Floris Roelofsen

Amsterdam, December 1, 2011

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Outline

Main result

A system that combines the main features of dynamic epistemic logic with those of inquisitive semantics

Roadmap

- 1. Brief review of DELQ (van Benthem, Miniča, ...)
- 2. Brief review of INQB (Ciardelli, Groenendijk, Roelofsen, ...)

ション 小田 マイビット ビー シックション

- 3. An inquisitive epistemic logic, IEL
- 4. An inquisitive dynamic epistemic logic, IDEL

Language (simplified)

$$p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid K_a \varphi \mid [!\varphi] \psi \mid [?\varphi] \psi$$

- $[!\varphi]\psi$ = 'asserting φ leads to a state where ψ holds'
- $[?\varphi]\psi$ = 'asking whether φ leads to a state where ψ holds'

Epistemic issue models

$$M = \langle W, \sim_{\mathcal{A}}, \approx_{\mathcal{A}}, V \rangle$$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

•
$$\sim_{\mathcal{A}} = \{\sim_a \mid a \in \mathcal{A}\}$$

A set of equivalence relations on *W* encoding epistemic indistinguishability for each agent

• $\approx_{\mathcal{A}} = \{ \approx_a \mid a \in \mathcal{A} \}$

A set of equivalence relations on *W* encoding the issues that have been raised by each agent

Interpretation

- The static fragment of the language is interpreted as usual
- Dynamic speech act operators change the model of evaluation

- ロト・日本・日本・日本・日本・日本

- Assertions provide information; they change ~_A
- Questions raise issues; they change $\approx_{\mathcal{R}}$
- Crucial clauses:
 - $M, w \models [!\varphi]\psi$ iff $M^{!\varphi}, w \models \psi$
 - $M, w \models [?\varphi]\psi$ iff $M^{?\varphi}, w \models \psi$

Discussion

- The basic static fragment of the language, and its semantic interpretation, are completely classical
- Questions enter the picture at the level of speech acts
- The basic static language does not contain sentences that are interrogative in any systactic sense, or inquisitive in any semantic sense

Alternative approach

- Change the semantics of the basic static fragment of the language in such a way that the meaning of a sentence embodies both its informative and its inquisitive content
- Add interrogative sentences, $?\varphi$, to the static language
- The dynamic part of the language can then be simplified.
 We just need a single general purpose speech act operator:

 $[\varphi]\psi$ = 'uttering φ leads to a state where ψ holds'

Main advantage of the alternative approach

If inquisitiveness enters the picture at the syntactic/semantic level, it becomes possible to deal with embedded questions

- (1) John knows who will come to the party. $K_a?x.Px$
- (2) John knows whether Mary will come to the party. K_a ?p
- (3) If it rains, will Mary still come to the party? $p \rightarrow ?q$

Embedded questions cannot be dealt with straightforwardly in DELQ, because sentences like K_a ?q and $p \rightarrow ?q$ are not in \mathcal{L}_{DELQ}

Language

$p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid ?\varphi$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Interrogative sentences, but
- no knowledge operators, and
- no speech act operators

Models

- Sentences are evaluated relative to information states, i.e., sets of possible worlds
- The central notion is support, rather than truth
- In uttering a sentence φ, a speaker proposes to update the common ground in such a way that it comes to support φ

ション 小田 マイビット ビー シックション

Support

1.
$$s \models p$$
 iff $\forall w \in s : w(p) = 1$
2. $s \models \neg \varphi$ iff $\forall w \in s : \{w\} \not\models \varphi$
3. $s \models \varphi \land \psi$ iff $s \models \varphi$ and $s \models \psi$
4. $s \models \varphi \lor \psi$ iff $s \models \varphi$ or $s \models \psi$
5. $s \models \varphi \rightarrow \psi$ iff $\forall t \subseteq s :$ if $t \models \varphi$ then $t \models \psi$
6. $s \models ?\varphi$ iff $s \models \varphi$ or $s \models \neg \varphi$

Propositions and possibilities

- $[\varphi] =$ the set of all states supporting φ
- A possibility for φ is a maximal state supporting φ

Illustration

The semantics applies deals in a uniform way with declaratives, interrogatives, and embedded interrogatives:

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

ション 小田 マイビット ビー シックション

Informative content

In uttering a sentence φ , a speaker proposes to eliminate all worlds that are not contained in any state supporting φ

•
$$\operatorname{info}(\varphi) = \bigcup [\varphi]$$

Informative and inquisitive sentences

- φ is informative iff $info(\varphi) \neq W$
- φ is inquisitive iff $info(\varphi) \not\models \varphi$

Questions and assertions

- φ is a question iff it is non-informative
- φ is an assertion iff it is non-inquisitive

Discussion

- Inquisitiveness enters the picture at the level of sentences and their semantic content
- The system deals straightforwardly with conditional questions
- It does not deal with knowledge-wh ascriptions yet, because *L_{INQB}* does not contain knowledge operators
- The system does not allow us to specify precisely what happens at the speech act level
- Thus, integrating inquisitive semantics with dynamic epistemic logic will help both traditions a step further

Language

$p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid ?\varphi \mid K_a \varphi$

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Interrogative sentences
- Knowledge operators
- No speech act operators

States

- Sentences are still evaluated relative to states
- States are now sets of worlds in the canonical model for S5 (or some other epistemic logic)
- As before, the central notion is support, rather than truth
- In uttering a sentence φ, a speaker proposes to update the common ground in such a way that it comes to support φ

ション 小田 マイビット ビー シックション

Support

1.
$$s \models p$$
 iff $\forall w \in s : V^{c}(w, p) = 1$
2. $s \models \neg \varphi$ iff $\forall w \in s : \{w\} \not\models \varphi$
3. $s \models \varphi \land \psi$ iff $s \models \varphi$ and $s \models \psi$
4. $s \models \varphi \lor \psi$ iff $s \models \varphi$ or $s \models \psi$
5. $s \models \varphi \rightarrow \psi$ iff $\forall t \subseteq s : \text{if } t \models \varphi \text{ then } t \models \psi$
6. $s \models ?\varphi$ iff $s \models \varphi \text{ or } s \models \neg \varphi$
7. $s \models K_{a}\varphi$ iff $\forall w \in s : \sigma_{a,w} \models \varphi$

Propositions

• As before,
$$[\varphi] = \{ s \mid s \models \varphi \}$$

Knowledge ascription

We now have a unified treatment of knowledge-*that* and knowledge-*wh* ascription:

(4)John knows that Peter will come. $K_a p$ (5)John knows whether Peter will come. $K_a ? p$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

A state *s* supports K_a ?*p* iff for every $w \in s$, *a*'s information state in *w* supports either *p* or $\neg p$.

All the central notions from INQB carry over directly to IEL

- $\operatorname{info}(\varphi) = \bigcup [\varphi]$
- φ is informative iff $info(\varphi) \neq W$
- φ is inquisitive iff $info(\varphi) \not\models \varphi$

This brings us to the final step: adding a dynamic layer

ション キョン キョン キョン しょう

Language

$$p \mid \neg \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid ?\varphi \mid K_a \varphi \mid [\varphi]_a \psi$$

- Interrogative sentences
- Knowledge operators
- One speech act operator

 $[\varphi]_a \psi$ = 'an utterance of φ by *a* leads to a state supporting ψ '

Discourse contexts

- Sentences will be evaluated relative to a discourse context
- A discourse context is a pair $\langle s, T \rangle$, where:
 - s is a state

 \Rightarrow representing the information that has been provided so far

• T is a stack of IEL-propositions

 \Rightarrow representing the proposals that have been made so far

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Changing the discourse context

• Utterances change the discourse context

•
$$s^{\varphi_a} = \{ w \in s \mid \sigma_{a,w} \subseteq \inf(\varphi) \}$$

•
$$T^{\varphi_a} = T + [\varphi]$$

Support

1.
$$\langle s, T \rangle \models p$$
 iff $\forall w \in s : V^{c}(p, w) = 1$
2. $\langle s, T \rangle \models \neg \varphi$ iff $\forall w \in s : \langle \{w\}, T \rangle \not\models \varphi$
3. $\langle s, T \rangle \models \varphi \land \psi$ iff $\langle s, T \rangle \models \varphi$ and $\langle s, T \rangle \models \psi$
4. $\langle s, T \rangle \models \varphi \lor \psi$ iff $\langle s, T \rangle \models \varphi$ or $\langle s, T \rangle \models \psi$
5. $\langle s, T \rangle \models \varphi \rightarrow \psi$ iff $\forall s' \subseteq s : \text{if } \langle s', T \rangle \models \varphi$ then $\langle s', T \rangle \models \psi$
6. $\langle s, T \rangle \models \varphi \text{ iff } \langle s, T \rangle \models \varphi \text{ or } \langle s, T \rangle \models \neg \varphi$
7. $\langle s, T \rangle \models K_{a}\varphi$ iff $\forall w \in s : \langle \sigma_{a,w}, T \rangle \models \varphi$
8. $\langle s, T \rangle \models [\varphi]_{a}\psi$ iff $\langle s^{\varphi_{a}}, T^{\varphi_{a}} \rangle \models \psi$

Note that the first seven clauses are essentially the same as in IEL

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Discussion

- IDEL brings together the main features of DEL and INQ
- Main vantage points from the viewpoint of DEL:
 - · Inquisitiveness at the level of semantic content
 - Allows for a straightforward account of embedded questions
- Main vantage points from the viewpoint of INQ:
 - Perspicuous representation of the conversational participants' epistemic states
 - · Explicit account of how utterances affect the discourse context

Thank you for your attention

www.illc.uva.nl/inquisitive-semantics

