# Reasoning on issues: one logic and a half

Ivano Ciardelli partly based on joint work with Jeroen Groenendijk and Floris Roelofsen



KNAW Colloquium on Dependence Logic - 3 March 2014

### Overview

- 1. Dichotomous inquisitive logic: reasoning with issues
- 2. Inquisitive epistemic logic: reasoning about entertaining issues
- 3. Inquisitive dynamic epistemic logic: reasoning about raising issues

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

### Overview

- 1. Dichotomous inquisitive logic: reasoning with issues
- 2. Inquisitive epistemic logic: reasoning about entertaining issues
- 3. Inquisitive dynamic epistemic logic: reasoning about raising issues

ション 小田 マイビット ビックタン

### Preliminaries

#### Information states

- Let W be a set of possible worlds.
- Definition: an information state is a set of possible worlds.
- We identify a body of information with the worlds compatible with it.
- *t* is at least as informed as *s* in case  $t \subseteq s$ .
- ► The state Ø compatible with no worlds is called the absurd state.



◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

### Preliminaries

Issues

- Definition: an issue is a non-empty, downward closed set of states.
- An issue is identified with the information needed to resolve it.
- An issue *I* is an issue over a state *s* in case  $s = \bigcup I$ .
- ► The alternatives for an issue *I* are the maximal elements of *I*.



Four issues over {w1, w2, w3, w4}: only alternatives are displayed.

ション 小田 マイビット ビックタン

# Part I

# Dichotomous inquisitive logic: reasoning with issues

### Definition (Syntax of $InqD_{\pi}$ )

 $\mathcal{L}_{InqD_{\pi}}$  consists of a set  $\mathcal{L}_{!}$  of declaratives and a set  $\mathcal{L}_{?}$  of interrogatives:

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

- 1. if  $p \in \mathcal{P}$ , then  $p \in \mathcal{L}_{!}$
- $2. \ \perp \in \mathcal{L}_!$
- **3.** if  $\alpha_1, \ldots, \alpha_n \in \mathcal{L}_!$ , then  $\{\alpha_1, \ldots, \alpha_n\} \in \mathcal{L}_?$
- 4. if  $\varphi, \psi \in \mathcal{L}_{\circ}$ , then  $\varphi \land \psi \in \mathcal{L}_{\circ}$
- 5. if  $\varphi \in \mathcal{L}_! \cup \mathcal{L}_?$  and  $\psi \in \mathcal{L}_\circ$ , then  $\varphi \to \psi \in \mathcal{L}_\circ$

#### Abbreviations

- if  $\alpha \in \mathcal{L}_!$ ,  $\neg \alpha := \alpha \to \bot$
- if  $\alpha, \beta \in \mathcal{L}_!$ ,  $\alpha \lor \beta := \neg (\neg \alpha \land \neg \beta)$
- if  $\alpha \in \mathcal{L}_{!}$ ,  $?\alpha := ?\{\alpha, \neg \alpha\}$

#### Notational convention on meta-variables

|                  | Declaratives      | Interrogatives      | Full language       |
|------------------|-------------------|---------------------|---------------------|
| Formulas         | $lpha,eta,\gamma$ | $\mu, \nu, \lambda$ | $arphi, \psi, \chi$ |
| Sets of formulas | Г                 | ٨                   | Φ                   |

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

### **Semantics**

- Usually, the role of semantics is to assign truth-conditions.
- However, our language now contains interrogatives as well.
- Claim: interrogative meaning = resolution conditions.
- We could give a double-face semantics: truth-conditions at worlds for declaratives, resolution conditions at info states for interrogatives.

- Instead, we will lift everything to the level of information states.
- Our semantics is defined by a relation ⊨ of support between information states and formulas, where:

Declaratives:  $s \models \alpha \iff \alpha$  is established in sInterrogatives:  $s \models \mu \iff \mu$  is resolved in s

### **Definition (Models)**

A model for a set  $\mathcal{P}$  of atoms is a pair  $M = \langle \mathcal{W}, V \rangle$  where:

- W is a set whose elements are called possible worlds
- $V: \mathcal{W} \to \wp(\mathcal{P})$  is a valuation function

### **Definition (Support)**

Let *M* be a model and let *s* be an information state.

1. 
$$M, s \models p \iff p \in V(w)$$
 for all worlds  $w \in s$ 

2. 
$$M, s \models \bot \iff s = \emptyset$$

3. 
$$M, s \models ?\{\alpha_1, \ldots, \alpha_n\} \iff M, s \models \alpha_1 \text{ or } \ldots \text{ or } M, s \models \alpha_n$$

4. 
$$M, s \models \varphi \land \psi \iff M, s \models \varphi$$
 and  $M, s \models \psi$ 

5.  $M, s \models \varphi \rightarrow \psi \iff$  for any  $t \subseteq s$ , if  $M, t \models \varphi$  then  $M, t \models \psi$ 

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

Fact (Perstistence) If  $M, s \models \varphi$  and  $t \subseteq s$  then  $M, t \models \varphi$ .

Fact (Absurd state)

 $M, \emptyset \models \varphi$  for any formula  $\varphi$  and model M.

### Definition (Proposition)

The proposition expressed by  $\varphi$  in *M* is the set of states supporting  $\varphi$ :

 $[\varphi]_M = \{ s \subseteq \mathcal{W} \mid s \models \varphi \}$ 

#### Fact (Propositions are issues)

 $[\varphi]_M$  is an issue for any formula  $\varphi$  and model *M*.

**Definition (Truth)**  $M, w \models \varphi \stackrel{def}{\longleftrightarrow} M, \{w\} \models \varphi$ 

Definition (Truth-set)  $|\varphi|_{M} := \{ w \in \mathcal{W} | M, w \models \varphi \}$ 

Fact (Truth and support)  $|\varphi|_M = \bigcup [\varphi]_M$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Fact (Truth-conditions)

- $M, w \models p \iff p \in V(w)$
- ► *M*, *w* ⊭ ⊥
- $M, w \models \{\alpha_1, \ldots, \alpha_n\} \iff M, w \models \alpha_1 \text{ or } \ldots \text{ or } M, w \models \alpha_n$

- $M, w \models \varphi \land \psi \iff M, w \models \varphi$  and  $M, w \models \psi$
- $M, w \models \varphi \rightarrow \psi \iff M, w \not\models \varphi \text{ or } M, w \models \psi$

#### Truth for declaratives

The semantics of a declarative is determined by truth conditions:

$$M, s \models \alpha \iff$$
 for all  $w \in s, M, w \models \alpha$ 

- That is, we always have  $[\alpha]_M = \wp(|\alpha|_M)$
- Since truth-conditions are standard, declaratives are classical.



#### Truth for interrogatives

 $\begin{array}{ll} \textit{M}, \textit{w} \models \mu \iff \textit{w} \in \textit{s} \text{ for some } \textit{s} \models \mu \\ \iff \textit{w} \in \textit{s} \text{ for some } \textit{s} \text{ resolving } \mu \\ \iff \mu \text{ can be truthfully resolved in } \textit{w} \end{array}$ 

### Definition (Presupposition of an interrogative)

$$\bullet \pi_{\{\alpha_1,\ldots,\alpha_n\}} = \alpha_1 \vee \cdots \vee \alpha_n$$

$$\bullet \ \pi_{\mu\wedge\nu} \ = \ \pi_{\mu}\wedge\pi_{\nu}$$

$$\bullet \ \pi_{\varphi \to \mu} \ = \ \varphi \to \pi_{\nu}$$

#### Fact

 $|\mu|_M = |\pi_\mu|_M$ 

#### Remark

For interrogatives, truth-conditions do not fully determine meaning. Ex. consider ?*p* and ?*q*.

01 00 [?{p, q}]

11

10



 $|?\{p,q\}|$ 

うせん 同一人間を入りたる 人間を入口を

Conjunction  $M, s \models \varphi \land \psi \iff M, s \models \varphi \text{ and } M, s \models \psi$ 



・ロト・日本・日本・日本・日本・日本

Implication $M, s \models \varphi \rightarrow \psi$  $\iff$  for any  $t \subseteq s$ , if  $M, t \models \varphi$  then  $M, t \models \psi$ 



#### **Definition (Entailment)**

 $\Phi \models \psi \quad \iff \quad \text{for all } M, s, \text{ if } M, s \models \Phi \text{ then } M, s \models \psi$ 

#### Declarative conclusion

 $\Gamma, \Lambda \models \alpha \iff$  establishing  $\Gamma$  and  $\Pi_{\Lambda}$  implies establishing  $\alpha$ .

#### Interrogative conclusion

 $\Gamma, \Lambda \models \mu \iff$  establishing  $\Gamma$  and resolving  $\Lambda$  implies resolving  $\mu$ .

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

#### Example 1

- ▶  $p \leftrightarrow q \land r$ ,  $?q \land ?r \models ?p$
- ▶  $p \leftrightarrow q \land r$ , ? $p \not\models$  ? $q \land$ ?r

#### Example 2

▶  $?p \rightarrow ?q$ ,  $?p \models ?q$ 

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

#### Four particular cases

- $\alpha \models \beta \iff \alpha$  is at least informative as  $\beta$
- $\alpha \models \mu \iff \alpha \text{ resolves } \mu$
- $\mu \models \alpha \iff \mu$  presupposes  $\alpha$
- $\mu \models v \iff \mu$  is at least as inquisitive as v

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



Double negation axiom

 $\neg \neg \alpha \rightarrow \alpha$ 

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



Double negation axiom

 $\neg \neg \alpha \rightarrow \alpha$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ





### **Definition (Resolutions)**

To any formula  $\varphi$  we associate a set of declaratives called resolutions.

- $\mathcal{R}(\alpha) = \{\alpha\}$  if  $\alpha$  is a declarative
- $\mathcal{R}(\{\alpha_1,\ldots,\alpha_n\}) = \{\alpha_1,\ldots,\alpha_n\}$
- $\mathcal{R}(\mu \wedge \nu) = \{\alpha \wedge \beta \mid \alpha \in \mathcal{R}(\mu) \text{ and } \beta \in \mathcal{R}(\nu)\}$
- $\blacktriangleright \ \mathcal{R}(\varphi \to \mu) = \{ \bigwedge_{\alpha \in \mathcal{R}(\varphi)} \alpha \to f(\alpha) \, | \, f : \mathcal{R}(\varphi) \to \mathcal{R}(\mu) \}$

#### Resolutions of a set

Replace each element in the set by one or more resolutions:

$$\mathcal{R}(\{p, ?q \land ?r\}) = \{\{p, q \land r\}\}$$
$$\{p, q \land \neg r\}$$
$$\dots$$

### Theorem (Resolution theorem) $\Phi \vdash \psi \iff \forall \Gamma \in \mathcal{R}(\Phi) \quad \exists \alpha \in \mathcal{R}(\psi) \text{ s.t. } \Gamma \vdash \alpha$

#### Corollary

There exists an effective procedure that, when given as input:

- a proof of  $\Phi \vdash \psi$
- a resolution Γ of Φ

#### outputs:

- a resolution  $\alpha$  of  $\psi$
- a proof of  $\Gamma \vdash \alpha$

#### Example

If we feed the algorithm

- ▶ a proof of  $p \leftrightarrow q \land r$ ,  $?q \land ?r \vdash ?p$
- the resolution  $p \leftrightarrow q \wedge r, q \wedge \neg r$

It will return

- the resolution  $\neg p$  of ?p
- ▶ a proof of  $p \leftrightarrow q \land r, q \land \neg r \vdash \neg p$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

#### Definition (Canonical model)

The canonical model for InqD<sub> $\pi$ </sub> is the model  $M^c = \langle W^c, V^c \rangle$  where:

- ► *W<sup>c</sup>* consists of complete theories of declaratives
- $V^c: \mathcal{W}^c \to \wp(\mathcal{P})$  is defined by  $V^c(\Gamma) = \{p \mid p \in \Gamma\}$

### Lemma (Support lemma) For any $S \subseteq W^c$ , $M^c, S \models \varphi \iff \bigcap S \vdash \varphi$

Theorem (Completeness)  $\Phi \models \psi \iff \Phi \vdash \psi$ 

# Part II

# Reasoning about entertaining issues: Inquisitive Epistemic Logic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

### **Epistemic Logic**

In standard EL we can reason about facts and (higher-order) information.

### Inquisitive Epistemic Logic

In IEL we can reason about facts, information and issues, including the higher-order cases:

ション 小田 マイビット ビックタン

- information about information
- information about issues
- issues about information
- issues about issues

#### Standard epistemic models

An epistemic model is a triple  $M = \langle \mathcal{W}, V, \{\sigma_a(w) \mid a \in \mathcal{R}\} \rangle$  where:

- W is a set of possible worlds
- $V: \mathcal{W} \to \wp(\mathcal{P})$  is a valuation function
- $\sigma_a : \mathcal{W} \to \wp(\mathcal{W})$  is the epistemic map of agent *a*, delivering for any *w* an information state  $\sigma_a(w)$ , in accordance with:

Factivity :  $w \in \sigma_a(w)$ Introspection : if  $v \in \sigma_a(w)$  then  $\sigma_a(v) = \sigma_a(w)$ 

- We want to add a description of the issues agents entertain.
- Replace the epistemic maps σ<sub>a</sub> by a state map Σ<sub>a</sub> that describes both information and issues.
- For any world w,  $\Sigma_a(w)$  delivers an issue:
  - the information of the agent is  $\sigma_a(w) = \bigcup \Sigma_a(w)$
  - the agent wants to reach one of the states  $t \in \Sigma_a(w)$



◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

### Inquisitive epistemic models

#### Definition (Inquisitive epistemic models)

An inquisitive epistemic model is a triple  $\langle W, V, \{\Sigma_a \mid a \in \mathcal{A}\} \rangle$ , where:

- W is a set of possible worlds
- $V: \mathcal{W} \to \wp(\mathcal{P})$  is a valuation function
- ►  $\Sigma_a$  is the state map of agent *a*, delivering for any *w* an issue  $\Sigma_a(w)$ , in accordance with:

Factivity:  $w \in \sigma_a(w)$ Introspection : if  $v \in \sigma_a(w)$  then  $\Sigma_a(v) = \Sigma_a(w)$ 

where  $\sigma_a(w) := \bigcup \Sigma_a(w)$ .

### Definition (Syntax)

The language  $\mathcal{L}_{IEL}$  for a set  $\mathcal{A}$  of agents is obtained expanding  $\mathcal{L}_{InqD_{\pi}}$  with the following clauses:

- if  $\varphi \in \mathcal{L}_! \cup \mathcal{L}_?$  and  $a \in \mathcal{A}$ , then  $K_a \varphi \in \mathcal{L}_!$
- if  $\varphi \in \mathcal{L}_! \cup \mathcal{L}_?$  and  $a \in \mathcal{A}$ , then  $E_a \varphi \in \mathcal{L}_!$

#### Remark

Notice that now the definitions of  $\mathcal{L}_{!}$  and  $\mathcal{L}_{?}$  are intertwined:

- the interrogative operator ? forms interrogatives out of declaratives;
- the modalities  $K_a$  and  $E_a$  form declaratives out of interrogatives;
- we can thus form sentences such as  $E_a?K_b?p$ .

#### Definition (Support conditions for the modalities)

• 
$$M, s \models K_a \varphi \iff \text{ for all } w \in s, M, \sigma_a(w) \models \varphi$$

• 
$$M, s \models E_a \varphi \quad \iff \quad \text{for all } w \in s \text{ and } t \in \Sigma_a(w), \quad M, t \models \varphi$$

#### Remark

All facts discussed before for  $InqD_{\pi}$  extend straghtforwardly to IEL.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Knowledge modality  $M, w \models K_a \varphi \iff M, \sigma_a(w) \models \varphi$ 

Knowing a declarative  $M, w \models K_a \alpha \iff \alpha$  is established in  $\sigma_a(w)$  $M, w \models K_a \alpha \iff M, v \models \alpha$  for all  $v \in \sigma_a(w)$ 

#### Knowing an interrogative

 $M, w \models K_a \mu \iff \mu \text{ is resolved in } \sigma_a(w)$ Ex.  $K_a?p \equiv K_a p \lor K_a \neg p$ 







Entertain modality  $M, w \models E_a \varphi \iff M, t \models \varphi \text{ for all } t \in \Sigma_a(w)$ 

Entertaining a declarative  $M, w \models E_a \alpha \iff M, w \models K_a \alpha$ 

# Entertaining an interrogative

 $M, w \models E_a \mu \iff \mu$  is resolved in states where *a*'s issues are resolved



◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

#### **Definition (Entailment)**

 $\Phi \models \psi \iff$  for any IEL-model *M* and state *s*, if *M*, *s*  $\models \Phi$  then *M*, *s*  $\models \psi$ 

#### Axiomatization

Expanding the derivation system for  $InqD_{\pi}$  with a few standard axioms and rules for the modalities, we get a complete axiomatization of IEL.

#### Two remarks

1. The logic for declaratives is not autonomous: reasoning with interrogative is crucial in drawing declarative inferences.

Ex:  $E_a \mu \models E_a \nu \iff \mu \models \nu$ 

2. The logical properties of the modalities turn out to be more general than their Kripkean framework from which they usually arise.

#### Conclusions

#### two

- We have seen three combined logics of information and issues.
- ► InqD<sub> $\pi$ </sub> extends classical propositional logic to reason with issues. Ex.  $p \leftrightarrow q \land r$ ,  $?q \land ?r \models ?p$
- IEL extends epistemic logic to reason about entertaining issues.
  Ex. K<sub>a</sub>(p ↔ q ∧ r), K<sub>a</sub>q ⊨ E<sub>a</sub>?p → E<sub>a</sub>?r

▲□▶▲□▶▲□▶▲□▶ □ のQ@

IDEL extends PAL to reason about raising issues.

Ex.  $K_a(p \leftrightarrow q \land r)$ ,  $K_aq \models [?p]E_a?r$ 



ヘロト 人間 ト 人造 ト 人造 トー

æ

### Some references

 Ciardelli, Groenendijk and Roelofsen, On the semantics and logic of declaratives and interrogatives, Synthese, DOI: 10.1007/s11229-013-0352-7

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

- Ciardelli and Roelofsen (2011) Inquisitive logic, Journal of Philosophical Logic, 40:55-94.
- Ciardelli and Roelofsen, Inquisitive dynamic epistemic logic, To appear in Synthese.
- Ciardelli, Reasoning about issues, In progress. Draft available on request.