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Preliminaries
Information states
� LetW be a set of possible worlds.

� Definition: an information state is a set of possible worlds.

� We identify a body of information with the worlds compatible with it.

� t is at least as informed as s in case t ⊆ s.

� The state ∅ compatible with no worlds is called the absurd state.
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Preliminaries
Issues
� Definition: an issue is a non-empty, downward closed set of states.

� An issue is identified with the information needed to resolve it.

� An issue I is an issue over a state s in case s =
�I.

� The alternatives for an issue I are the maximal elements of I.
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Four issues over {w1,w2,w3,w4}: only alternatives are displayed.



Part I

Dichotomous inquisitive logic:
reasoning with issues



Dichotomous inquisitive semantics

Definition (Syntax of InqDπ)
LInqDπ consists of a set L! of declaratives and a set L? of interrogatives:

1. if p ∈ P, then p ∈ L!

2. ⊥ ∈ L!

3. if α1, . . . ,αn ∈ L!, then ?{α1, . . . ,αn} ∈ L?

4. if ϕ,ψ ∈ L◦, then ϕ ∧ ψ ∈ L◦
5. if ϕ ∈ L! ∪L? and ψ ∈ L◦, then ϕ→ ψ ∈ L◦

Abbreviations
� if α ∈ L!, ¬α := α→ ⊥
� if α, β ∈ L!, α ∨ β := ¬(¬α ∧ ¬β)
� if α ∈ L!, ?α := ?{α,¬α}



Dichotomous inquisitive semantics

Notational convention on meta-variables

Declaratives Interrogatives Full language

Formulas α, β, γ µ, ν, λ ϕ,ψ, χ

Sets of formulas Γ Λ Φ



Dichotomous inquisitive semantics

Semantics
� Usually, the role of semantics is to assign truth-conditions.

� However, our language now contains interrogatives as well.

� Claim: interrogative meaning = resolution conditions.

� We could give a double-face semantics: truth-conditions at worlds
for declaratives, resolution conditions at info states for interrogatives.

� Instead, we will lift everything to the level of information states.

� Our semantics is defined by a relation |= of support between
information states and formulas, where:

Declaratives: s |= α ⇐⇒ α is established in s
Interrogatives: s |= µ ⇐⇒ µ is resolved in s



Dichotomous inquisitive semantics

Definition (Models)
A model for a set P of atoms is a pair M = �W,V� where:
� W is a set whose elements are called possible worlds

� V :W → ℘(P) is a valuation function

Definition (Support)
Let M be a model and let s be an information state.

1. M, s |= p ⇐⇒ p ∈ V(w) for all worlds w ∈ s

2. M, s |= ⊥ ⇐⇒ s = ∅
3. M, s |= ?{α1, . . . ,αn} ⇐⇒ M, s |= α1 or . . . or M, s |= αn

4. M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ
5. M, s |= ϕ→ ψ ⇐⇒ for any t ⊆ s, if M, t |= ϕ then M, t |= ψ



Dichotomous inquisitive semantics

Fact (Perstistence)
If M, s |= ϕ and t ⊆ s then M, t |= ϕ.

Fact (Absurd state)
M, ∅ |= ϕ for any formula ϕ and model M.

Definition (Proposition)
The proposition expressed by ϕ in M is the set of states supporting ϕ:

[ϕ]M = {s ⊆W| s |= ϕ}

Fact (Propositions are issues)
[ϕ]M is an issue for any formula ϕ and model M.



Dichotomous inquisitive semantics

Definition (Truth)
M,w |= ϕ def⇐⇒ M, {w} |= ϕ

Definition (Truth-set)
|ϕ|M := {w ∈W|M,w |= ϕ}

Fact (Truth and support)
|ϕ|M =

�
[ϕ]M



Dichotomous inquisitive semantics

Fact (Truth-conditions)
� M,w |= p ⇐⇒ p ∈ V(w)

� M,w �|= ⊥

� M,w |= ?{α1, . . . ,αn} ⇐⇒ M,w |= α1 or . . . or M,w |= αn

� M,w |= ϕ ∧ ψ ⇐⇒ M,w |= ϕ and M,w |= ψ

� M,w |= ϕ→ ψ ⇐⇒ M,w �|= ϕ or M,w |= ψ



Dichotomous inquisitive semantics

Truth for declaratives
� The semantics of a declarative is determined by truth conditions:

M, s |= α ⇐⇒ for all w ∈ s, M,w |= α

� That is, we always have [α]M = ℘(|α|M)
� Since truth-conditions are standard, declaratives are classical.

11 10

01 00

p

11 10

01 00

p ∧ q

11 10

01 00

p ∨ q

11 10

01 00

p → q



Dichotomous inquisitive semantics

Truth for interrogatives
M,w |= µ ⇐⇒ w ∈ s for some s |= µ

⇐⇒ w ∈ s for some s resolving µ
⇐⇒ µ can be truthfully resolved in w

Definition (Presupposition of an interrogative)
� π?{α1,...,αn} = α1 ∨ · · · ∨ αn

� πµ∧ν = πµ ∧ πν
� πϕ→µ = ϕ→ πν

Fact
|µ|M = |πµ|M

Remark
For interrogatives, truth-conditions do not fully
determine meaning. Ex. consider ?p and ?q.
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Dichotomous inquisitive semantics

Conjunction
M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ
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Dichotomous inquisitive semantics

Implication
M, s |= ϕ→ ψ ⇐⇒ for any t ⊆ s, if M, t |= ϕ then M, t |= ψ
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Dichotomous inquisitive logic

Definition (Entailment)
Φ |= ψ ⇐⇒ for all M, s, if M, s |= Φ then M, s |= ψ

Declarative conclusion
Γ,Λ |= α ⇐⇒ establishing Γ and ΠΛ implies establishing α.

Interrogative conclusion
Γ,Λ |= µ ⇐⇒ establishing Γ and resolving Λ implies resolving µ.



Dichotomous inquisitive logic

Example 1
� p ↔ q ∧ r , ?q ∧ ?r |= ?p
� p ↔ q ∧ r , ?p �|= ?q ∧ ?r

Example 2
� ?p → ?q, ?p |= ?q



Dichotomous inquisitive logic

Four particular cases
� α |= β ⇐⇒ α is at least informative as β

� α |= µ ⇐⇒ α resolves µ

� µ |= α ⇐⇒ µ presupposes α

� µ |= ν ⇐⇒ µ is at least as inquisitive as ν



Dichotomous inquisitive logic
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Dichotomous inquisitive logic

Conjunction
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Dichotomous inquisitive logic

Conjunction
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Dichotomous inquisitive logic

Conjunction
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Dichotomous inquisitive logic

Definition (Resolutions)
To any formula ϕ we associate a set of declaratives called resolutions.
� R(α) = {α} if α is a declarative
� R(?{α1, . . . ,αn}) = {α1, . . . ,αn}
� R(µ ∧ ν) = {α ∧ β |α ∈ R(µ) and β ∈ R(ν)}
� R(ϕ→ µ) = {�α∈R(ϕ) α→ f(α) | f : R(ϕ)→ R(µ)}

Resolutions of a set
Replace each element in the set by one or more resolutions:

R( {p, ?q ∧ ?r} ) = { {p, q ∧ r}
{p, q ∧ ¬r}
. . .

. . . }



Dichotomous inquisitive logic

Theorem (Resolution theorem)
Φ � ψ ⇐⇒ ∀Γ ∈ R(Φ) ∃α ∈ R(ψ) s.t. Γ � α

Corollary
There exists an effective procedure that,
when given as input:

� a proof of Φ � ψ
� a resolution Γ of Φ

outputs:

� a resolution α of ψ
� a proof of Γ � α



Dichotomous inquisitive logic

Example
If we feed the algorithm

� a proof of p ↔ q ∧ r , ?q ∧ ?r � ?p

� the resolution p ↔ q ∧ r , q ∧ ¬r

It will return

� the resolution ¬p of ?p

� a proof of p ↔ q ∧ r , q ∧ ¬r � ¬p



Dichotomous inquisitive logic

Definition (Canonical model)
The canonical model for InqDπ is the model Mc = �Wc ,Vc� where:
� Wc consists of complete theories of declaratives
� Vc :Wc → ℘(P) is defined by Vc(Γ) = {p | p ∈ Γ}

Lemma (Support lemma)
For any S ⊆Wc , Mc ,S |= ϕ ⇐⇒ �

S � ϕ

Theorem (Completeness)
Φ |= ψ ⇐⇒ Φ � ψ



Part II

Reasoning about entertaining issues:
Inquisitive Epistemic Logic



Inquisitive epistemic logic

Epistemic Logic
In standard EL we can reason about facts and (higher-order) information.

Inquisitive Epistemic Logic
In IEL we can reason about facts, information and issues, including the
higher-order cases:
� information about information
� information about issues
� issues about information
� issues about issues



Inquisitive epistemic logic

Standard epistemic models
An epistemic model is a triple M = �W,V , {σa(w) | a ∈ A}� where:

� W is a set of possible worlds

� V :W → ℘(P) is a valuation function

� σa :W → ℘(W) is the epistemic map of agent a, delivering for any
w an information state σa(w), in accordance with:

Factivity : w ∈ σa(w)

Introspection : if v ∈ σa(w) then σa(v) = σa(w)



Inquisitive epistemic logic

� We want to add a description of the issues agents entertain.

� Replace the epistemic maps σa by a state map Σa that describes
both information and issues.

� For any world w, Σa(w) delivers an issue:

� the information of the agent is σa(w) =
�

Σa(w)
� the agent wants to reach one of the states t ∈ Σa(w)
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Inquisitive epistemic models

Definition (Inquisitive epistemic models)
An inquisitive epistemic model is a triple �W,V , {Σa | a ∈ A}�, where:

� W is a set of possible worlds

� V :W → ℘(P) is a valuation function

� Σa is the state map of agent a, delivering for any w an issue Σa(w),
in accordance with:

Factivity : w ∈ σa(w)

Introspection : if v ∈ σa(w) then Σa(v) = Σa(w)

where σa(w) :=
�

Σa(w).



Inquisitive epistemic logic

Definition (Syntax)
The language LIEL for a set A of agents is obtained expanding LInqDπ
with the following clauses:

� if ϕ ∈ L! ∪L? and a ∈ A, then Kaϕ ∈ L!

� if ϕ ∈ L! ∪L? and a ∈ A, then Eaϕ ∈ L!

Remark
Notice that now the definitions of L! and L? are intertwined:

� the interrogative operator ? forms interrogatives out of declaratives;

� the modalities Ka and Ea form declaratives out of interrogatives;

� we can thus form sentences such as Ea?Kb?p.



Inquisitive epistemic logic

Definition (Support conditions for the modalities)
� M, s |= Kaϕ ⇐⇒ for all w ∈ s, M,σa(w) |= ϕ
� M, s |= Eaϕ ⇐⇒ for all w ∈ s and t ∈ Σa(w), M, t |= ϕ

Remark
All facts discussed before for InqDπ extend straghtforwardly to IEL.



Inquisitive epistemic logic

Knowledge modality
M,w |= Kaϕ ⇐⇒ M,σa(w) |= ϕ

Knowing a declarative
M,w |= Kaα ⇐⇒ α is established in σa(w)

M,w |= Kaα ⇐⇒ M, v |= α for all v ∈ σa(w)

Knowing an interrogative
M,w |= Kaµ ⇐⇒ µ is resolved in σa(w)

Ex. Ka?p ≡ Kap ∨ Ka¬p
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Inquisitive epistemic logic

Entertain modality
M,w |= Eaϕ ⇐⇒ M, t |= ϕ for all t ∈ Σa(w)

Entertaining a declarative
M,w |= Eaα ⇐⇒ M,w |= Kaα

Entertaining an interrogative
M,w |= Eaµ ⇐⇒ µ is resolved in states where a’s issues are resolved
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Inquisitive epistemic logic

Definition (Entailment)
Φ |= ψ ⇐⇒ for any IEL-model M and state s, if M, s |= Φ then M, s |= ψ

Axiomatization
Expanding the derivation system for InqDπ with a few standard axioms
and rules for the modalities, we get a complete axiomatization of IEL.

Two remarks
1. The logic for declaratives is not autonomous: reasoning with

interrogative is crucial in drawing declarative inferences.

Ex: Eaµ |= Eaν ⇐⇒ µ |= ν
2. The logical properties of the modalities turn out to be more general

than their Kripkean framework from which they usually arise.



Conclusions

� We have seen
two

three combined logics of information and issues.

� InqDπ extends classical propositional logic to reason with issues.

Ex. p ↔ q ∧ r , ?q ∧ ?r |= ?p

� IEL extends epistemic logic to reason about entertaining issues.

Ex. Ka(p ↔ q ∧ r), Kaq |= Ea?p → Ea?r

� IDEL extends PAL to reason about raising issues.

Ex. Ka(p ↔ q ∧ r), Kaq |= [?p]Ea?r
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