Erotetic Languages The Inquisitive Hierarchy

Jeroen Groenendijk

www.illc.uva.nl/inquisitive-semantics

Amsterdam, December 1, 2011

Erotetic languages

Definition (Erotetic languages)

A logical language \mathcal{L} is an *erotetic language* iff

- 1. The semantics of \mathcal{L} is inquisitive: it distinguishes both informative and inquisitive content of the sentences in \mathcal{L} .
- 2. For some $\varphi \in \mathcal{L}$: φ is informative for some $\varphi \in \mathcal{L}$: φ is inquisitive.
- 3. $\varphi \in \mathcal{L}$ is a *tautology* iff φ is neither informative nor inquisitive.
- 4. For some $\varphi \in \mathcal{L}$: φ is a tautology.

That there are tautologies is to guarantee that there is some logic

Assertions, Questions and Hybrids

Definition (Assertions and questions)

Let \mathcal{L} be an erotetic language, $\varphi \in \mathcal{L}$.

- 1. φ is an assertion iff φ is not inquisitive.
- 2. φ is a *question* iff φ is not informative.
- 3. φ is a *hybrid* iff φ is informative and inquisitive.
 - These are semantic categories

Classical erotetic languages

Definition (Classical erotetic languages)

A logical language $\mathcal L$ is a classical erotetic language iff

- 1. \mathcal{L} is an erotetic language which has two syntactic sentential categories of indicatives $\mathcal{L}_{!}$ and interrogatives $\mathcal{L}_{?}$, where
- 2. $\mathcal{L} = \mathcal{L}_! \cup \mathcal{L}_?$ and $\mathcal{L}_! \subset \mathcal{L}$ and $\mathcal{L}_? \subset \mathcal{L}$ and $\mathcal{L}_! \cap \mathcal{L}_? = \emptyset$.
- 3. Every $\varphi \in \mathcal{L}_1$ is an assertion and Every $\varphi \in \mathcal{L}_7$ is a question.

Fact

There are no hybrids in a classical erotetic language.

Truth. Questions are intensional

Classical evaluation

• $v \models \varphi$, sentence φ is true in world (model) v

Classical meaning

• $info(\varphi) = \{v \in \omega \mid v \models \varphi\}$

Informativeness

• φ is informative iff $\inf(\varphi) \neq \omega$

Can't work for questions

- By definition: questions are not informative
- If φ is a question: info $(\varphi) = \omega$
- Every question is true in every single world.

Inquisitive hierarchy

Pairs of worlds? Risky

- What if $\{v, u\} \models \varphi$ and $\{v, w\} \models \varphi$ and $\{w, u\} \models \varphi$, whereas $\{u, v, w\} \not\models \psi$?
- If this could happen (classically it couldn't), just considering pairs and not bigger sets might give the wrong results.
- And this can repeat itself at every level

Remark

This observation can also be used against trying to find a many-valued solution for the evaluation of questions

Fact

For pairs of worlds 5 values suffice (ESSLLI 2008 Lecture Notes)

But what if pairs do not suffice?

Information states

 We need arbitrary sets of worlds to evaluate sentences of an erotetic language, and we call them states

Definition (States)

Let \mathcal{L} be an erotetic language, and ω the set of suitable worlds for \mathcal{L} . The set of suitable states for \mathcal{L} , $S_{\mathcal{L}}$ is the set of all subsets of ω .

Definition (Extension)

Let $s, t \in S_{\mathcal{L}}$. s is an extension of t iff $s \subseteq t$.

Support semantics

Assumption (Standard structure of support semantics)

Let $S_{\mathcal{L}}$ be the set of suitable states for \mathcal{L} .

- A support semantics for £ characterizes the notion of when a state s ∈ S_£ supports a sentence φ ∈ £, which we denote as s ⊨ φ.
- The logical notions of validity, entailment and equivalence are defined as:
 - 1. $\models \varphi$ iff for all $s \in S_{\mathcal{L}}$: $s \models \varphi$
 - 2. $\varphi \models \psi$ iff for all $s \in S_{\mathcal{L}}$: if $s \models \varphi$, then $s \models \psi$
 - 3. $\varphi \equiv \psi$ iff $\varphi \models \psi$ and $\psi \models \varphi$
- The notion of meaning is defined as: $[\varphi] = \{s \in S_{\mathcal{L}} \mid s \models \varphi\}$

From validity to support

Assumption (Tautologies and validity)

 $\models \varphi$ iff φ is a tautology.

Fact (Validity)

 $\models \varphi$ iff φ is neither informative nor inquisitive.

Definition (Absolute informativeness and inquisitiveness)

- 1. φ is informative iff for some state $s \in S_f$: φ is informative in s.
- 2. φ is inquisitive iff for some state $s \in S_{\mathcal{L}}$: φ is inquisitive in s.

Definition (Support)

 $s \models \varphi$ iff φ is not informative in s and φ is not inquisitive in s.

Informativeness in a state

Definition (Informative content)

$$\mathsf{info}(\varphi) = \{ v \in \omega \mid \{v\} \models \varphi \}$$

By definition questions are not informative:

Fact (Questions)

 φ is a question iff $info(\varphi) = \omega$

Non-informativeness of a sentence φ in a state s: the update of s with the informative content of φ has no effect:

Definition (Informativeness in a state)

 φ is informative in s iff $s \cap info(\varphi) \neq s$.

Inquisitiveness in a state

- If s ⊭ φ this may be due to φ being informative in s or inquisitive in s or both
- We have decided what φ being informative in s means
- We can neutralize that aspect:
- Add info(φ) to the information that is already contained in s
- If then s still does not support φ , then it must be because φ is inquisitive in s

Definition (Inquisitiveness in a state) φ is inquisitive in s iff $s \cap \text{info}(\varphi) \not\models \varphi$.

General inquisitive semantics

Language is a standard propositional langage

Definition (General propositional inquisitive semantics)

- 1. $s \models p$ iff $\forall w \in s : w(p) = 1$
- 2. $s \models \bot$ iff $s = \emptyset$
- 3. $s \models \varphi \rightarrow \psi$ iff $\forall t \subseteq s$: if $t \models \varphi$ then $t \models \psi$
- 4. $s \models \varphi \land \psi$ iff $s \models \varphi$ and $s \models \psi$
- 5. $s \models \varphi \lor \psi$ iff $s \models \varphi$ or $s \models \psi$

Definition (abbreviations)

- 1. $\neg \varphi := \varphi \rightarrow \bot$
- 2. $!\varphi := \neg\neg\varphi$ (non-inquisitive closure)
- 3. $?\varphi := \varphi \lor \neg \varphi$ (non-informative closure).

(Ciardelli, Groenendijk, Roelofsen)

Inquisitive disjunction

Fact (Hybrid disjunction)

- p ∨ q is a hybrid sentence
- $p \lor q$ is informative: $\omega \cap info(p \lor q) \neq \omega$
- $p \lor q$ is inquisitive: $\omega \cap info(p \lor q) \not\models p \lor q$

Fact (Inquisitive question)

- $?p = p \lor \neg p$ is an inquisitive question
- $p \lor \neg p$ is not informative: $\omega \cap info(p \lor \neg p) = \omega$
- $p \lor q$ is inquisitive: $\omega \cap info(p \lor \neg p) = \omega \not\models p \lor \neg p$

Inquisitive Hierarchy

Definition

Let S^n denote the set of states s such that $|s| \le n$. φ is n-inquisitive iff $\exists X \subseteq S^n \colon \forall s \in X \colon s \models \varphi$ and $\bigcup X \not\models \varphi$.

Fact

Let \mathcal{L} be an arbitrary propositional language. For any sentence $\varphi \in \mathcal{L}$: φ is not 1-inquisitive.

Classical logic when you evaluate relative to state with single word

Theorem (General inquisitiveness)

Let $\mathcal{L}_{\mathcal{P}}$ be a general inquisitive propositional language with a countably infinite set of proposition letters \mathcal{P} .

• For any number n > 1 there is a sentence $\varphi \in \mathcal{L}_{\mathcal{P}}$ such that φ is n-inquisitive and φ is not k-inquisitive for all k < n.

(Ciardelli and Roelofsen, 'Inquisitive Logic', JPL 2011)

Failure of pair-semantics

Under a pair-semantics there are four possibilities for $p \lor q \lor r$ Chris Potts calculator for pair semantics:

```
{ {TTT, TTF, TFT, TFF} 
 {TTT, TTF, TFT, FTT} 
 {TTT, TTF, FTT, FTF} 
 {TTT, TFT, FTT, FFT} }
```

- Pair semantics gives wrong results
- we need general inquisitive semantics to get things right

Remember

Definition (Classical erotetic languages)

A logical language $\mathcal L$ is a classical erotetic language iff

- 1. \mathcal{L} is an erotetic language which has two syntactic sentential categories of indicatives $\mathcal{L}_{!}$ and interrogatives $\mathcal{L}_{?}$, where
- 2. $\mathcal{L} = \mathcal{L}_! \cup \mathcal{L}_?$ and $\mathcal{L}_! \subset \mathcal{L}$ and $\mathcal{L}_? \subset \mathcal{L}$ and $\mathcal{L}_! \cap \mathcal{L}_? = \emptyset$.
- 3. Every $\varphi \in \mathcal{L}_!$ is an assertion and Every $\varphi \in \mathcal{L}_?$ is a question.

Fact

There are no hybrids in a classical erotetic language.

Classical inquisitive semantics

Standard propositional language with an aditional operator Definition (Classical propositional erotetic language)

- 1. $\varphi \in \mathcal{L}_{!}$, for all $\varphi \in \mathcal{P}$
- 2. $\bot \in \mathcal{L}_!$
- 3. If $\varphi \in \mathcal{L}_!$, then $?\varphi \in \mathcal{L}_?$
- 4. If $\varphi \in \mathcal{L}_!$ and $\psi \in \mathcal{L}_{c \in \{!,?\}}$, then $(\varphi \to \psi) \in \mathcal{L}_c$
- 5. If $\varphi, \psi \in \mathcal{L}_{c \in \{1,?\}}$, then $(\varphi \wedge \psi) \in \mathcal{L}_{c}$

Definition (Classical abbreviations)

- 1. $\neg \varphi := (\varphi \rightarrow \bot)$
- 2. $(\varphi \lor \psi) := \neg(\neg \varphi \land \neg \psi)$

Classical inquisitive semantics

Standard propositional language with an additional operator Definition (Classical propositional inquisitive semantics)

- 1. $s \models p$ iff $\forall w \in s : w(p) = 1$
- 2. $s \models \bot$ iff $s = \emptyset$
- 3. $s \models ?\varphi$ iff $s \models \varphi$ or $\forall t \subseteq s$: if $t \models \varphi$, then $t = \emptyset$
- **4**. $s \models \varphi \rightarrow \psi$ iff $\forall t \subseteq s$: if $t \models \varphi$ then $t \models \psi$
- 5. $s \models \varphi \land \psi$ iff $s \models \varphi$ and $s \models \psi$

Fact

If we apply classical propositional inquisitive semantics to a classical propositional erotetic language it meets the semantic and syntactic criteria for being what it is called.

Classical inquisitive semantics is 2-inquisitive

Fact (Pair distributivity)

Let \mathcal{L} be a classical propositional erotetic language, $\varphi \in \mathcal{L}$.

• For every state $s: s \models \varphi$ iff for all $v, w \in s: \{v, w\} \models \varphi$.

Expressive limitations of the classical erotetic language

- In general inquisitive semantics we can express alternative questions by means of $?(\varphi_1 \lor ... \lor \varphi_n)$
- The classical language as it is is capable to express alternative questions with two alternatives by $?(\varphi \lor \psi) \land ((\varphi \lor \psi) \rightarrow ?\varphi)$
- Due to the fact that it is a pair semantics it lacks the expressive power to deal properly with three or more alternatives.

Adding classical alternative questions

Alternative questions

- If Φ is a finite subset of $\mathcal{L}_{!}$, then $?\Phi \in \mathcal{L}_{?}$
- $s \models ?\Phi \text{ iff } \exists \varphi \in \Phi \colon s \models \varphi \text{, or } \forall \varphi \in \Phi \colon s \models \neg \varphi$

No pair distributivity

With this addition of alternative questions pair-distributivity doesn't hold anymore.

- There are big differences between the general and the classical inquisitive language
- But every meaning that can be expressed by a single sentence in general inquisitive semantics can be expressed by a pair of sentences in classical inquisitive semantics

A hybrid set of two sentences

- $\{p \lor q, ?\{p, q\}\}$
- By using disjunctive normal form for general inquisitive semantics, we can use this pattern to translate every general inquisitive sentence into a pair of classical ones.
- There is also a simple recursive translation procedure in the other direction.

Conclusions

- Inquisitive semantics is a general erotetic semantic framework
- It is not inherently linked to a mono-categorial language or inquisitive disjunction
- It can just as well be used in combination with bi-categorial languages
- The semantic framework can be used as a tool to compare different erotetic systems
- By the way, both general and classical inquisitive semantic are conservative extensions of classical logic
- In the classical inquisitive case the logic of $\mathcal{L}! \subset \mathcal{L}$ is classical.
- In the general inquisitive case the logic of the disjunction-free fragment of $\mathcal L$ and the language $\{!\varphi\mid \varphi\in\mathcal L\}$ is classical

