The Inquisitive Turn

-a new perspective on semantics, pragmatics, and logic-

Floris Roelofsen

www.illc.uva.nl/inquisitive-semantics

Amsterdam, October 11, 2010

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

People

- Martin Aher (ILLC MoL 2009, now Osnabrück PhD LING)
- Maria Aloni (ILLC postdoc)
- Scott AnderBois (UC Santa Cruz PhD)
- Kata Balogh (ILLC PhD 2009)
- Chris Brumwell (ILLC MoL 2009, now Stanford LAW)
- Ivano Ciardelli (ILLC MoL 2009, now Bordeaux PhD COMP)
- Irma Cornelisse (UvA BSc AI, now ILLC MoL)
- Inés Crespo (ILLC MoL 2009, now ILLC PhD PHIL)
- Jeroen Groenendijk (ILLC NWO prof)
- Andreas Haida (Berlin postdoc)
- Morgan Mameni (ILLC NWO PhD)
- Salvador Mascarenhas (ILLC MoL 2009, now NYU PhD LING)
- Floris Roelofsen (ILLC NWO postdoc)
- Katsuhiko Sano (Kyoto postdoc)
- Sam van Gool (ILLC MoL 2009, now Nijmegen PhD MATH)

Matthijs Westera (ILLC NWO PhD)

Overview

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Inquisitive semantics

- Motivation
- Definition and illustration
- Some crucial properties

Inquisitive pragmatics

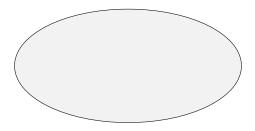
Inquisitive logic

Overview

Inquisitive semantics

- Motivation
- Definition and illustration
- Some crucial properties

Inquisitive pragmatics


Inquisitive logic

Disclaimer

- · Definitions are sometimes simplified for the sake of clarity
- This is all work in progress, there are many open issues, many opportunities to contribute!

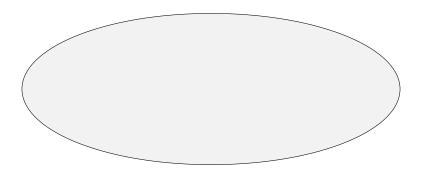
- コン・1日・1日・1日・1日・1日・

- Meaning = informative content
- Providing information = eliminating possible worlds

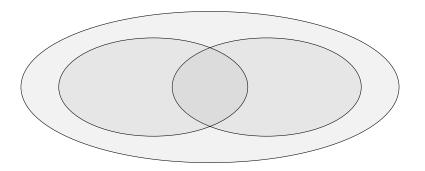
- Meaning = informative content
- Providing information = eliminating possible worlds

- Meaning = informative content
- Providing information = eliminating possible worlds

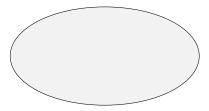
- Meaning = informative content
- Providing information = eliminating possible worlds



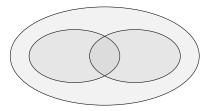
- Meaning = informative content
- Providing information = eliminating possible worlds


- Captures only one type of language use: providing information
- Does not reflect the cooperative nature of communication

- Propositions as proposals
- A proposal consists of one or more possibilities
- A proposal that consists of several possibilities is inquisitive


・ロト ・ 個 ト ・ ヨ ト ・ ヨ ト … ヨ

- Propositions as proposals
- A proposal consists of one or more possibilities
- A proposal that consists of several possibilities is inquisitive


・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Propositions as proposals
- A proposal consists of one or more possibilities
- A proposal that consists of several possibilities is inquisitive

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- Propositions as proposals
- A proposal consists of one or more possibilities
- A proposal that consists of several possibilities is inquisitive

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

- Propositions as proposals
- A proposal consists of one or more possibilities
- A proposal that consists of several possibilities is inquisitive

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

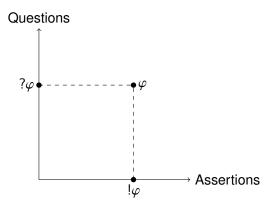
A Propositional Language

Basic Ingredients

- Finite set of proposition letters *P*
- Connectives \bot , \land , \lor , \rightarrow

Abbreviations

- Negation:
- Non-inquisitive projection
- Non-informative projection

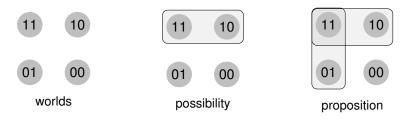

$$\neg \varphi \coloneqq \varphi \to \bot$$

on:
$$!\varphi \coloneqq \neg \neg \varphi$$

$$: ?\varphi \coloneqq \varphi \lor \neg \varphi$$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Projections


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Semantic Notions

Basic ingredients

- Possible world: function from \mathcal{P} to $\{0, 1\}$
- Possibility: set of possible worlds
- Proposition: set of alternative possibilities

Illustration, assuming that $\mathcal{P} = \{p, q\}$

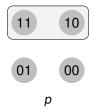
▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Semantic notions

Basic Ingredients

- Possible world: function from \mathcal{P} to $\{0, 1\}$
- Possibility: set of possible worlds
- Proposition: set of alternative possibilities

Notation


- $[\varphi]$: the proposition expressed by φ
- $|\varphi|$: the truth-set of φ (set of indices where φ is classically true)

Classical versus inquisitive

- φ is classical iff $[\varphi]$ contains exactly one possibility
- φ is inquisitive iff $[\varphi]$ contains more than one possibility

Atoms

For any atomic formula φ : $[\varphi] = \{ |\varphi| \}$ Example:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Connectives

In the classical setting

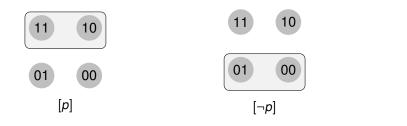
connectives operate on sets of possible worlds:

- negation = complement
- disjunction = union
- conjunction = intersection

In the inquisitive setting

connectives operate on sets of sets of possible worlds:

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

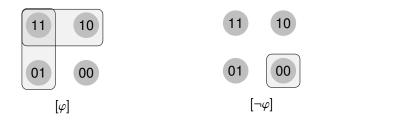

- negation = complement of the union
- disjunction = union
- conjunction = pointwise intersection

Negation

Definition

- $[\neg \varphi] = \{ \overline{\bigcup[\varphi]} \}$
- Take the union of all the possibilities for φ; then take the complement

Example, φ classical:

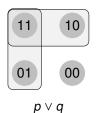

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Negation

Definition

- $[\neg \varphi] = \{ \overline{\bigcup[\varphi]} \}$
- Take the union of all the possibilities for φ; then take the complement

Example, φ inquisitive:


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

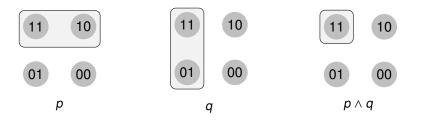
Disjunction

Definition

• $[\varphi \lor \psi] = [\varphi] \cup [\psi]$

Examples:

$$p (:= p \lor \neg p)$$

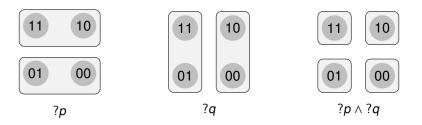

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Conjunction

Definition

- $[\varphi \land \psi] = [\varphi] \sqcap [\psi]$
- Pointwise intersection

Example, φ and ψ classical:


▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Conjunction

Definition

- $[\varphi \land \psi] = [\varphi] \sqcap [\psi]$
- Pointwise intersection

Example, φ and ψ inquisitive:

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Implication

Intuition

$$\varphi \to \psi$$

- Says that if φ is realized in some way, then ψ must also be realized in some way
- Raises the issue of what the exact relation is between the ways in which φ may be realized and the ways in which ψ may be realized

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

If John goes to London, then Bill or Mary will go as well

$$p \rightarrow (q \lor r)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Says that if *p* is realized in some way, then *q* ∨ *r* must also be realized in some way

If John goes to London, then Bill or Mary will go as well

$$p \rightarrow (q \lor r)$$

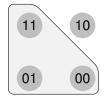
▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

- Says that if *p* is realized in some way, then *q* ∨ *r* must also be realized in some way
- p can only be realized in one way
- but $q \lor r$ can be realized in two ways

If John goes to London, then Bill or Mary will go as well

$$p \rightarrow (q \lor r)$$

- Says that if *p* is realized in some way, then *q* ∨ *r* must also be realized in some way
- p can only be realized in one way
- but $q \lor r$ can be realized in two ways
- Thus, p → (q ∨ r) raises the issue of whether the realization of p implies the realization of q, or whether the realization of p implies the realization of r


If John goes to London, then Bill or Mary will go as well

$$p \rightarrow (q \lor r)$$

- Says that if *p* is realized in some way, then *q* ∨ *r* must also be realized in some way
- p can only be realized in one way
- but $q \lor r$ can be realized in two ways
- Thus, p → (q ∨ r) raises the issue of whether the realization of p implies the realization of q, or whether the realization of p implies the realization of r

•
$$[p \rightarrow (q \lor r)] = \{ |p \rightarrow q|, |p \rightarrow r| \}$$

Pictures, classical and inquisitive

11 10 01 00

$$p \rightarrow ?q$$

If John goes, Mary will go as well.

If John goes, will Mary go as well?

Another way to think about it

Intuition

 $\varphi \to \psi$

- Draws attention to the potential implicational dependencies between the possibilities for φ and the possibilities for ψ
- Says that at least one of these implicational dependies holds
- · Raises the issue which of the implicational dependencies hold

If John goes to London, Bill or Mary will go as well

$$p \rightarrow (q \lor r)$$

- Two potential implicational dependencies:
 - *p* → *q*
 - *p* → *r*
- The sentence:
 - · Says that at least one of these dependencies holds
 - · Raises the issue which of them hold exactly

A more complex example

If John goes to London or to Paris, will Mary go as well?

$$(p \lor q) \rightarrow ?r$$

- Four potential implicational dependencies:
 - $(p \rightsquigarrow r)$ & $(q \rightsquigarrow r)$ $(p \rightsquigarrow r)$ & $(q \rightsquigarrow \neg r)$
 - $(p \rightsquigarrow \neg r) \& (q \rightsquigarrow \neg r)$ $(p \rightsquigarrow \neg r) \& (q \rightsquigarrow r)$
- The sentence:
 - · Says that at least one of these dependencies holds
 - Raises the issue which of them hold exactly

Formalization

- Each possibility for φ → ψ corresponds to a potential implicational dependency between the possibilities for φ and the possibilities for ψ;
- Think of an implicational dependency as a function *f* mapping every possibility *α* ∈ [*φ*] to some possibility *f*(*α*) ∈ [*ψ*];
- What does it take to establish an implicational dependency f?

ション 小田 マイビット ビー シックション

• For each $\alpha \in [\varphi]$, we must establish that $\alpha \Rightarrow f(\alpha)$ holds

Formalization

- Each possibility for φ → ψ corresponds to a potential implicational dependency between the possibilities for φ and the possibilities for ψ;
- Think of an implicational dependency as a function *f* mapping every possibility *α* ∈ [*φ*] to some possibility *f*(*α*) ∈ [*ψ*];
- What does it take to establish an implicational dependency f?
- For each $\alpha \in [\varphi]$, we must establish that $\alpha \Rightarrow f(\alpha)$ holds

Implementation

•
$$[\varphi \to \psi] = \{\gamma_f \mid f : [\psi]^{[\varphi]}\}$$
 where $\gamma_f = \bigcap_{\alpha \in [\varphi]} (\alpha \Rightarrow f(\alpha))$

ション 小田 マイビット ビー シックション

Formalization

- Each possibility for φ → ψ corresponds to a potential implicational dependency between the possibilities for φ and the possibilities for ψ;
- Think of an implicational dependency as a function *f* mapping every possibility *α* ∈ [*φ*] to some possibility *f*(*α*) ∈ [*ψ*];
- What does it take to establish an implicational dependency f?
- For each $\alpha \in [\varphi]$, we must establish that $\alpha \Rightarrow f(\alpha)$ holds

Implementation

- $[\varphi \to \psi] = \{\gamma_f \mid f : [\psi]^{[\varphi]}\}$ where $\gamma_f = \bigcap_{\alpha \in [\varphi]} (\alpha \Rightarrow f(\alpha))$
- For simplicity, we usually define α ⇒ f(α) in terms of material implication: α ∪ f(α). But any more sophisticated treatment of conditionals could in principle be plugged in here.

Informativeness and Inquisitiveness

• $p \lor q$ is inquisitive: $[p \lor q]$ consists of more than one possibility

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $p \lor q$ is informative: $[p \lor q]$ proposes to eliminate indices

Informativeness and Inquisitiveness

• $p \lor q$ is inquisitive: $[p \lor q]$ consists of more than one possibility

- *p* ∨ *q* is informative: [*p* ∨ *q*] proposes to eliminate indices
- $\bigcup[\varphi]$ captures the informative content of φ

Informativeness and Inquisitiveness

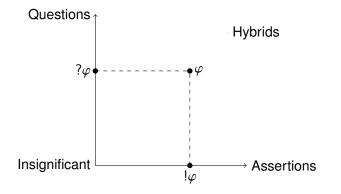

- $p \lor q$ is inquisitive: $[p \lor q]$ consists of more than one possibility
- *p* ∨ *q* is informative: [*p* ∨ *q*] proposes to eliminate indices
- $\bigcup[\varphi]$ captures the informative content of φ
- Fact: for any formula φ , $\bigcup [\varphi] = |\varphi|$

 \Rightarrow classical notion of informative content is preserved

ション 小田 マイビット ビー シックション

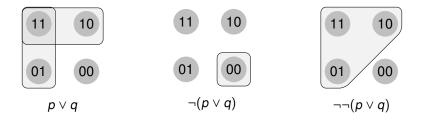
Questions, assertions, and hybrids

- φ is a question iff it is not informative
- φ is an assertion iff it is not inquisitive

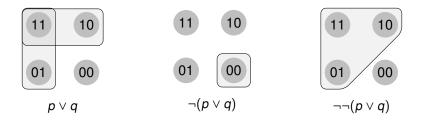

Questions, assertions, and hybrids

- φ is a question iff it is not informative
- φ is an assertion iff it is not inquisitive

- φ is a hybrid iff it is both informative and inquisitive
- φ is insignificant iff it is neither informative nor inquisitive


Questions, assertions, and hybrids

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ


Non-inquisitive closure

 Double negation always preserves the informative content of a sentence, but removes inquisitiveness

Non-inquisitive closure

 Double negation always preserves the informative content of a sentence, but removes inquisitiveness

- Therefore, $\neg \neg \varphi$ is abbreviated as $!\varphi$
- and is called the non-inquisitive closure of φ

Significance and inquisitiveness

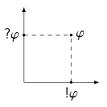
- In a classical setting, non-informative sentences are tautologous, i.e., insignificant
- In inquisitive semantics, some classical tautologies come to form a new class of meaningful sentences, namely questions
- Questions are meaningful not because they are informative, but because they are inquisitive

• Example: $p := p \vee \neg p$

 $p \lor \neg p$

Alternative characterization of questions and assertions

Equivalence


- φ and ψ are equivalent iff $[\varphi] = [\psi]$
- Notation: $\varphi \equiv \psi$

Questions and assertions

- φ is a question iff $\varphi \equiv ?\varphi$
- φ is an assertion iff $\varphi \equiv !\varphi$

Division fact

• For any φ : $\varphi \equiv ?\varphi \land !\varphi$

Pragmatics

 specifies how cooperative speakers should use the sentences of a language in particular contexts, given the semantic meaning of those sentences

Classical (Gricean) pragmatics

- identifies semantic meaning with informative content
- is exclusively speaker-oriented
- Quality: say only what you believe to be true
- Quantity: be as informative as possible
- Relation: say only things that are relevant for the purposes of the conversation

Inquisitive pragmatics

A new perspective

- Inquisitive semantics enriches the notion of semantic meaning
- This gives rise to a new perspective on pragmatics as well

Inquisitive pragmatics

- based on informative content, but also on inquisitive content
- speaker-oriented, but also hearer-oriented
- Quality: say only what you know, ask only what you want to know publicly announce unacceptability of a proposal
- Quantity: say more, ask less
- Relation: be *compliant* \Rightarrow formal notion of relatedness

Logic

Traditionally

- logic is concerned with entailment and (in)consistency
- given these concerns, it makes sense to identify semantic meaning with informative content

Vice versa

- if semantic meaning is identified with informative content, propositions are construed as sets of possible worlds
- there are only three possible relations between two sets of worlds: inclusion, overlap, and disjointness
- these correspond to entailment and (in)consistency
- other relations between sentences cannot be captured

Inquisitive logic

A new perspective

- Inquisitive semantics enriches the notion of semantic meaning
- This gives rise to a new perspective on logic as well

New logical notions

- Besides classical entailment, we get a notion of inquisitive entailment: φ inquisitively entails ψ iff whenever φ is resolved, ψ is resolved as well;
- We also get logical notions of relatedness. In particular, φ is a compliant response to ψ iff it addresses the issue raised by ψ without providing any redundant information.
- Note: classical notions are not replaced, but preserved.

Computational tools and applications

Tools

• sites.google.com/site/inquisitivesemantics/implementation

/ 🎠 Computational Tools (In)	🖉 🖬 Computing Compliance 🛛 🗙 👿	2						
← → C fi ☆ http	://www.illc.uva.nl/inquisitive-sem	antics/computi	ng-compliance	2/			Image: Second	8.
	Computation	- Lan - La Par			e			
	Computation	ai 1 0015 101	rinquisiuv	e seman	ues			_
Home Compute	 							*
- Disjunctive NEs								
- Compliance								
About	Compute Compliant Responses							
	IMA/SE0	IMAG	GE1 IMAGE		NGE2	IMAGE3		
	(1) (10)	(11)	(10)	11	10	(1)	(10)] •
	01 00	(01)	00	(01)	00	(01)	00	¥

Applications

• Dialogue systems, question-answer systems, negotiation protocols, ambiguity resolution.

Some references

Inquisitive semantics and pragmatics

Jeroen Groenendijk and Floris Roelofsen (2009) *Stanford* workshop on Language, Communication and Rational Agency

Inquisitive logic

Ivano Ciardelli and Floris Roelofsen (2010) Journal of Philosophical Logic

Disjunctive questions, intonation, and highlighting

Floris Roelofsen and Sam van Gool (2010) *Logic, Language, and Meaning: selected papers from the Amsterdam Colloquium*

www.illc.uva.nl/inquisitive-semantics