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Abstract

This paper solves the directed counterpart of a problem addressed in Language
in Action (Van Benthem 1991: 108–9). There it is observed that LP derivability
in an atomic goal category can be mimicked by LP derivability using one atomic
category only. The abbreviation LP refers to the non-directed Lambek calculus with
Permutation, a system which has also become known as the Lambek-Van Benthem
calculus, and the result is due to Ponse (1988). In the present paper we will show
that—a generalization of—this result can be extended to the directed system L, i.e.,
the associative calculus that was introduced in Lambek (1958): L derivability in any
category can be mimicked by L derivability using one atomic category only.
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You don’t want your paper rejected?
Then render it strictly directed:

Each referee crashes
On seeing your slashes,

And errors just won’t be detected!

Herman Hendriks

This paper solves the directed counterpart of a problem addressed in Language
in Action (Van Benthem 1991: 108–9). There it is observed that LP derivability
in an atomic goal category can be mimicked by LP derivability using one atomic
category only. The abbreviation LP refers to the non-directed Lambek calculus
with Permutation, a system which has also become known as the Lambek-Van
Benthem calculus, and the result is due to Ponse (1988). In the present paper we
will show that—a generalization of—this result can be extended to the directed
system L, i.e., the associative calculus that was introduced in Lambek (1958):
L derivability in any category can be mimicked by L derivability using one
atomic category only. More formally (definitions of the relevant notions are
given in (2) through (5) below):

Let the set at consist of the distinct atomic categories at1, . . . , atk, let at be
an atomic category, and let catat and cat{at} be the sets of categories based
on at and {at}, respectively. Then there is a substitution σ replacing every
at i ∈ at by a ci ∈ cat{at} such that for all c1, . . . , cn, c in catat:

c1, . . . , cn ` L c if and only if σ(c1, . . . , cn) `L σ(c). (1)

If σ is a substitution and α is a category or a sequence of categories, then σ(α)
denotes the result of performing σ to α. The category at is written as t below.

The proof of Theorem (1) is organized as follows. First, we will present L
and introduce an equivalent (see Claim 1) normalized calculus L* that will be
used for establishing the facts (9) and (11), which express useful properties of
L-derivable sequents that will be exploited later. Next, a Lemma will be proven
which concerns the non-derivability of certain sequents that involve categories
built up from the categories (t/t)/t, ((t/t)/(t/t))/(t/t) and atomic categories
different from t. This Lemma is then shown to entail Claim 2, which states
that the categories (t/t)/t and ((t/t)/(t/t))/(t/t) can be used to encode two
atomic categories, viz., t and some other atomic category, also in the presence
of yet other atomic categories. Finally, the substitution σ employed in Claim 2
is generalized in Claim 3: by means of a substitution σ〈t,at1,...,atm〉, any finite
number of atomic categories t, at1, . . . , atm can be encoded in terms of t. We
note here that Theorem (1) actually follows from Claim 3, since the following
substitutions will meet the requirement specified in (1):

• σ〈t, at1,...,atk〉 if t 6∈ at = {at1, . . . , atk} (note that any category based on
at is also based on at ∪ {t}); and

• σ〈t,at1,...,ati−1,ati+1,...,atk〉 if t ∈ at = {at1, . . . , at i−1, t, at i+1, . . . , atk}.
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When Lambek (1958) introduced his syntactic calculus, he showed that it is
equivalent to a sequent axiomatization L, the Lambek-Gentzen sequent calcu-
lus. The calculus L defines a general notion of derivability in the following
sense: an expression consisting of the lexical items e1, . . . , en of respective cat-
egories c1, . . . , cn is parsed as belonging to a certain category c if and only if
the statement ‘c1, . . . , cn is a c’ (written as a so-called sequent c1, . . . , cn ` c)
can be derived as a theorem of the system. Thus, grammatical derivations are
reduced to logical deductions, giving rise to the slogan ‘parsing as deduction’.

The notions of category and sequent are defined as follows:

Let at be a finite set of atomic categories. Then catat, the set of
categories based on at, is the smallest set such that (i) at ⊆ catat,
and (ii) if a, b ∈ catat, then (a/b) ∈ catat and (b\a) ∈ catat.

(2)

A sequent is an expression T ` c, where T is a finite non-empty
sequence of categories and c ∈ catat. (So, T = c1, . . . , cn, where
n > 0 and for all i such that 1 ≤ i ≤ n: ci ∈ catat.)

(3)

We assume that no atomic category is of the form (a/b) or (b\a) and omit
outermost brackets of categories. The categories c1, . . . , cn constitute the left-
hand side of c1, . . . , cn ` c, and category c is the right-hand side or goal of the
sequent. If the identity of at is not an issue, we will write cat instead of catat.

The calculus L consists of a set of axioms plus five inference rules: /L,
\L, /R, \R and Cut . They are listed in (4) and (5), respectively, where a, b, c
denote arbitrary categories and T,U, V arbitrary finite sequences of categories,
of which T is non-empty.

axiom, the set of axioms of L, is the set { c ` c | c ∈ cat }. (4)

T ` b U, a, V ` c

U, a/b, T, V ` c
[/L]

T, b ` a

T ` a/b
[/R] T ` a U, a, V ` c

U, T, V ` c
[Cut ]

T ` b U, a, V ` c

U, T, b\a, V ` c
[\L]

b, T ` a

T ` b\a [\R]
(5)

The calculus L contains, among other rules, the so-called Cut rule. Lambek
(1958) established that the set of theorems of L is not increased by adding Cut .
The proof of this fact is constructive: Lambek specifies an algorithm which
enables one to transform every proof which makes use of Cut into a Cut-free
proof. In any application of Cut , of which at least one premise has been proven
without Cut , either the conclusion coincides with one of the premises so that
the application of Cut can be eliminated immediately, or the application of Cut
can be replaced by one or two applications of Cut of smaller degree. The latter
notion is defined as follows:
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(i) The degree d(c) of a category c is defined inductively:
d(c) = 0 for c ∈ atom; d(a/b) = d(b\a) = d(a) + d(b) + 1.

(ii) The degree d(c1, . . . , cn) of a finite sequence of categories
c1, . . . , cn equals d(c1) + . . . + d(cn).

(iii) The degree d(T ` c) of a sequent T ` c equals d(T ) + d(c).

(iv) The degree d(α) of a Cut inference α =
T ` a U, a, V ` c

U, T, V ` c
equals d(T ) + d(U) + d(V ) + d(a) + d(c).

(6)

Thus, the degree of a category, a sequence of categories and a sequent is equal to
the number of slashes and backslashes it contains. Since the minimal degree of
a Cut inference is zero, the Cut elimination algorithm is doomed to terminate.

Lambek’s proof entails the decidability of L: for an arbitrary sequent the
proof procedure is guaranteed to answer the question whether the sequent is
valid after a finite number of steps.1 But in spite of the fact that a given sequent
has only finitely many Cut-free derivations, Cut-less L still suffers from what
has been called the ‘spurious ambiguity problem’ in König (1989): the problem
that different proofs of a given sequent may yield one and the same semantic
interpretation. Hepple (1990) and Hendriks (1993) show how this problem can
be solved by further restricting the Cut-free calculus. The resulting system,
which is called L* in Hendriks (1993), is a solution to the spurious ambiguity
problem in that it provides exactly one proof per interpretation. We will not go
into semantic interpretation here, but note that the calculus L* is based on the
following syntactic observations: (a) each non-atomic axiom instance a/b ` a/b
or b\a ` b\a can be decomposed into a proof with two less complex axiom
premises, a ` a and b ` b; (b) if a \R or /R inference yields the right-hand side
premise of a /L or \L inference, we can always reverse the order of the rules;
and (c) whenever a \L or /L inference yields the right-hand side premise of
another \L or /L inference, and the inferences have different active categories,
we can reverse the order of the inferences and shift the latter inference to the
left-hand side premise or to the right-hand side premise of the former one.
Observation (a) entails that for every proof of a sequent, there is an alternative
proof of that sequent in which (i) all axiom instances are atomic. Given such an
alternative proof, moreover, we can use observations (b) and (c) for obtaining
a proof of the sequent in which (ii) no right-hand side premise of a \L or /L
inference is the conclusion of a \R or /R inference (this corresponds to (b));2

and (iii) the same left-hand side category remains active whenever one goes
down from axioms via right-hand side premises of \L and /L inferences (this
corresponds to (c)). These considerations can be summarized in the form of

1Note that each of the inference rules /L, \L, /R and \R derives its conclusion from one
or more premises with a strictly smaller number of occurrences of / and \. Hence establishing
the derivability of the premise(s) is more simple than establishing the derivability of the
conclusion, and it follows that every sequent has only finitely many Cut-free derivations.

2Consequently, every right-hand side premise of a \L or /L inference must be an (atomic)
axiom instance at ` at or the conclusion of another \L or /L inference. Since \L and /L
identify the goal categories of their right-hand side premise and conclusion, every \L and /L
inference must derive a conclusion sequent with an atomic goal category: T ` at .
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the calculus L* given in (7) below, which observes the same conventions as (5)
above, with the addition that at represents an arbitrary atomic category while
* denotes an operator which controls the activity of categories in derivations:

U, a*, V ` at
U, a, V ` at*

[ * ]
at* ` at

[Ax ]

T ` b* U, a*, V ` at
U, a/b*, T, V ` at

[/L]
T, b ` a*
T ` a/b*

[/R]

T ` b* U, a*, V ` at
U, T, b\a*, V ` at

[\L]
b, T ` a*
T ` b\a*

[\R]

(7)

An important property of L* is expressed by the following:

Claim 1:
T `L* c* if and only if T `L c.

Proof: We have seen that if T `L c, then there is a Cut-free L proof π of
T ` c such that π has the following properties: (a) all axiom instances in π
are atomic; (b) no right-hand side premise of a \L or /L inference in π is the
conclusion of a \R or /R inference; and (c) the same category remains active
whenever one goes down from axioms via right-hand side premises of \L and
/L inferences in π. But this is sufficient, for there is a Cut-free L proof π of
T ` c with the properties (a) through (c) if and only if there is an L* proof π′

of T ` c*. This can be seen as follows:
Note (a′) that L* axioms at* ` at involve only atomic categories; (b′) that

the right-hand side premise of a \L or /L inference in L* can only be an axiom
or the conclusion of another \L or /L inference (the asterisk must be on the
left-hand side); and (c′) that if a \L or /L inference yields the right-hand side
premise of another \L or /L inference, then they have the same (asterisked)
active left-hand side category. On account of (a′) through (c′), every Cut-free L
proof π of a sequent T ` c with the properties (a) through (c) can be turned into
an L* proof π′ of T ` c* by adding an asterisk to the left-hand side category
of axiom instances; adding an asterisk to the active left-hand side category in
every conclusion sequent of a \L, /L, \R and /R inference; and replacing every
sequent U, a*, V ` at which is not the right-hand side premise of a \L or /L
inference by the following inference:

U, a*, V ` at
U, a, V ` at*

[ * ] (8)

And, conversely, every L* proof π′ of T ` c* can be turned into a Cut-free L
proof π of T ` c with properties (a) through (c) by replacing every inference of
the form (8) by the sequent U, a, V ` at and deleting all remaining asterisks. 2

Let us now proceed by putting every category c in catat into an equivalence
class bcp\...\c1\at/cp+1/.../cp+qc. Let c and c1, . . . , cp+q be members of catat

(p + q ≥ 0), and let at ∈ at. Then c ∈ bcp\...\c1\at/cp+1/.../cp+qc iff
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(a) c = at and p + q = 0;
(b) c = cp\c′ and c′ ∈ bcp−1\...\c1\at/cp+1/.../cp+qc; or
(c) c = c′/cp+q and c′ ∈ bcp\...\c1\at/cp+1/.../cp+q−1c.

The sets bcp\...\c1\at/cp+1/.../cp+qc partition catat.3 We have:

If c ∈ bcp\...\c1\at/cp+1/.../cp+qc, then T `L c iff
c1, . . . , cp, T, cp+q, . . . , cp+1 `L at .

(9)

U, c*, V `L* at and c ∈ bcp\...\c1\at ′/cp+1/.../cp+qc iff
U = T1, . . . , Tp; V = Tp+q, . . . , Tp+1; at ′ = at ; and for
all i such that 1 ≤ i ≤ p + q: Ti `L* ci*.

(10)

Proof of (9) and (10) by induction on p + q:
As for (9): if p + q = 0, then the claim is trivial; and if p + q > 0, then

(i) c = cp\c′ and c′ ∈ bcp−1\...\c1\at/cp+1/.../cp+qc; or (ii) c = c′/cp+q and
c′ ∈ bcp\...\c1\at/cp+1/.../cp+q−1c. We only treat (i), since (ii) is analogous.
Note that the following are equivalent: (1) T `L cp\c′; (2) T `L* cp\c′*;
(3) cp, T `L* c′*; (4) cp, T `L c′; (5) c1, . . . , cp, T, cp+q, . . . , cp+1 `L at . Claim 1
yields the equivalence of (1) and (2) as well as (3) and (4); the equivalence of
(2) and (3) is due to the design of L*; and (4) and (5) are equivalent on account
of the induction hypothesis. 2

As for (10): if p + q = 0, then U, c*, V `L* at must be an axiom se-
quent at* `L* at , that is, at ′ = at and U and V are empty; if p + q > 0,
then (i) c = cp\c′ and c′ ∈ bcp−1\...\c1\at ′/cp+1/.../cp+qc; or (ii) c = c′/cp+q

and c′ ∈ bcp\...\c1\at ′/cp+1/.../cp+q−1c. We only treat (ii), since (i) is anal-
ogous. The sequent U, c′/cp+q*, V ` at must be derived by /L in L*. Hence
U, c′/cp+q*, V `L* at iff U, c′*, V ′ `L* at and Tp+q `L* cp+q*, where V =
Tp+q, V

′. By induction hypothesis: U, c′*, V ′ `L* at iff U = T1, . . . Tp; V ′ =
Tp+q−1, . . . Tp+1; at ′ = at and for all i, 1 ≤ i ≤ p + q − 1: Ti `L* ci*. 2

Given (10), suppose that T `L at . This holds iff T `L* at* by Claim 1.
The sequent T ` at* must have been derived by the * rule in L*. There-
fore, T = U, c, V and U, c*, V `L* at . For some c1, . . . , cp+q, at ′ it holds
that c ∈ bcp\...\c1\at ′/cp+1/.../cp+qc. By (10), we have that U = T1, . . . , Tp;
V = Tp+q, . . . , Tp+1; at ′ = at ; and for all i, 1 ≤ i ≤ p + q: Ti `L* ci*, which is
equivalent to Ti `L ci by Claim 1. Summing up:

T `L at iff there is a c ∈ bcp\...\c1\at/cp+1/.../cp+qc such that
T = T1, . . . , Tp, c, Tp+q, . . . , Tp+1 and for all i, 1 ≤ i ≤ p + q: Ti `L ci.

(11)

3Different categories c and c′ are members of the same set bcp\...\c1\at/cp+1/.../cp+qc iff
c and c′ have the same final atomic value (viz., at) and the same series of left-hand side
(cp, . . . , c1) and right-hand side (cp+1, . . . , cp+q) arguments, but combine with these argu-
ments in a different order. The set bt\t/(t/t)/tc, for example, consists of three categories:
(1) ((t\t)/(t/t))/t, (2) (t\(t/(t/t)))/t and (3) t\((t/(t/t))/t).
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Let C be a set of categories. A category c is a C-category iff c is built up
from categories in C.4 Sequences t/t, . . . , t/t consisting of n occurrences of the
category t/t will be abbreviated as (t/t)n.

Lemma:
Let A = {at1, . . . , atk, (t/t)/t, ((t/t)/(t/t))/(t/t)}, for distinct atomic
categories at1, . . . , atk and t; and let T be a non-empty sequence of
A-categories. Then (a) T, t 6`L t; (b) for all n ∈ IN: T, (t/t)n 6`L t; and
(c) T, t/t, t 6`L t.

Proof of (a) and (b) by induction on the number m of occurrences of the
categories at1, . . . , atk, (t/t)/t and ((t/t)/(t/t))/(t/t) in T .
• m = 1. Then T = at i (1 ≤ i ≤ k); T = (t/t)/t; or T = ((t/t)/(t/t))/(t/t):
(a) at i, t 6`L t; (t/t)/t, t 6`L t; and ((t/t)/(t/t))/(t/t), t 6`L t.
(b) That T, (t/t)n 6`L t can be shown by at-count, a notion introduced in Van
Benthem (1986). For at ∈ at and c ∈ catat, the definition of at-count[c] is as
follows: at-count[c] = 1 if c = at , while at-count[c] = 0 if c 6= at ; at-count[a/b]
= at-count[b\a] = at-count[a] − at-count[b]. Moreover, at-count[c1, . . . , cn] =
at-count[c1]+. . .+at-count[cn]. A useful property of L-derivable sequents T ` c
is that for all at ∈ at: at-count[c] = at-count[c]. (This is proven by a simple
induction on the length of the proof of T ` c.)

Note that t-count[(t/t)/t] = −1; that t-count[((t/t)/(t/t))/(t/t)] = 0; and
that for all i ∈ {1, . . . , k} and n ∈ IN: t-count[at i] = t-count[(t/t)n] = 0.
Therefore, t-count[(t/t)/t, (t/t)n] = −1 and t-count[((t/t)/(t/t))/(t/t), (t/t)n ]
= t-count[at i, (t/t)n] = 0. On the other hand, t-count[c] = 1. So, for all n ∈ IN:
at i, (t/t)n 6`L t; (t/t)/t, (t/t)n 6`L t; and ((t/t)/(t/t))/(t/t), (t/t)n 6`L t.
• m > 1. Note5 that if c is an A-category and c∈ bcp\...\c1\t/cp+1/.../cp+qc,
then (i) cp+1 = cp+2 = t, so c ∈ bcp\...\c1\t/t/t/cp+3/.../cp+qc; or (ii) cp+1 =
t and cp+2 = cp+3 = t/t, so c ∈ bcp\...\c1\t/t/(t/t)/(t/t)/cp+4/.../cp+qc.
(a) Suppose T, t `L t. By (11), there is a c ∈ bcp\...\c1\t/cp+1/.../cp+qc such
that T, t = T1, . . . , Tp, c, Tp+q, . . . , Tp+1 and for all i, 1 ≤ i ≤ p + q: Ti `L ci.
Since T is non-empty, this c cannot be the rightmost category t in T, t. Hence
c is an A-category in T and either (i) c ∈ bcp\...\c1\t/t/t/cp+3/.../cp+qc; or
(ii) c ∈ bcp\...\c1\t/t/(t/t)/(t/t)/cp+4/.../cp+qc. Focus on Tp+2. On the one
hand: if (i), then cp+2 = t, so Tp+2 `L t; and if (ii), then cp+2 = t/t, so
Tp+2 `L t/t. On the other hand: Tp+2 is non-empty, since Tp+2 `L cp+2; Tp+2

is a sequence of A-categories, since t in T, t is part of Tp+1 (which must be
non-empty since Tp+1 `L cp+1); and Tp+2 contains less occurrences of at1, . . . ,
atk, ((t/t)/(t/t))/(t/t) and (t/t)/t than T , since c occurs in T but not in Tp+2.
Therefore, the induction hypothesis for (b) (n = 0) yields that Tp+2 6`L t, while
the induction hypothesis for (a) yields that Tp+2, t 6`L t. Because t/t ∈ bt/tc,
the latter entails—by (9)—that Tp+2 6`L t/t. So, both (i) and (ii) lead to
contradiction, which means that T, t 6`L t.

4That is, the set of C-categories is the smallest set C′ such that (i) C ⊆ C′; and (ii) if
c ∈ C′ and c′ ∈ C′, then c/c′ ∈ C′ and c′\c ∈ C′.

5This is easily seen by induction on the number of occurrences of at1, . . . , atk, (t/t)/t and
((t/t)/(t/t))/(t/t) in c.
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(b) Suppose T, (t/t)n `L t. By (11), there is a c ∈ bcp\...\c1\t/cp+1/.../cp+qc
such that T, (t/t)n = T1, . . . , Tp, c, Tp+q, . . . , Tp+1 and for all i, 1 ≤ i ≤ p + q:
Ti `L ci. Since T is non-empty, this c cannot be a category in (t/t)n. Hence
c is an A-category in T and either (i) c ∈ bcp\...\c1\t/t/t/cp+3/.../cp+qc; or
(ii) c ∈ bcp\...\c1\t/t/(t/t)/(t/t)/cp+4/.../cp+qc. Focus on Tp+1. On the one
hand: both (i) and (ii) entail that cp+1 = t, so Tp+1 `L t. On the other hand:
Tp+1 cannot be of the form (t/t)m for m ≤ n, since (t/t)m and t have different
t-counts; hence Tp+1 consists of a non-empty subsequence T ′ of T followed by
(t/t)n, where T ′ contains less occurrences of at1, . . . , atk, ((t/t)/(t/t))/(t/t)
and (t/t)/t than T , since c occurs in T but not in Tp+1. Hence the induction
hypothesis of (b) yields that T ′, (t/t)n 6`L t in both cases. Since T ′, (t/t)n =
Tp+1, we have a contradiction. So T, (t/t)n 6`L t. 2

Proof of (c): suppose T, t/t, t `L t. There is a c ∈ bcp\...\c1\t/cp+1/.../cp+qc
such that T, t/t, t = T1, . . . , Tp, c, Tp+q, . . . , Tp+1 and for all i, 1 ≤ i ≤ p + q:
Ti `L ci by (11). Since T is non-empty, this c cannot be t/t or t in T, t/t, t.
Hence c is an A-category in T and (i) c ∈ bcp\...\c1\t/t/t/cp+3/.../cp+qc; or
(ii) c ∈ bcp\...\c1\t/t/(t/t)/(t/t)/cp+4/.../cp+qc. Suppose (i). Then on the one
hand: cp+2 = t, so Tp+2 `L t. But on the other hand: Tp+1 `L t entails that
Tp+1 is non-empty and includes at least t. Hence t/t must be part of (a) Tp+1

or (b) Tp+2. Suppose (a). Then Tp+2 is a sequence of A-categories which is,
moreover, non-empty since Tp+2 `L cp+2, so that Tp+2 `L t contradicts Lemma
(b) (n = 0). Suppose (b). Then Tp+2 consists of a sequence T ′ of A-categories
followed by t/t and T ′ must be non-empty since t/t 6`L t, so that Tp+2 `L t
contradicts Lemma (b) (n = 1). Therefore, suppose (ii). Then on the one hand:
cp+3 = t/t, so Tp+3 `L t/t and Tp+3, t `L t by (9). On the other hand: Tp+1 `L t
entails that Tp+1 is non-empty and includes at least t. Hence t/t must be part of
Tp+1 or Tp+2. Anyway, Tp+3 is a sequence of A-categories which is, moreover,
non-empty since Tp+3 `L cp+3, so that Tp+3, t `L t contradicts Lemma (a).
Apparently, both (i) and (ii) lead to contradiction, so that T, t/t, t 6`L t. 2

Corollary:
(1) There is no sequence S of A-categories such that

S, t, t = T ′′′, T ′′, T ′, where T ′′′ `L t/t, T ′′ `L t/t and T ′ `L t.
(2) There is no sequence S of A-categories such that

S, t/t, t/t, t = T ′′, T ′, where T ′′ `L t and T ′ `L t.
(3) There is no non-empty sequence S of A-categories such that

S, t, t = T ′′, T ′, where T ′′ `L t and T ′ `L t.
(4) There is no non-empty sequence S of A-categories such that

S, t/t, t/t, t = T ′′′, T ′′, T ′, where T ′′′ `L t/t, T ′′ `L t/t and T ′ `L t.

Proof:
Suppose the contrary of (1). Then T ′′′, T ′′ and T ′ are non-empty, so the second
t in S, t, t is part of T ′, and the first t is part of T ′′ or T ′. Either way T ′′′ is a
non-empty sequence of A-categories. But T ′′′ `L t/t entails T ′′′, t `L t by (9),
and the latter contradicts Lemma (a).
Suppose the contrary of (2). Then T ′′ and T ′ are non-empty, so the category t
in S, t/t, t/t, t is part of T ′, so that T ′′ = S′, (t/t)m, where m ∈ {0, 1, 2} and S′
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is (a subsequence of) S. But then T ′′ 6`L t, since (t/t)m 6`L t by t-count, and
for non-empty S′: S′, (t/t)m 6`L t by Lemma (b).
Suppose the contrary of (3). Then T ′′ and T ′ are non-empty, so the second
t in S, t, t is part of T ′, and (i) T ′′ = S, t; or (ii) T ′′ = S′ and non-empty S′

is (a subsequence of) S. Now, (ii) contradicts Lemma (b) (n = 0), and (i)
contradicts Lemma (a) for non-empty S. Hence S is empty.
Suppose the contrary of (4). Then T ′′′, T ′′ and T ′ are non-empty, and T ′′′ is not
a subsequence of S, since T ′′′ `L t/t entails that T ′′′, t `L t by (9), contradicting
Lemma (a). So T ′′′ includes the first t/t in S, t/t, t/t, t, but not the second one
(for then T ′′ or T ′ has to be empty). Hence T ′′′ = S, t/t and S is empty, since
S, t/t `L t/t entails S, t/t, t `L t by (11), which is impossible for non-empty S
on account of Lemma (c). 2

Let t and at0 be two distict atomic categories. Claim 2 shows that (t/t)/t and
((t/t)/(t/t))/(t/t) can be used for encoding t and at0, respectively.

Claim 2:
Let at = {t, at0, at1, . . . , atk} consist of distinct atomic categories;
and let σ be the substitution [t :=(t/t)/t; at 0 :=((t/t)/(t/t))/(t/t)].
Then for all T, c in catat: T `L c iff σ(T ) `L σ(c).

Proof: by induction on d(T ` c), the degree of T ` c.
• d(T ` c) = 0. Then the categories T, c are members of the set at =
{t, at0, at1, . . . , atk}, while the categories σ(T ), σ(c) are members of the set
at′ = {(t/t)/t, ((t/t)/(t/t))/(t/t), at 1, . . . , atk}, and the claim holds in view of
the fact that for T, c ∈ at and for T, c ∈ at′ we have that if T `L c, then T =
c. This is obvious for T, c ∈ at (by at i-count). For T, c ∈ at′:

◦ If T `L at j for 1 ≤ j ≤ k, then for c′ ∈ bcp\...\c1\at j/cp+1/.../cp+qc by
(11): T = T1, . . . , Tp, c

′, Tp+q, . . . , Tp+1 (and for all i, 1 ≤ i ≤ p + q: Ti `L ci).
The only member of at′ in bcp\...\c1\at j/cp+1/.../cp+qc is at j, and at j ∈ bat jc.
Therefore, p + q = 0 and T = at j .

◦ If T `L (t/t)/t, then T, t, t `L t by (9), since (t/t)/t ∈ bt/t/tc. By (11),
for c′ ∈ bcp\...\c1\t/cp+1/.../cp+qc: T, t, t = T1, ..., Tp, c

′, Tp+q, ..., Tp+1 and for
all i, 1 ≤ i ≤ p + q: Ti `L ci. For c′ ∈ at′, this entails (i) c′ = (t/t)/t and
c′ ∈ bt/t/tc; or (ii) c′ = ((t/t)/(t/t))/(t/t) and c′ ∈ bt/t/(t/t)/(t/t)c. If (ii),
then T, t, t = ((t/t)/(t/t))/(t/t), S, t, t and S, t, t = T ′′′, T ′′, T ′, where T ′′′ `L t/t,
T ′′ `L t/t and T ′ `L t—which is impossible by Corollary (1). So, assume (i).
Then T, t, t = (t/t)/t, S, t, t and S, t, t = T ′′, T ′, where T ′′ `L t and T ′ `L t—
which, by Corollary (3), entails that S is empty and, hence, that T = (t/t)/t.

◦ If T `L ((t/t)/(t/t))/(t/t), then T, t/t, t/t, t `L t by (9), due to the
fact that c ∈ bt/t/(t/t)/(t/t)c. By (11), for c′ ∈ bcp\...\c1\t/cp+1/.../cp+qc:
T, t/t, t/t, t = T1, . . . , Tp, c

′, Tp+q, . . . , Tp+1 and for all i, 1 ≤ i ≤ p + q: Ti `L ci,
so that again (i) c′ = (t/t)/t; or (ii) c′ = ((t/t)/(t/t))/(t/t). If (i), then
T, t/t, t/t, t = (t/t)/t, S, t/t, t/t, t and S, t/t, t/t, t = T ′′, T ′, where T ′′ `L t
and T ′ `L t—which is impossible by Corollary (2). So, assume (ii). Then
T, t/t, t/t, t = ((t/t)/(t/t))/(t/t), S, t/t, t/t, t and S, t/t, t/t, t = T ′′′, T ′′, T ′ such
that T ′′′ `L t/t, T ′′ `L t/t and T ′ `L t—which, by Corollary (4), entails that S
is empty and, consequently, that T = ((t/t)/(t/t))/(t/t).
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• d(T ` c) > 0. If c ∈ catat and c ∈ bcp\...\c1\at/cp+1/.../cp+qc, then:
(a) at ∈{at1, . . . , atk} and σ(c)∈bσ(cp)\...\σ(c1)\at/σ(cp+1)/.../σ(cp+q)c;
(b) at = t and σ(c)∈bσ(cp)\...\σ(c1)\t/t/t/σ(cp+1)/.../σ(cp+q)c; or
(c) at = at0 and σ(c)∈bσ(cp)\...\σ(c1)\t/t/(t/t)/(t/t)/σ(cp+1)/.../σ(cp+q)c.
Since p + q > 0 or p + q = 0, six cases can be distinguished:

◦ c ∈ bcp\...\c1\at j/cp+1/.../cp+qc, 1 ≤ j ≤ k, and p + q > 0:
T `L c iff1 c1, . . . , cp, T, cp+q . . . , cp+1 `L at j

iff2 σ(c1, . . . , cp, T, cp+q . . . , cp+1) `L σ(at j) =
σ(c1, . . . , cp, T, cp+q . . . , cp+1) `L at j =
σ(c1), . . . , σ(cp), σ(T ), σ(cp+q) . . . , σ(cp+1) `L at j

iff3 σ(T ) `L σ(c).
‘iff1’ and ‘iff3’ hold by (9) (since c ∈ bcp\...\c1\at j/cp+1/.../cp+qc, while σ(c) ∈
bσ(cp)\...\σ(c1)\at j/σ(cp+1)/.../σ(cp+q)c due to (a); and ‘iff2’ holds by in-
duction hypothesis (d(c1, . . . , cp, T, cp+q . . . , cp+1 ` at j) < d(T ` c), because
p + q > 0).

◦ c ∈ bcp\...\c1\t/cp+1/.../cp+qc and p + q > 0:
T `L c iff1 c1, . . . , cp, T, cp+q . . . , cp+1 `L t

iff2 σ(c1, . . . , cp, T, cp+q . . . , cp+1) `L σ(t) =
σ(c1, . . . , cp, T, cp+q . . . , cp+1) `L (t/t)/t

iff3 σ(c1, . . . , cp, T, cp+q . . . , cp+1), t, t `L t =
σ(c1), . . . , σ(cp), σ(T ), σ(cp+q) . . . , σ(cp+1), t, t `L t

iff4 σ(T ) `L σ(c).
‘iff1’, iff3’ and iff4’ hold by (9) (because c ∈ bcp\...\c1\t/cp+1/.../cp+qc, (t/t)/t ∈
bt/t/tc, and σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/t/σ(cp+1)/.../σ(cp+q)c due to (b)); and
‘iff2’ holds by induction hypothesis (since p + q > 0).

◦ c ∈ bcp\...\c1\at0/cp+1/.../cp+qc and p + q > 0:
T `L c iff1 c1, . . . , cp, T, cp+q . . . , cp+1 `L at0

iff2 σ(c1, . . . , cp, T, cp+q . . . , cp+1) `L σ(at0) =
σ(c1, . . . , cp, T, cp+q . . . , cp+1) `L ((t/t)/(t/t))/(t/t)

iff3 σ(c1, . . . , cp, T, cp+q . . . , cp+1), t/t, t/t, t `L t =
σ(c1), . . . , σ(cp), σ(T ), σ(cp+q) . . . , σ(cp+1), t/t, t/t, t ` mboxL t

iff4 σ(T ) `L σ(c).
‘iff1’, iff3’ and iff4’ hold by (9) (for observe that c ∈ bcp\...\c1\at0/cp+1/.../cp+qc,
((t/t)/(t/t))/(t/t) ∈ bt/t/(t/t)/(t/t)c and—as was observed in (c) above—
σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/(t/t)/(t/t)/σ(cp+1)/.../σ(cp+q)c); and ‘iff2’ holds by
induction hypothesis (since p + q > 0).

◦ c ∈ bat jc and 1 ≤ j ≤ k:
T `L at j iff1 for c ∈ bcp\...\c1\at j/cp+1/.../cp+qc:

T = T1, . . . , Tp, c, Tp+q, . . . , Tp+1

and for all i, 1 ≤ i ≤ p + q: Ti `L ci

iff2 for c ∈ bcp\...\c1\at j/cp+1/.../cp+qc:
T = T1, . . . , Tp, c, Tp+q, . . . , Tp+1

and for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci)
iff3 for σ(c) ∈ bσ(cp)\...\σ(c1)\at j/σ(cp+1)/.../σ(cp+q)c:

σ(T ) = σ(T1), . . . , σ(Tp), σ(c), σ(Tp+q), . . . , σ(Tp+1)
and for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci)

iff4 σ(T ) `L at j.
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Note that at j = σ(at j), and that ‘iff1’ holds by (11); ‘iff2’ holds by induction
hypothesis (d(T `L at j) > 0 entails that p + q > 0, hence d(Ti `L ci) < d(T `L

at j) for all i); ‘iff3’ holds by (a); and ‘iff4’ holds by (11).
◦ c ∈ btc:

T `L t iff1 for c ∈ bcp\...\c1\t/cp+1/.../cp+qc:
T = T1, . . . , Tp, c, Tp+q, . . . , Tp+1

and for all i, 1 ≤ i ≤ p + q: Ti `L ci

iff2 for c ∈ bcp\...\c1\t/cp+1/.../cp+qc:
T = T1, . . . , Tp, c, Tp+q, . . . , Tp+1

and for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci)
iff3 for σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/t/σ(cp+1)/.../σ(cp+q)c:

σ(T ) = σ(T1), . . . , σ(Tp), σ(c), σ(Tp+q), . . . , σ(Tp+1)
and for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci)

iff4 σ(T ), t, t `L t
iff5 σ(T ) `L (t/t)/t.

Note that (t/t)/t = σ(t), and that ‘iff1’ holds by (11); ‘iff2’ holds by induction
hypothesis; ‘iff3’ holds by (b); ‘iff5’ holds by (9) (since (t/t)/t ∈ bt/t/tc); and
the ‘only if’ part of ‘iff4’ is an application of (11) (since t `L t). As for the ‘if’
part of ‘iff4’: if the final value of σ(c) is t, then either
σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/(t/t)/(t/t)/σ(cp+1)/.../σ(cp+q)c or
σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/t/σ(cp+1)/.../σ(cp+q)c.
Hence if σ(T ), t, t `L t, then, by (11), either
(i) for some σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/(t/t)/(t/t)/σ(cp+1)/.../σ(cp+q)c:
— σ(T ), t, t = σ(T1), . . . , σ(Tp), σ(c), σ(Tp+q), . . . , σ(Tp+1), T ′′′, T ′′, T ′,
— for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci), and
— T ′′′ `L t/t, T ′′ `L t/t, and T ′ `L t; or
(ii) for some σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/t/σ(cp+1)/.../σ(cp+q)c:
— σ(T ), t, t = σ(T1), . . . , σ(Tp), σ(c), σ(Tp+q), . . . , σ(Tp+1), T ′′, T ′,
— for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci), and
— T ′′ `L t and T ′ `L t.
However, (i) is impossible by Corollary (1), and Corollary (3) entails that (ii)
is only possible if T ′′ = T ′ = t.

◦ c ∈ bat0c:
T `L at0 iff1 for c ∈ bcp\...\c1\t/cp+1/.../cp+qc:

T = T1, . . . , Tp, c, Tp+q, . . . , Tp+1

and for all i, 1 ≤ i ≤ p + q: Ti `L ci

iff2 for c ∈ bcp\...\c1\at0/cp+1/.../cp+qc:
T = T1, . . . , Tp, c, Tp+q, . . . , Tp+1

and for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci)
iff3 for σ(c)∈bσ(cp)\...\σ(c1)\t/t/(t/t)/(t/t)/σ(cp+1)/.../σ(cp+q)c:

σ(T ) = σ(T1), . . . , σ(Tp), σ(c), σ(Tp+q), . . . , σ(Tp+1)
and for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci)

iff4 σ(T ), t/t, t/t, t `L t
iff5 σ(T ) `L ((t/t)/(t/t))/(t/t).

Note that ((t/t)/(t/t))/(t/t) = σ(at0), and that ‘iff1’ holds by (11); ‘iff2’
holds by induction hypothesis; ‘iff3’ holds by (c); ‘iff5’ holds by (9) (since
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((t/t)/(t/t))/(t/t) ∈ bt/t/(t/t)/(t/t)c); and the ‘only if’ part of ‘iff4’ is an ap-
plication of (11) (since t/t `L t/t and t `L t). As for the ‘if’ part of ‘iff4’: again,
if the final value of σ(c) is t, then either
σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/(t/t)/(t/t)/σ(cp+1)/.../σ(cp+q)c or
σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/t/σ(cp+1)/.../σ(cp+q)c.
Hence if σ(T ), t/t, t/t, t `L t, then, by (11), either
(i) for some σ(c) ∈ bσ(cp)\...\σ(c1)\t/t/t/σ(cp+1)/.../σ(cp+q)c:
— σ(T ), t/t, t/t, t = σ(T1), . . . , σ(Tp), σ(c), σ(Tp+q), . . . , σ(Tp+1), T ′′, T ′,
— for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci), and
— T ′′ `L t and T ′ `L t; or
(ii) for some σ(c)∈bσ(cp)\...\σ(c1)\t/t/(t/t)/(t/t)/σ(cp+1)/.../σ(cp+q)c:
— σ(T ), t/t, t/t, t = σ(T1), . . . , σ(Tp), σ(c), σ(Tp+q), . . . , σ(Tp+1), T ′′′, T ′′, T ′,
— for all i, 1 ≤ i ≤ p + q: σ(Ti) `L σ(ci), and
— T ′′′ `L t/t, T ′′ `L t/t, and T ′ `L t.
This time, (i) is impossible by Corollary (2), and Corollary (4) entails that (ii)
is only possible if T ′′′ = T ′′ = t/t and T ′ = t. 2

Finally, Claim 3 generalizes the substitution of Claim 2 for the encoding of any
finite number of atomic categories. Let, for c ∈ cat and n ∈ IN:

β(c) = ((c/c)/(c/c))/(c/c) α(c) = (c/c)/c
α0(c) = c αn+1(c) = αn(α(c))

Claim 3:
Let, for a sequence A = 〈t, at1, . . . , atm〉 of distinct atomic
categories such that m ≥ 1, the substitution σA be defined
[t :=αm(t); at 1 :=β(αm−1(t)); . . . ; atm :=β(αm−m(t))]. Then
for all T, c in cat{t,at1,...,atm}: T `L c iff σA(T ) `L σA(C).

Proof: by induction on m.
• m = 1. Then Claim 3 comes down to Claim 2 (with at0 and k instantiated
as at1 and 0, respectively).
• m > 1. Observe (i) that σA(c) = σ′

A(σ′′
A(c)) for the substitutions σ′

A =
[t :=αm−1(t); at 1 :=β(α(m−1)−1(t)); . . . ; atm−1 :=β(α(m−1)−(m−1)(t))] and σ′′

A =
[t :=α(t); atm :=β(t)]; and (ii) that σ′

A(c) = σA′(c) for the sequence A′ =
〈t, at1, . . . , atm−1〉. Consequently, we have the following equivalences: σA(T ) `L

σA(c) iff1 σ′
A(σ′′

A(T )) `L σ′
A(σ′′

A(c))
iff2 σ′′

A(T ) `L σ′′
A(c)

iff3 T `L c.
‘iff1’ holds by observation (i); ‘iff2’ holds by induction hypothesis and ob-
servation (ii) (note that m − 1 < m, and that σ′′

A(c) ∈ cat{t,at1,...,atm−1} if
c ∈ cat{t,at1,...,atm}); and ‘iff3’ is another application of Claim 2 (with at0 and
k instantiated as atm and m− 1, respectively). 2
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