$

PARAPHRASES OF (4-B)

- (5) a. If it is epistemically possible that you write the review, ...
 - b. If you might write the review, ...
 - c. If it is supposable that you write the review, ...
 - d. Unless it is impossible that you write the review, ...

INTRODUCTION	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
00000000000					
The puzzle					
T					

The unproblematic case

Relevant: does (6-c) hold?

- (6) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \nabla q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \forall p$

¢а

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

c. It is possible that you write the review.

DESIDER ATA

(7) a. If writing is possible, then you must accept and write.

INTRODUCTION	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
00000000000					
The puzzle					
T					

The unproblematic case

Relevant: does (6-c) hold?

- (6) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \nabla q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \forall p$

¢q

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

c. It is possible that you write the review.

DESIDERATA

(7) a. If writing is possible, then you must accept and write.

INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						
THE PUZ	ZLE					

What if (8-c) holds?

- (8) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \nabla q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \mathbb{V}p$

 $\neg \Diamond q$

ション 小田 マイビット ビックタン

c. It is not possible that you write the review.

Desiderata

(9) a. If writing is possible, then you must accept and write.

INTRODUCTION	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						
THE PUZ	ZLE					

What if (8-c) holds?

- (8) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \forall q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow V p$
 - c. It is not possible that you write the review.

DESIDERATA

(9) a. If writing is possible, then you must accept and write.b. If writing is not possible, then you must not accept.

 $\neg \Diamond q$

INTRODUCTION	BASIC NOTIONS	Epistemic modals 000	Implication 000	A semantic solution	Other puzzles
The puzzle					
** *					

What goes wrong

The puzzle

- (10) a. If you accept the request to write a review, you ought to write it. $p \to \nabla q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow V p$
 - c. It is not possible that you write the review.

 $\neg \Diamond q$

WHAT GOES WRONG

- When $\neg \diamond q$ holds, restricting to $\diamond q$ results in the empty set.
- **2** From (10-b) and (10-c), $\underline{\mathbb{V}}p$ vacuously holds.

COUNTER-INTUITIVE PREDICTIONS

- **Regardless of whether** $\diamond q$ or $\neg \diamond q$ holds, $\Box p$ holds.
- (10-a), (10-b) and (10-c) result in a deontic conflict: when ¬◊q holds, either ☑p or p → ☑q is violated.

INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						

What goes wrong

The puzzle

- (10) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \forall q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \mathbb{V}p$
 - c. It is not possible that you write the review.

WHAT GOES WRONG

• When $\neg \diamond q$ holds, restricting to $\diamond q$ results in the empty set.

2 From (10-b) and (10-c), $\underline{\mathbb{V}}p$ vacuously holds.

Counter-intuitive predictions

- Regardless of whether $\diamond q$ or $\neg \diamond q$ holds, $\forall p$ holds.
- ② (10-a), (10-b) and (10-c) result in a deontic conflict: when $\neg \Diamond q$ holds, either $\forall p$ or $p \rightarrow \forall q$ is violated.

 $\neg \Diamond q$

INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						
Solutio	NS					

POSSIBLE SOLUTION

Appealing to pragmatic reasoning regarding vacuous truth.

Goal of this talk

Demonstrate a semantic solution to puzzles concerning dismissals.

▲□▶▲□▶▲□▶▲□▶ = のへの

INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						
Solutio	NS					

POSSIBLE SOLUTION

Appealing to pragmatic reasoning regarding vacuous truth.

GOAL OF THIS TALK

Demonstrate a semantic solution to puzzles concerning dismissals.

うせん 同一人間を入出す (四) ふうや

INTRODUCTION	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles
The puzzle						
REQUERE	D STEPS					

The puzzle

(11) If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \mathbb{V}p$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The steps to our solution

- Epistemic *might* Veltman
- Implication Ramsey
- Deontic must Anderson

BASIC NOTIONS	Epistemic modals	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

02 Basic notions

Dismissals

INTRODUCTION	BASIC NOTIONS	Epistemic modals	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
	• 00 00000					
DISMISSALS						

SUPPOSITIONAL [INQUISITIVE] SEMANTICS

SUPP	SUPPOSABILITY AND SUPPOSITIONAL DISMISSAL					
(12)	a.	If Abe goes to the party, Bea will go.	$p \rightarrow q$			
	b.	No, if Abe goes to the party, Bea will not go.	$p \rightarrow \neg q$			
	C.	Well, Abe won't go.	¬p			

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

INTUITIONS FOR SUPPOSITIONAL INQUISITIVE SEMANTICS

- (12-a) and (12-b) contradict each other.
- (12-c) dismisses (12-a) and (12-b).

INTRODUCTION 00000000000	Basic notions	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles
DISMISSALS						

SUPPOSITIONAL DISMISSAL

CONE	CONDITIONALS AND DEONTIC MODALS						
(13)		If Abe goes to the party, Bea will go as well. Well, Abe won't go.	$p \rightarrow q$ $\neg p$				
(14)		You must pass the exam. I already passed the exam.	⊻p p				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- When (13-b) holds, (13-a) is dismissed.
- When (14-b) holds, (14-a) is dismissed.

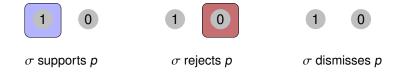
Introduction 000000000000	Basic notions	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
DISMISSALS						
INFORMA	TION STA	ГЕС				

STATES:

- A state is a set of worlds.
- The empty set is called the absurd state.
- The set of all worlds is called the ignorant state.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
	0000000				
DEFINITIONS					


SUPPORT, REJECTION AND DISMISSAL

ATOMIC SENTENCES

- A state σ supports p iff
- A state σ rejects p iff
- σ is not absurd, and
 - 2 all worlds in σ are p worlds.
 - σ is not absurd, and
 - **2** no worlds in σ are p worlds.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

• A state σ dismisses p iff σ is absurd.

INFORMATIVENESS AND SUPPOSITIONALITY

The atomic sentence *p* is informative and not suppositional.

INFORMATIVENESS AND SUPPOSITIONALITY

The atomic sentence *p* is informative and not suppositional.

Introduction 000000000000000000000000000000000000	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
Definitions						
NEGATIO	N					

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

NEGATION IN SUPPOSITIONAL INQUISITIVE SEMANTICS

- σ supports $\neg \varphi$ iff σ rejects φ
- σ rejects $\neg \varphi$ iff σ supports φ
- σ dismisses $\neg \varphi$ iff σ dismisses φ .

DOUBLE NEGATION

 φ is equivalent to $\neg\neg\varphi$

Introduction 000000000000000000000000000000000000	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
Definitions						
QUESTIO	NS					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

QUESTIONS IN SUPPOSITIONAL INQUISITIVE SEMANTICS

- σ supports $?\varphi$ iff σ supports φ or σ rejects φ
- No state rejects $?\varphi$
- σ dismisses $?\varphi$ iff σ dismisses φ .

	BASIC NOTIONS	EPISTEMIC MODALS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
	0000000					
Definitions						

INFORMATIVE CONTENT

 $info(\varphi)$ is the union of all states that support φ . Equivalently in the non-inquisitive case: the maximal (minimally informed) state that supports φ .

SUPPOSABILITY

 φ is supposable in σ iff $\sigma \cap info(\varphi)$ supports φ

The absurd state in suppositional inquisitive semantics

In the absurd state (0), nothing is supposable, since it does not support or reject any sentence. It dismisses every sentence.

SUPPOSABILITY IS NOT PERSISTENT, NON-SUPPOSABILITY IS

	BASIC NOTIONS	EPISTEMIC MODALS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
	0000000					
Definitions						

INFORMATIVE CONTENT

 $info(\varphi)$ is the union of all states that support φ . Equivalently in the non-inquisitive case: the maximal (minimally informed) state that supports φ .

SUPPOSABILITY

 φ is supposable in σ iff $\sigma \cap info(\varphi)$ supports φ

The absurd state in suppositional inquisitive semantics

In the absurd state (\emptyset), nothing is supposable, since it does not support or reject any sentence. It dismisses every sentence.

SUPPOSABILITY IS NOT PERSISTENT, NON-SUPPOSABILITY IS

	BASIC NOTIONS	EPISTEMIC MODALS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
	0000000					
Definitions						

INFORMATIVE CONTENT

 $info(\varphi)$ is the union of all states that support φ . Equivalently in the non-inquisitive case: the maximal (minimally informed) state that supports φ .

SUPPOSABILITY

 φ is supposable in σ iff $\sigma \cap info(\varphi)$ supports φ

The absurd state in suppositional inquisitive semantics

In the absurd state (\emptyset), nothing is supposable, since it does not support or reject any sentence. It dismisses every sentence.

SUPPOSABILITY IS NOT PERSISTENT, NON-SUPPOSABILITY IS

	BASIC NOTIONS	EPISTEMIC MODALS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
	0000000					
Definitions						

INFORMATIVE CONTENT

 $info(\varphi)$ is the union of all states that support φ . Equivalently in the non-inquisitive case: the maximal (minimally informed) state that supports φ .

SUPPOSABILITY

 φ is supposable in σ iff $\sigma \cap info(\varphi)$ supports φ

The absurd state in suppositional inquisitive semantics

In the absurd state (\emptyset), nothing is supposable, since it does not support or reject any sentence. It dismisses every sentence.

SUPPOSABILITY IS NOT PERSISTENT, NON-SUPPOSABILITY IS

BASIC NOTIONS	Epistemic modals	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

03 Epistemic modals

Might

Introduction		Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
Міднт						
EPISTEMI	C MIGHT I	IN SUPPOSIT	TIONAL [I]	NQUISITI	VE] SEMANTI	CS

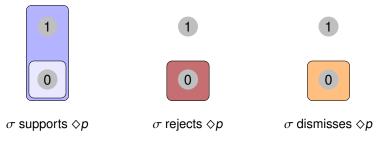
Might as a supposability check

- $\Diamond \varphi$ is treated as a supposability check.
- For basic cases, when φ is not suppositional, this amounts to checking consistency.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

000000000 000000 000 000 000 000 000 0	000
Міднт	
Epistemic might in suppositional [inquisitive] semantic	S

RECALL


 φ is supposable in σ iff $\sigma \cap info(\varphi)$ supports φ

$\Diamond \varphi$ in suppositional [inquisitive] semantics

- σ supports $\Diamond \varphi$ iff φ is supposable in σ
- σ rejects ◊φ iff
 φ is not supposable in σ, and
 ¬φ is supposable in σ.
- σ dismisses $\Diamond \varphi$ iff φ is not supposable in σ

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Introduction 000000000000	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000					
Міднт											
PICTURE	PICTURE OF MEANING $\Diamond n$										

INFORMATIVENESS AND SUPPOSABILITY

- Since the ignorant state supports $\Diamond p$, it is not informative.
- Since a non-absurd state dismisses *◇p*, it is suppositional.

BASIC NOTIONS	Epistemic modals	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

04 Implication

Supposition failure

	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
		000			
SUPPOSITION FAILURE					

Implication in suppositional [inquisitive] semantics

SUPPOSING

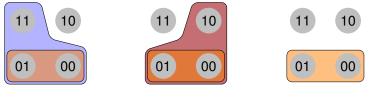
- φ is supposable in σ iff $\sigma \cap info(\varphi)$ supports φ
- To suppose φ in σ is to take $\sigma \cap info(\varphi)$.

IMPLICATION IN SUPPOSITIONAL [INQUISITIVE] SEMANTICS

 $\sigma \text{ supports } \varphi \rightarrow \psi \text{ iff}$

 $\sigma \text{ rejects } \varphi \rightarrow \psi \text{ iff}$

(A) φ is supposable in σ , and (B) if φ is supposed in σ , then ψ is rejected.

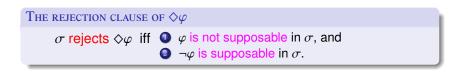

(B) if φ is supposed in σ , then ψ is supported.

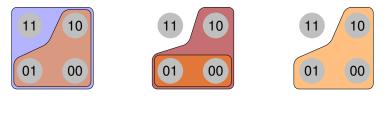
 σ dismisses $\varphi \rightarrow \psi$ iff (A) φ is not supposable in σ , or (B) if φ is supposed in σ , then ψ is dismissed.

(A) φ is supposable in σ , and

	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
		000			
SUPPOSITION FAILURE					

Picture of meaning of $p \rightarrow q$


Supporting $p \rightarrow q$ Rejecting $p \rightarrow q$ Dismissing $p \rightarrow q$


INFORMATIVENESS AND SUPPOSABILITY

- Since the ignorant state does not support p → q, it is informative.
- And, since a non-absurd state dismisses $p \rightarrow q$, it is suppositional.

	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
		000			
SUPPOSITION FAILURE					

MOTIVATING THE REJECTION CLAUSE FOR MIGHT

Supporting $\diamond(p \to q)$ Rejecting $\diamond(p \to q)$ Dismissing $\diamond(p \to q)$

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

INTRODUCTION	BASIC NOTIONS	Epistemic modals	Implication	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

05 Deontics

Worlds and rulings

INTRODUCTION	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000
Must						
Worlds	AND RUI	INGS				

WORLDS AND RULINGS

- A world w is a valuation function such that for every atomic sentence p: w(p) = 1 (true) or w(p) = 0 (false).
- A ruling *r* is a violation function such that for every world *w*: r(w) = 1 (no violation) or r(w) = 0 (violation).

RULINGS

A set of rulings embodies information on what the rules could be.

DEONTIC INFORMATION STATES

A deontic state σ is a set of world-ruling pairs such that: $\sigma =$ worlds in $\sigma \times$ rulings in σ

INTRODUCTION 000000000000	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics •0000	A semantic solution	Other puzzles 000
Must						
Worlds	AND RUI	INGS				

WORLDS AND RULINGS

- A world w is a valuation function such that for every atomic sentence p: w(p) = 1 (true) or w(p) = 0 (false).
- A ruling r is a violation function such that for every world w:
 r(w) = 1 (no violation) or r(w) = 0 (violation).

RULINGS

A set of rulings embodies information on what the rules could be.

DEONTIC INFORMATION STATES

A deontic state σ is a set of world-ruling pairs such that:

 $\sigma =$ worlds in $\sigma \times$ rulings in σ .

	BASIC NOTIONS	Epistemic modals	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
				00000		
Must						

PICTURE OF A DEONTIC STATE

σ_0	<i>w</i> ₁	<i>W</i> ₂
<i>r</i> ₁	1	0
<i>r</i> ₂	1	0
r ₃	1	0
<i>r</i> 4	1	0

Ignorant state with only 1 atom

Must					
			00000		
	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

PROVIDING WORLD-INFORMATION

σ_{0}	<i>w</i> ₁	W 2		σ_1	W_1	<i>W</i> ₂		σ_1	W ₁	<i>W</i> ₂
<i>r</i> ₁	1	0	-	<i>r</i> ₁	1	0	-	r _{1,2}	1	0
r ₂	1 1	0		<i>r</i> ₂	1	0		r _{1,2} r _{3,4}	1	0
r ₃	1 1	0		r ₃	1	0			upport	
<i>r</i> 4	1	0		r ₄	1	0		0150	ιρροπ	s ¬p
	1				1					

Ignorant state (1 atom) σ_1 supports $\neg p$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction 000000000000	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles 000		
Must								

MUST IN SUPPOSITIONAL [INQUISITIVE] SEMANTICS

• $\nabla \varphi := \neg \varphi \rightarrow \text{bad}$

WHERE:

- σ supports bad iff σ is not absurd and according to all rulings in σ all the worlds in σ are violation worlds.
- σ rejects bad iff σ is not absurd and according to all rulings in σ all the worlds in σ are non-violation worlds.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

• σ dismisses bad iff σ is absurd.

Must					
			00000		
	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

PROVIDING DEONTIC INFORMATION

	σ_0	W 1	W 2	σ_1	W_1	W 2		σ_2	W1	W2		
-	<i>r</i> ₁	1	0	<i>r</i> ₁	1	0		r ₃	1	0		
	r ₂	1	0	r ₂	1	0		r ₄	1	0		
	r ₃	1	0	r ₃	1	0	(Te	supp	orte —	n and		
	<i>r</i> 4	1	0	r ₄	1	0	σ_2	supports $\neg p$, and supports $\forall p$				
	Ignorant state			σ_1 s	uppor	ts ¬p						

BASIC NOTIONS	Epistemic modals	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

06 A semantic solution

Back to the puzzle

	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
				• 00 000000	
BACK TO THE PUZZLE					

Possible worlds and rulings

Just for economy, we ignore the irrelevant world 01.

σ_{0}	W 1	W 2	W 3
<i>r</i> ₁	11	10	00
r ₂	11	10	00
r ₃	11	10	00
r ₄	11	10	00
r ₅	11	10	00
r ₆	11	10	00
r 7	11	10	00
r ₈	11	10	00

Deontically ignorant state

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	BASIC NOTIONS		Implication	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
00000000000	0000000	000	000	00000	00000000	000
BACK TO THE PUZZLE						

Adding the general rule

RECALL THE GENERAL RULE

(15) If you accept the request to write a review, you ought to write it.

 $p \rightarrow V q$

σ_{0}	W 1	W 2	W ₃
<i>r</i> ₁	11	10	00
r ₂	11	10	00
r ₃	11	10	00
r ₄	11	10	00
r ₅	11	10	00
r ₆	11	10	00
r 7	11	10	00
r ₈	11	10	00

Deontically ignorant state

σ_1	<i>w</i> ₁	<i>W</i> ₂	W ₃					
<i>r</i> ₁	11	10	00					
r ₂	11	10	00					
r ₃	11	10	00					
r ₄	11	10	00					
σ_1 supports $p \to V q$								

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
				00000000	
BACK TO THE PUZZLE					

SUPPOSITIONAL OBLIGATIONS

THE SPECIFIC RULE

(16) If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \boxed{p}$

σ_0	W 1	W 2	W ₃
<i>r</i> ₁	11	10	00
r ₂	11	10	00
r ₃	11	10	00
r ₄	11	10	00
r ₅	11	10	00
r ₆	11	10	00
r ₇	11	10	00
r ₈	11	10	00

Deontically ignorant state

RECALL	
$\diamond q$ is not informative.	

σ_{2}	W 1	W 2	W ₃
r ₂	11	10	00
<i>r</i> 4	11	10	00
<i>r</i> 6	11	10	00
r ₈	11	10	00

 σ_2 supports $\diamond q \rightarrow v p$, and σ_2 supports v p

Introduction 000000000000	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A SEMANTIC SOLUTION	Other puzzles
Desiderata 1						

Adding the specific rule

THE SPECIFIC RULE

- (17) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \forall q$
 - b. If it is possible that you write the review, you ought to accept the request to write it. $\Diamond q \rightarrow \boxed{p}$

σ_1	W 1	<i>W</i> ₂	W ₃	σ_2	<i>w</i> ₁	<i>W</i> ₂	W ₃	σ_{3}	<i>w</i> ₁	<i>W</i> ₂	W ₃
<i>r</i> ₁	11	10	00	r ₂	11	10	00	r ₂	11	10	00
r ₂	11	10	00	<i>r</i> 4	11	10	00	r ₄	11	10	00
r ₃	11	10	00	<i>r</i> 6	11	10	00				
<i>r</i> 4	11	10	00	r ₈	11	10	00	σ_3 supports $p \to \overline{\nu} q$, σ_3 supports $\Diamond q \to \overline{\nu} p$			
σ_1 supports $p \rightarrow \nabla q$				σ_{2} su	pport	s ⇔q -	$\rightarrow v p$				

INTRODUCTION 000000000000000000000000000000000000	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles			
Desiderata 1									
DESIDER	Desider ata 1								

σ_{3}	<i>w</i> ₁	<i>W</i> ₂	W ₃
r ₂	11	10	00
r ₄	11	10	00

 σ_3 supports $\diamond q$, and σ_3 supports $p \rightarrow \lor q$, and σ_3 supports $\diamond q \rightarrow \lor p$, and σ_3 supports $\lor p$, and σ_3 supports $\lor p$

DESIDERATA

(18) If writing is possible, then you must accept the request and you must write.

INTRODUCTION 00000000000	BASIC NOTIONS	Epistemic modals 000	Implication	Deontics 00000	A SEMANTIC SOLUTION	Other puzzles 000
Desiderata 2						

When it is not possible that you write the review

Adding the second rule

(19) a. If you accept the request to write a review, you ought to write it. $p \rightarrow \forall q$

σ_1	<i>w</i> ₁	<i>W</i> ₂	W ₃				
<i>r</i> ₁	11	10	00				
r ₂	11	10	00				
r ₃	11	10	00				
r ₄	11	10	00				

 σ_1 supports $p \rightarrow \forall q$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

	BASIC NOTIONS	IMPLICATION	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES
				000000000	
Desiderata 2					

THE REVIEW WILL NOT BE WRITTEN

THE F	PUZZI	LE	
(20)	a.	If you accept the request to write a review, y	ou ought to
		write it.	$p \rightarrow V q$
	b.	If it is possible that you write the review, you	u ought to
		accept the request to write it.	$\Diamond q \rightarrow \nabla p$
	C.	It is not possible that you write the review.	$\neg \diamond q$

σ_4	W_1	W 2	W ₃
r ₁	11	10	00
r ₂	11	10	00
r ₃	11	10	00
r ₄	11	10	00

σ_4	W_1	W ₂	W ₃
r _{1,3}	11	10	00
r _{2,4}	11	10	00

 $\sigma_4 \text{ dismisses } \diamond q, \text{ and } \\
 \sigma_4 \text{ supports } p \to \heartsuit q, \text{ and } \\
 \sigma_4 \text{ dismisses } \diamond q \to \heartsuit p$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

INTRODUCTION 00000000000	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A SEMANTIC SOLUTION	Other puzzles
Desiderata 2						
Desider	ata 2					

σ_4	W_1	W 2	W 3
r _{1,3}	11	10	00
<i>r</i> _{2,4}	11	10	00

 $\sigma_4 \text{ dismisses } \diamond q, \text{ and} \\
\sigma_4 \text{ supports } p \to \forall q, \text{ and} \\
\sigma_4 \text{ dismisses } \diamond q \to \forall p \\
\sigma_4 \text{ supports } \forall \neg p$

DESIDERATA

(21) If writing is not possible, then you must not accept.

INTRODUCTION 00000000000	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles
Desiderata 2						
SUMMAD	v					

Desiderata

- (22) a. If writing is possible, then you must accept the request and you must write.
 - b. If writing is not possible, then you must not accept.

σ_{3}	<i>W</i> ₁	<i>W</i> ₂	W ₃
r ₂	11	10	00
r ₄	11	10	00

 σ_3 supports $\diamond q$, and σ_3 supports $p \rightarrow \lor q$, and σ_3 supports $\diamond q \rightarrow \lor p$, and σ_3 supports $\lor p$, and σ_3 supports $\lor p$, and

σ_4	W_1	<i>W</i> ₂	W ₃
r _{1,3}	11	10	00
r _{2,4}	11	10	00

 $\sigma_4 \text{ dismisses } \diamond q, \text{ and}$ $\sigma_4 \text{ supports } p \to \overline{\lor} q, \text{ and}$ $\sigma_4 \text{ dismisses } \diamond q \to \overline{\lor} p$ $\sigma_4 \text{ supports } \overline{\lor} \neg p$

BASIC NOTIONS	Epistemic modals	Implication	DEONTICS	A SEMANTIC SOLUTION	OTHER PUZZLES

07 Other puzzles

Free choice, Ross's puzzle, conditional oughts, etc.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	Other puzzles	
Free choice, Ross's puzzle, conditional oughts, etc.							
A UNIEO	PM SOLUT	TON					

- I proposed a semantic solution to Ross's puzzle, free choice, Dr. Procrastinate, and puzzles involving deontic conflicts in my dissertation (Aher 2013).
- The approach made false predictions when it encountered examples which suppositional inquisitive semantics characterizes as supposition failure.
- The same approach implemented in suppositional inquisitive semantics has the potential to provide a uniform semantic solution to these well-known puzzles.

ション キョン キョン キョン しょう

INTRODUCTION 000000000000	Basic notions	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	OTHER PUZZLES		
Free choice, Ross's puzzle, conditional oughts, etc.								
WHAT ABOUT THE OUESTION IN THE REGINNING?								

A REVIEW REQUEST: DOES THE FOLLOWING HOLD?

(23) Should you accept the request to write a review?

?**⊻**p

The support clause for questions

 σ supports $? \varphi$ iff σ supports φ or σ rejects φ

⊻p or ¬⊻p	? V p
⊻p or ⊠¬p?	▽ ?p

INTRODUCTION		Epistemic modals	Implication	Deontics 00000	A semantic solution	OTHER PUZZLES		
Free choice, Ross's puzzle, conditional oughts, etc.								
What about the question in the beginning?								

A REVIEW REQUEST: DOES THE FOLLOWING HOLD?

(23) Should you accept the request to write a review?

?**⊻**p

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

THE SUPPORT CLAUSE FOR QUESTIONS

 $\sigma \text{ supports } ? \varphi \text{ iff } \sigma \text{ supports } \varphi \text{ or } \sigma \text{ rejects } \varphi$

⊻p or ¬⊻p	? ▽ p
⊻p or ⊠¬p?	▽ ?p

Introduction	BASIC NOTIONS	Epistemic modals	Implication 000	Deontics 00000	A semantic solution	OTHER PUZZLES
Free choice, Ross's	PUZZLE, CONDITIONAL	. OUGHTS, ETC.				
XX 7					0	

What about the question in the beginning?

A REVIEW REQUEST: DOES THE FOLLOWING HOLD?

(23) Should you accept the request to write a review?

?**⊻**p

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

THE SUPPORT CLAUSE FOR QUESTIONS

 $\sigma \text{ supports } ? \varphi \text{ iff } \sigma \text{ supports } \varphi \text{ or } \sigma \text{ rejects } \varphi$

THE INITIAL ISSUE:	
ע סר ¬ע סיי	?⊻р
⊻p or ⊻¬p?	▽ ?p

Introduction		Epistemic modals 000	IMPLICATION	DEONTICS 00000	A semantic solution	OTHER PUZZLES
Free choice, Ross's						
WHAT AF	BOUT THE	E QUESTION	IN THE B	EGINNIN	G?	

A	REVIEW	REQUEST:	DOES	THE	FOLLOWING	HOLD?
---	--------	-----------------	------	-----	-----------	-------

(23) Should you accept the request to write a review?

?⊻p

THE SUPPORT CLAUSE FOR QUESTIONS

 $\sigma \text{ supports } ? \varphi \text{ iff } \sigma \text{ supports } \varphi \text{ or } \sigma \text{ rejects } \varphi$

THE INITIAL ISSUE:	
♥p or ¬♥p	? v p
T	
The intuitive issue: ∇p or $\nabla \neg p$?	
	▽ ?p

Introduction 000000000000	BASIC NOTIONS	Epistemic modals 000	Implication 000	Deontics 00000	A semantic solution	Other puzzles		
Free choice, Ross's puzzle, conditional oughts, etc.								
The end (Or is it?)								

Thank you for listening

Please send any feedback to: martin.aher@ut.ee J.A.G.Groenendijk@uva.nl

We gratefully acknowledge the support of the Estonian Research Council and the Netherlands Organisation for Scientific Research (NWO).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ