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Abstract

This paper contains a completeness proof for the system ILW, a rather bewildering
axiom system belonging to the family of interpretability logics. We have treasured
this little proof for a considerable time, keeping it just for ourselves. Johan’s fiftieth
birthday appears to be the right occasion to get it out of our wine cellar.
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1 Introduction

In interpretability logic the logical properties of the notion of interpretability
are studied in much the same way as the logical properties of the notion of
provability are studied in provability logic. In the latter a one-place operator
2 is added to the language of propositional logic. The intended meaning in
the context of an arithmetical theory T of a formula 2A is ‘A is provable in T ’
(where A represents an arithmethic formula). In the former, a binary operator
� is added to the language of propositional logic. Here the intended meaning
of A � B (read ‘A interprets B’) in an arithmetical theory T is: ‘T + B is
interpretable in T + A’.

Interpretability logic extends provability logic: 2 is definable in terms of
� via the equation 2A= def ¬A �⊥. Thus, in principle, interpretability logic
can disclose at least as much about the underlying arithmetical theory T as
provability logic can. Actually, it does disclose more. Provability is a stable
notion, interpretability is not. All extensions of I∆0 + EXP have the same
provability logic. But as it turns out, the interpretability logic ILM of Peano
Arithmetic differs widely from the interpretability logic ILP of ACA0 (the
arithmetical counterpart of Gödel-Bernays set theory).

All interpretability logics studied so far are extensions of the core system
IL, which is given by the derivation rules Modus Ponens and Necessitation and
the axioms 2A→22A and 2(2A→A)→2A (Löb’s Axiom) of the provability
system L, plus the axioms:

(J1) 2(A→B)→ (A � B)
(J2) (A � B)∧ (B � C)→ (A � C)
(J3) (A � C)∧ (B � C)→ (A∨B � C)
(J4) (A � B)→ (♦A→♦B)
(J5) ♦A � A

(With respect to priority of parentheses � is treated as → .)

By adding the scheme (A � B)→ (A∧2C � B ∧2C) one gets the system ILM
mentioned above. ILP is given by IL plus the scheme (A � B)→2(A � B).
Central in this paper is a third extension of IL, the system ILW described e.g.
in Visser [7]. ILW = IL + W, where W is the axiom scheme

(A � B)→ (A � B ∧2¬A)

The system ILW is contained in both ILM and ILP (see de Jongh-Veltman [2],
or Visser [6]), and was at some point conjectured to embody the principles com-
mon to all “reasonable” arithmetics. In the meantime, however, Albert Visser
discovered two new general principles, M0: A � B→ (♦A∧2C � B ∧2C) (see
Visser [7]), and P0: A �♦B→2(A � B) (see Joosten [5]).

¿From a purely modal point of view, it seems wise to first take a proper look
at ILW, before trying to get to grips with a system like ILWM0P0. Indeed, as
the completeness proof presented below will show, ILW already poses so many
problems that the predicate ‘bewildering’ comes to mind.
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2 Semantics

It is a well-known fact that the modal logic L is complete with respect to the
L-frames 〈W,R〉, which consist of a set of worlds W together with a transitive
conversely well-founded relation R.

Definition 1 If 〈W,R〉 is a partially ordered set and w∈W , then
wR = {w′ ∈W |wR w′}.

Definition 2 An IL-frame is a L-frame 〈W,R〉 with an additional relation Sw

for each w∈W , which has the following properties:
(i) Sw is a relation on w R,
(ii) Sw is reflexive and transitive,
(iii) if w′, w′′ ∈w R and w′ R w′′, then w′Sww′′.

We will often write S for {Sw |w ∈W}.

Definition 3 An IL-model is given by an IL-frame 〈W,R,S〉 combined with a
forcing relation with the clauses:

(i) u ||−2A iff ∀v(uRv ⇒ v ||−A),
(ii) u ||−A � B iff ∀v(uR v and v ||−A⇒∃w(vSuw and w ||−B)).

Definition 4
(a) For F = 〈W,R,S〉, we write F ||−A iff w ||−A for every ||− on F and

every w∈W .
(b) If K is a class of frames, we write K ||−A iff F ||−A for each F ∈K .
(c) KW is the class of IL-frames with the additional property

(iv) for any w, the converse of R ◦Sw is well-founded.

The next lemma states that the scheme W characterizes the class of frames
KW .

Lemma 5
(a) For each A, if `IL A, then F ||−A.
(b) F ||−ILW iff F ∈KW (ILW characterizes KW ).

Proof. Straightforward. a

3 Modal completeness

The usual method in modal logic for obtaining completeness proofs is to con-
struct directly or indirectly the necessary countermodels by taking maximal
consistent sets of the logic under consideration as the worlds of the model.
There are three problems with this approach here. First, there is a problem de-
riving from the modal logic L which is the basis of our system. This logic is not
compact: some infinite syntactically consistent sets of formulae are semantically

3



incoherent. A solution is to restrict the maximal consistent sets to subsets of
some finite set of formulae. Such a so-called adequate set has to be rich enough
to prove the analogon of the valuation lemma which states that a formula A
belonging to the adequate set is forced in a world w iff A∈w. Therefore it has
to be closed under forming of subformulae and single negations. Furthermore,
for each particular logic, additional requirements on the adequate set will be
needed to be able to apply the axioms.

It turns out that for ILW we need the following.

Definition 6 An adequate set of formulae is a set Φ which fulfills the following
conditions:

(i) Φ is closed under the taking of subformulae,
(ii) if B ∈Φ, and B is not a negation, then ¬B ∈Φ,
(iii) ⊥�⊥∈Φ,
(iv) if B as well as C are the antecedent or consequent of some � -formula

in Φ, then B � C ∈Φ.

It is not difficult to see that each finite set Γ of formulae is contained in a finite
adequate set Φ.

In this connection, we consider ♦A to be shorthand for ¬(A �⊥), and 2A
short for ¬A �⊥ (unless A is ¬B; then 2A stands for B �⊥), so that we can
ignore 2- and ♦-formulas in inductions. Note that in this way we can be sure
that, if B � C is a member of an adequate set, then so are ♦B and ♦C.

As usual, we define Γ≺∆ ⇔ (i) for each 2A∈Γ, it holds that 2A,A∈∆, and
(ii) for some 2A /∈Γ, it holds that 2A∈∆. Whenever Γ≺∆, we say that ∆ is a
successor of Γ. The following lemma transfers from L to IL and its extensions.

Lemma 7 Let Γ0 be a maximal ILW-consistent subset of some finite adequate
Φ, and let WΓ0 be the smallest set such that (i) Γ0 ∈W (ii) if ∆∈W and ∆′ is
a maximal ILW-consistent subset of Φ such that ∆≺∆′, then ∆′ ∈W . Then

(i) ≺ is transitive and irreflexive on WΓ0 ,
(ii) for each Γ∈WΓ0, 2A∈Γ⇔A∈∆ for every ∆ such that Γ≺∆.

The model supplied by this lemma works fine in a completeness proof for L, but
it is much too small for IL and its extensions. It is not always possible endow
〈WΓ0 , ≺〉 with relations SΓ for every Γ∈WΓ0 in such a way that (i) S has all
the properties required, and (ii) the valuation lemma can be proved for � -
formulas. We can no longer identify a world with the set of formulas true in it.
In the eventual model it will often occur that different worlds are described by
the same maximal consistent ILW-consistent subset of Φ. Serious duplication
of worlds is necessary already in the case of IL. (See de Jongh-Veltman [2] or
Japaridze-de Jongh [3] for more explanation on this point.)

To overcome this second problem we need some more machinery.

Definition 8 Let Γ and ∆ be maximal consistent subsets of Φ and let C ∈Φ.
(a) ∆ is a C-critical successor of Γ iff

(i) Γ≺∆,
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(ii) ¬B,2¬B ∈∆ for each B such that B � C ∈Γ.
(b) C admits B with respect to Γ iff B occurs in some C-critical successor

of Γ.

It is easily seen that successors of C-critical successors of Γ are C-critical suc-
cessors of Γ.

In the model that we are going to build every world w is associated with a maxi-
mal ILW-consistent subset Γ of some adequate Φ. This set Γ is supposed to give
a partial description of w. To ensure that a formula of the form ¬(B � C)∈Γ
is indeed true in w, the model has to provide a world w′ associated with a
C-critical successor of Γ containing B. Moreover, all the worlds accessible from
w′ by the relation Sw should be associated with C-critical successors, too.

Is this feasible? The next two lemmata say it is.

Lemma 9 Let Γ be maximal ILW-consistent in Φ, and suppose (B � C)∈Φ.
Then ¬(B � C)∈Γ iff C admits B with respect to Γ.

Proof. From right to left: this follows almost immediately from the definition.
¿From left to right: the proof of lemma 3.6 in de Jongh-Veltman [2] (or lemma
13.12 of Japaridze-de Jongh [3]) applies to ILW. a

Lemma 10 Let Γ be maximal ILW-consistent in Φ and suppose (A � D)∈Γ.
If C admits A with respect to Γ, then C admits D, too.

Proof. Almost directly from the previous lemma. a

The lemmata just mentioned enable us to construct an IL-countermodel to A
for every A such that 6`ILW A. They allow us to connect a so-called C-critical
cone above w with every world w introduced in the model and with every C
such that some ¬(B � C) should be true in w. The worlds in this C-critical cone
are all associated with a C-critical successor of the set of formulas associated
with w. By duplicating we get non-overlapping cones for different C’s. In doing
so we can ensure that the Sw relation will never ‘exit from’ a given C-critical
cone.

However, for the completeness of ILW we don’t need an IL-countermodel,
we need an ILW-countermodel. The third and most difficult problem we have
to deal with is in the extra condition that ILW imposes on the models: R ◦Sw

is to be conversely well-founded.
In the following definition, we isolate a special kind of critical successors.

Unfortunately, at this point it is rather difficult to explain what makes them so
special.

Definition 11 Let Γ be a maximal ILW-consistent subset of Φ and suppsose
E ∈Φ.

The set ∆ is an E-critical solution for Ci with respect to B1 � C1, . . . , Bn � Cn

iff ∆ is an E-critical successor of Γ such that Ci and 2¬B1, ...,2¬Bn all occur
together in ∆.
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The following lemma, which strengthens Lemma 10 above, will help us to con-
struct the Sw-relation on a given E-critical cone in a step-by-step construction.
We say that a maximal consistent set ∆ blocks a set of formulas Ψ if ∆ contains
¬B for all B in Ψ.

Lemma 12 Let Γ be a maximal consistent subset of Φ and E ∈Φ. Suppose
B1 � C1, . . . , Bn � Cn are �-formulae in Γ such that E admits each Bi.

There is a non-empty subset X of {1, . . . , n} such that, for each i∈X, there
exists an E-critical solution for Ci with regard to B1 � C1, . . . , Bn � Cn which
blocks {Bj | j ∈{1, . . . , n}\X}.
Proof. Suppose no such subset X of {1, . . . , n} exists. Then, in the first
place, the whole set {1, . . . , n} does not function as an X with the required
properties: There exists i such that no E-critical solution for Ci with regard to
B1 � C1, . . . , Bn � Cn can be found. Without loss of generality we may assume
that i= n.

Formally this means that there are A1, . . . , Am with 2A1, . . . ,2Am ∈Γ and
F1, . . . , Fk with F1 � E, . . . , Fk � E ∈Γ such that,

A1, . . . , Am,2A1, . . . ,2Am,¬F1, . . . ,¬Fk,2¬F1, . . . ,2¬Fk `
Cn→♦B1 ∨ . . . ∨♦Bn.

In other words,

A1, . . . , Am,2A1, . . . ,2Am `
Cn→♦(B1 ∨ . . . ∨Bn)∨ (F1 ∨ . . . ∨Fk)∨♦(F1 ∨ . . . ∨Fk),

which gives

2A1, . . . ,2Am `
2(Cn →♦(B1 ∨ . . . ∨Bn)∨ (F1 ∨ . . . ∨Fk)∨♦(F1 ∨ . . . ∨Fk)).

This means that:

2A1, . . . ,2Am `Cn �♦(B1 ∨ . . . ∨Bn)∨ (F1 ∨ . . . ∨Fk)∨♦(F1 ∨ . . . ∨Fk).

In view of (J5) this can be simplified to

2A1, . . . ,2Am `Cn �♦(B1 ∨ . . . ∨Bn)∨ (F1 ∨ . . . ∨Fk).

Since Bn � Cn ∈Γ, we see, by applying several axioms, that:

Γ`Bn �♦(B1 ∨ . . . ∨Bn)∨ (F1 ∨ . . . ∨Fk).

At this point the axiom W plays its crucial role; we obtain:

Γ`Bn � (♦(B1 ∨ . . . ∨Bn)∨ (F1 ∨ . . . ∨Fk))∧¬2Bn,
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which simplifies to

Γ`Bn �♦(B1 ∨ . . . ∨Bn−1)∨ (F1 ∨ . . . ∨Fk).

Since each Fi � E is a member of Γ this leads, by some applications of (J3) and
(J2), to:

Γ`Bn �♦(B1 ∨ . . . ∨Bn−1)∨E. (*)

This concludes our use of the assumption that the whole set {1, . . . , n} is not
an X with the required properties.

Next, in the second place, the set {1, . . . , n − 1} does not function as such
an X. There exists i, say n− 1, such that no E-critical solution for Ci with re-
gard to B1 � C1, . . . , Bn � Cn blocking {Bn} exists. This means that there are
A1, . . . , Am with 2A1, . . . ,2Am ∈Γ and F1, . . . , Fk with F1 � E, . . . , Fk � E ∈Γ,
such that

A1, . . . , Am,2A1, . . . ,2Am,¬F1, . . . ,¬Fk,2¬F1, . . . ,2¬Fk `
Cn−1→♦(B1 ∨ . . . ∨Bn−1 ∨Bn)∨Bn.

Reasoning as before gives

Γ`Bn−1 �♦(B1 ∨ . . . ∨Bn−1)∨ (♦Bn ∨Bn)∨E,

and hence, applying (*):

Γ`Bn−1 �♦(B1 ∨ . . . ∨Bn−1)∨E, and thus, by W ,
Γ`Bn−1 �♦(B1 ∨ . . . ∨Bn−2)∨E.

Continuing like this, in stage p we have

Γ`Bn−p + 1 �♦(B1 ∨ . . . ∨Bn−p)∨E.

Now suppose the set {1, . . . , n − p} does not function as such an X: There
exists i, say n− p, such that there are A1, . . . , Am with 2A1, . . . ,2Am ∈Γ and
F1, . . . , Fk with F1 � E, . . . , Fk � E ∈Γ, such that

A1, . . . , Am,2A1, . . . ,2Am,¬F1, . . . ,¬Fk,2¬F1, . . . ,2¬Fk `
Cn−p→♦(B1 ∨ . . . ∨Bn)∨Bn−p+1 ∨ . . . ∨Bn

or in other words,
A1, . . . , Am,2A1, . . . ,2Am,¬F1, . . . ,¬Fk,2¬F1, . . . ,2¬Fk `
Cn−p→♦(B1 ∨ . . . ∨Bn−p)∨ (♦Bn−p+1 ∨Bn−p+1)∨ . . . ∨ (♦Bn ∨Bn)

Reasoning as before and applying the results reached for Bn, . . . , Bn−p + 1, we
find
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Γ`Bn−p �♦(B1 ∨ . . . ∨Bn−p−1)∨E.

Continuing like this, we finally get, in the n-th stage,

Γ`B1 � E,

but this is a contradiction, since B1 � E cannot be a member of Γ. a

Theorem 13 (Completeness and decidability of ILW). If 6`ILW A, then there
is a finite ILW-model 〈W,R,S, ||− 〉 such that w 6||−A for some w∈W .

Proof. We show that, for abitrary Φ, Γ with Φ adequate and Γ maximal
consistent in Φ, there is a model with root w0 such that, for all φ∈Φ, w0 ||−φ
iff φ∈Γ. Then for completeness it is sufficient to take some finite adequate set
Φ containing ¬A and let Γ be a maximal consistent subset of Φ containing ¬A.

Every world in the model will be a sequence of pairs 〈〈∆1, σ1〉, . . . , 〈∆k, σk〉〉. In
this sequence each ∆i is a maximal consistent subset of Φ and each σi is either
empty or a pair consisting of a formula in Φ and a number j (1≤ j≤n), where
n is the number of �-formulas in Φ. If w is such a world, ∆k will be the set of
the formulas true in the world, and so we will write ∆(w) for ∆k. The sequence
that codes the world encrypts the sequence of all its predecessors as its initial
segments. The formula E, if any, in σk signals that w is in the E-critical cone
of its immediate predecessor w′. The natural number accompanying E is used
to fix the Sw′-relation inside this E-critical cone.

More precisely, the set of worlds W of the model is given by the following
inductive definition.

(i) w0 = 〈〈Γ, ∅〉〉∈W ,
(ii) If τ ∗ 〈∆, σ〉∈W , the following procedure is applied for each E that

occurs as a consequent in some �-formula in Φ. Taking the set
Y = {B1 � C1, . . . , Bn � Cn} of all �-formulas in ∆ with antecedents admitted
by E as our starting point, we repeatedly apply lemma 12 with respect to ∆
and E in Φ. Eventually we obtain a sequence X1, . . . ,Xm (obtained in that
order) of disjoint subsets of Y the union of which is Y .

The set X1 is the outcome of applying lemma 12 to ∆, E and Y . Choose
for each j ∈X1 an E-critical solution ∆j for Cj with respect to Y blocking
{Bj | j ∈Y \X1}. Then extend W with τ ∗ 〈∆, σ〉 ∗ 〈∆j, 〈E, 1〉〉.

In a similar manner Xi+1 is determined: Xi+1 is the set obtained by ap-
plying lemma 12 to Y \(X1 ∪ . . . ∪Xi). Choose for each j ∈Xi+1 an E-critical
solution ∆j for Cj with respect to Y \(X1 ∪ . . . ∪Xi) containing ¬Bm for all
m∈Y \(X1 ∪ . . . ∪Xi+1). Then extend W with τ ∗ 〈∆, σ〉 ∗ 〈∆j, 〈E, i+ 1〉〉.

W is finite for the usual reasons: each newly constructed world ‘contains’
more 2-formulas than its immediate predecessor.

Define R and Sw on W as follows:
(i) w R w′ iff w is a proper initial segment of w′.
(ii) uSwv iff u= w ∗ 〈∆, 〈E, i〉〉 ∗ σ and v =w ∗ 〈∆′, 〈E, j〉〉 ∗ τ

and (either j < i, or j = i and σ is empty), or u= v or uR v.
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Note that {u | u= w ∗ 〈∆, 〈E, i〉〉 ∗ σ for some ∆, i, σ} plays the role of the
E-critical cone above w. For each i, we call the set {u | u= w ∗ 〈∆, 〈E, i〉〉 ∗ σ}
the i-th section of this cone.

Given its definition, it is obvious that R is transitive and conversely well-
founded. Likewise, Sw is easily seen to be reflexive and transitive. For the
converse well-foundedness of R ◦ Sw it is sufficient to note that, if uR ◦ Sw v,
then, either uR v or v’s ‘index’ (i.e. the number accompanying the last element
of v) is lower than the index of u.

Finally, it remains to prove that for all B ∈Φ, w∈WΓ, w ||−B iff B ∈∆(w). The
induction is trivial except for the two �-cases.

First assume ¬(C � D)∈∆(w). This is easy: D admits C, so some D-
critical successor with C in it exists, because C will occur as Ci in one of the
Xj ’s, and its D-critical solution will be produced in the D-critical cone above
w. By the definition above the Sw-relation does not exit from the D-critical
cone.

Next assume C � D ∈∆(w). We have to show that, if C occurs in the E-
critical cone above w, then so does D in such a way that the occurrence of D
can be reached from the occurrence of C by Sw. Since C � D∈∆(w), C � D is
one of the Bi � Ci in Y . This number i is an element of Xj for some j while an
E-critical solution for Ci is produced as the formula set of a world v in the j-th
section of the E critical cone above w, in fact as one of the R-minimal elements
of that section. For all k≤ j, 2¬Bi is present in the R-minimal elements of
the k-sections of the E-critical cone above w. This is so because ‘before’ Xj ,
Bi � Ci is each time a member of the set of formulas under discussion. This
implies that, in these k-sections, Bi does not occur in the nonminimal elements.
Moreover, for k <j, Bi does not occur among the minimal elements of the k-
section either. Therefore, if Bi occurs in the E-critical cone at all, it will be
either in a world u belonging to a k-section with k >j, or in a world u that
is a minimal element of the j-section. In both cases uSw v holds, so C � D is
forced in w. a
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