# D-Structures and their Semantics

#### Rohit Parikh

### April 1, 1999

#### Abstract

In these notes we shall be concerned with a semantic object which is a generalization of classical structures, Kripke structures and the regular \*-structures of Ehrenfeuchtde Jongh. We shall start by showing how these different cases can be obtained by imposing different regularly conditions on the basic object (D-structures) and the semantics can then be directly interpreted into the semantics of D-structures. We shall then give a game-theoretic explanation of the semantics of the D-structures from which the finite model property of regular \*-sructures can be easily obtained. We go on to look at the proof theory of these objects.

## Contents

| 1 | Introduction                      | <b>2</b> |
|---|-----------------------------------|----------|
| 2 | A Game Theoretic Characterisation | 7        |
| 3 | The logic of <i>D</i> -structures | 9        |

## 1 Introduction

In this survey we shall show that a D-structure is a very flexible (but nontrivial) type of object and includes classical structures, intutionistic structures<sup>1</sup>, and the regular \*-structures of Ehrenfeucht-de Jongh as special cases The intuitive idea is this. At any moment of time, what we know about the world is a finite amount, but as time passes, and if our memory is good, this finite amount increases. In other words, the old information is embedded in the new information. The *way* in which the old information is embedded can be chosen in various possible ways and these different choices lead to different semantics.

In the following,  $\mu$  will be a finite relational type. Constants are permitte but not function symbols.

**Definition 1** A *D*-structure  $\mathcal{M}$  of type  $\mu$  consists of two objects:

- 1. a family  $\mathcal{F}$  of finite relational structures (diagrams), all of type  $\mu$  and
- 2. a family  $\mathcal{H}$  of homomorphisms between elements of  $\mathcal{F}$ .  $\mathcal{H}$  includes all the identity maps.  $\mathcal{H}^t$  is the closure of  $\mathcal{H}$  under composition and clearly  $\langle \mathcal{F}, \mathcal{H}^t \rangle$  will be a category.

*Remark:* Note that homomorphisms preserve atomic formulae but not necessarily their negations. Members of  $\mathcal{H}$  will be called *allowable maps*.

**Definition 2** A *D*-structure  $\mathcal{M}$  will be said to be *rigid* if all allowable maps are inclusions. It is *directed* if given  $D_1$ ,  $D_2$  in  $\mathcal{F}$  there is a  $D_3$  and allowable maps  $p_1 : D_1 \to D_3$  and  $p_2 : D_2 \to D_3$ .  $\mathcal{M}$  is *weakly* directed if  $\langle \mathcal{F}, \mathcal{H}^t \rangle$  is directed.

**Definition 3** Let A be a sentence of the language  $\mathcal{L}_u$  augmented by constants from a diagram D (we shall take the elements themselves to be these constants) and modal operators  $\Box$  and  $\diamond$ . We recall that  $\Box$  means "necessarily" and  $\diamond$ means "possibly". We define  $\mathcal{M}, D \models A$  by induction on the complexity c(A) of A.

- 1. c(A) = 0. Then  $\mathcal{M}, D \models A$  iff A is true in D.
- 2.  $A = B \land C$ . Then  $\mathcal{M}, D \models B \land C$  iff  $\mathcal{M}, D \models B$  and  $\mathcal{M}, D \models C$ .
- 3.  $A = B \lor C$ . Then  $\mathcal{M}, D \models B \lor C$  iff  $\mathcal{M}, D \models B$  or  $\mathcal{M}, D \models C$ .
- 4.  $A = \neg B$ . Then  $\mathcal{M}, D \models \neg B$  iff  $\mathcal{M}, D \not\models B$ .

5. 
$$A = (\exists x)B(x)$$
. Then  
 $\mathcal{M}, D \models (\exists x)B(x)$  iff there exists  $a \in |D|$  such that  $\mathcal{M}, D \models B(a)$ .  
6.  $A = (\forall x)B(x)$ . Then  
 $\mathcal{M}, D \models (\forall x)B(x)$  iff for all  $a \in |D|$ ,  $\mathcal{M}, D' \models B(a)$ .

7.  $A = \Box B(a_1, \dots, a_k)$ . Then  $\mathcal{M}, D \models \Box B(a_1, \dots, a_k)$  iff for all allowable  $f : D \to D'$ ,  $\mathcal{M}, D' \models B(f(a_1), \dots, f(a_k))$ .

<sup>&</sup>lt;sup>1</sup> The finiteness requirement on elements of  $\mathcal{M}$  has to be dropped in this case, for technical reasons on the diagrams.

8.  $A = \diamond B(a_1, \dots, a_k)$ . Then  $\mathcal{M}, D \models \diamond B(a_1, \dots, a_k)$  iff for some allowable  $f : D \to D'$ ,  $\mathcal{M}, D \models B(f(a_1), \dots, f(a_k)).$ 

In 7, 8 the constants from |D| are explicitly displayed.

Before studying D-structures in general we shall verify the claim made on before Definition 1.

**Definition 4** Let A be a formula of the language  $\mathcal{L}_{\mu*D}$ , i.e.  $\mathcal{L}_{\mu}$  with constants from |D|.  $A^c$  is the formula obtained from A if we replace  $\exists$  everywhere by  $\diamond \exists$  and  $\forall$  everywhere by  $\Box \forall$ .

**Theorem 5** Let  $\mathcal{A}$  be a classical  $\mu$ -structure.  $\mathcal{M}^c(\mathcal{A}) = \mathcal{M}$  is th D-structure where  $\mathcal{F}$  consists of all finite substructures of  $\mathcal{A}$ .  $\mathcal{H}$  consists of all inclusion maps. (Thus  $\mathcal{M}$  is directed and rigid.)  $\mathcal{A}$  is any sentence of  $\mathcal{L}_{\mu*D}$ . Then

$$\mathcal{A} \models A \qquad iff \qquad \mathcal{M}, D \models A^c,$$

where D contains all constants of A.

PROOF.  $\neg$ ,  $\lor$ ,  $\land$  and atomic sentences are trivial. Suppose now that A is  $(\exists x)B(x, a_1, \ldots, a_k)$  then  $A^c$  is  $\diamond(\exists x)B^c(x, a_1, \ldots, a_k)$ .

[left to right] Suppose  $\mathcal{A} \models A$ . Then there is an  $a \in |\mathcal{A}|$  such that

$$\mathcal{A} \models B(a, a_1, \dots, a_k)$$

Let D' be a substructure containing D and a. Then by induction hypothesis,  $\mathcal{M}, D' \models B^c(a, a_1, \ldots, a_k)$  hence  $\mathcal{M}, D' \models (\exists x) B^c(x, a_1, \ldots, a_k)$  hence

 $\mathcal{M}, D \models \diamond (\exists x) B^c(x, a_1, \dots, a_k).$ 

I.e.  $\mathcal{M}, D \models A^c$ .

[right to left] Suppose

$$\mathcal{M}, D \models \diamond (\exists x) B^c(x, a_1, \dots, a_k)$$

then there is a D' such that  $D \subseteq D'$  and  $a \in D'$  such that  $\mathcal{M}, D' \models B^c(a, a_1, \ldots, a_k)$ . But then  $\mathcal{A} \models B(a, a_1, a_2, \ldots, a_k)$  and hence

$$\mathcal{A}\models(\exists x)B(x,a_1,a_2,\ldots,a_k)$$

The  $\forall$  case is similar.

**Theorem 6** Let  $\mathcal{M}$  be a directed, rigid D-structure. Let

$$\mathcal{A} = \bigcup_{D_a \in \mathcal{F}} D_a.$$

(This union makes sense since  $\mathcal{M}$  is directed and rigid.) Then, for sentences A of  $\mathcal{L}_{u*\mathcal{A}}$ , we have if D contains all constants of A,

$$\mathcal{M}, D \models A^c \quad iff \quad \mathcal{A} \models A.$$

PROOF. Quite similar to above.

**Definition 7** Let A be a formula of the intuitionistic predicate calculus with symbols from  $\mu$  and additional constants. We define  $A^{i}$  by induction on c(A).

- 1.  $c(A) = 0, A^{i} = A$ 2.  $A = B \land C, A^{i} = B^{i} \land C^{i}$ 3.  $A = B \lor C, A^{i} = B^{i} \lor C^{i}$ 4.  $A = \neg B, A^{i} = \Box \neg B^{i}$
- 5.  $A = B \rightarrow C, A^{i} = \Box(B^{i} \rightarrow C^{i})$
- 6.  $A = (\forall x)B(x), A^{\mathbf{i}} = \Box(\forall x)B^{\mathbf{i}}(x)$
- 7.  $A = (\exists x)B(x), A^{\mathbf{i}} = (\exists x)B^{\mathbf{i}}(x).$

(In cases 2,3,7, we could take  $A^i = \Box(\exists x)B^i(x)$  etc. and the next theorem will still hold.)

**Definition 8** Let  $\mathcal{A}$  be an intuitionistic structure (as in [Fit69] p.46). Let  $D_{\Gamma}$  be the structure with base set  $P(\Gamma)$ , and in which precisely those atomic  $\mathcal{A}$  hold where  $\Gamma \models \mathcal{A}$ . There is a homomorphism (which comes from set inclusion) from  $D_{\Gamma}$  to  $D_{\Gamma'}$  just in case  $R(\Gamma, \Gamma')$ . Then,  $\mathcal{M} = \mathcal{M}^{i}(\mathcal{A})$  is  $\langle \mathcal{F}, \mathcal{H} \rangle$  where  $\mathcal{F} = \{D_{\Gamma} : \Gamma \in \mathcal{G}\}$  and  $\mathcal{H}$  consists of the homomorphisms just mentioned.

**Theorem 9** Let A be a sentence in  $\hat{P}(\Gamma)$ . Then

$$\mathcal{M}, D_{\Gamma} \models A^i$$
 iff  $\Gamma \models A$ .

PROOF. The proof is immediate if A is atomic. Also,  $\land, \lor, \exists$  will work in a parallel way. Suppose  $A = \neg B$ . Then,  $A^{i} = \Box \neg B^{i}$ . We have:

$$\Gamma \models \neg B \quad \text{iff} \quad \text{for all } \Gamma^*, \quad \Gamma^* \not\models B \\ \text{iff} \quad \text{for all } D_{\Gamma^*}, \quad \mathcal{M}, D_{\Gamma^*} \not\models B \text{ (ind. hyp)} \\ \text{iff} \quad \text{for all } D_{\Gamma^*}, \quad \mathcal{M}, D_{\Gamma^*} \models \neg B \\ \text{iff} \quad \mathcal{M}, D_{\Gamma} \models \Box \neg B^{\mathbf{i}} \\ A = B \to C \text{ and } A = (\forall x) B(x) \text{ are similar.} \end{cases}$$

Suppose now that  $\mathcal{M} = \langle \mathcal{F}, \mathcal{H} \rangle$  is a *D*-structure which is a category. We construct a Kripke structure corresponding to  $\mathcal{M}$ . Given  $D \in \mathcal{F}$ , a selection *S* for *D* is a set of maps into *D* such that if there are any maps  $D' \to D$  there is just one such map in *S*. Take  $\mathcal{G} =$  the set of all pairs  $\langle D, S \rangle$ , where  $D \in \mathcal{F}$  and *S* in a selection for *D*. For  $\Gamma = \langle D, S \rangle \in \mathcal{G}$ , take  $P(\Gamma) = |D|$  and an atomic sentence *A* in  $\mathcal{P}(\Gamma)$  is forced by  $\Gamma$  iff it holds in *D*. We let  $\Gamma R \Gamma'$  iff there is a map  $g \in S', g : D \to D'$  such that for all  $f \in S, f \circ g \in S'$ . (We point out that given  $g : D \to D'$  there is always such an *S'*.)

**Theorem 10** For A in the language of IPC with constants from D, with  $\Gamma = \langle D, S \rangle$ ,

$$\Gamma \models A$$
 iff  $\mathcal{M}, D \models A^1$ .

PROOF. Quite routine. To check one case, suppose  $A = \neg B$ . Then,  $A^{i} = \Box \neg B^{i}$ . Then,

$$\begin{split} \Gamma \models A & \text{iff} & \forall \Gamma^*, \quad \Gamma^* \not\models B \\ & \text{iff} & \forall D' \text{ with allowable } g: D \to D', \quad \mathcal{M}, D' \not\models B^i \\ & \text{iff} & \forall D' \text{ with allowable } g: D \to D', \quad \mathcal{M}, D' \models \neg B^i \\ & \text{iff} & \mathcal{M}, D \models \Box \neg B^i \\ & \text{etc.} \end{split}$$

**Definition 11** Let  $\mathcal{A}$  be a (classical) structure of type  $\mu$  and f a permutation o  $|\mathcal{A}|$ . Then  $f(\mathcal{A})$  is the structure with base set  $|\mathcal{A}|$  in which

$$f(\mathcal{A})\models R(f(a_1), f(a_2), \dots, f(a_n))$$
 iff  $\mathcal{A}\models R(a_1, a_2, \dots, a_n),$ 

where  $R \in u$  and  $a_1, a_2, \ldots, a_n \in |\mathcal{A}|$ . A regular \*-structure over  $\mathcal{A}$  is a family  $\{f(\mathcal{A}) \mid f \in G\}$ , where G is some group containing all finite permutations of  $|\mathcal{A}|$ .

**Definition 12** Let  $\mathcal{M}$  be a family of first order structures all of the same type  $\mu$  and with the same base set X. If  $X_0 \subseteq X$ ,  $M \in \mathcal{M}$  then

$$\mathcal{M}[X_0, M] = \{ N \mid N \in \mathcal{M} \text{ and } N|_{X_0} = M|_{X_0} \}$$

**Definition 13** (Ehrenfeucht) Let  $\mathcal{M}$  be a regular \*-structure on  $\mathcal{A}$ .  $X_0 \subseteq |\mathcal{A}|$ ,  $M \in \mathcal{M}$ . A is a sentence of  $\mathcal{L}_{\mu * X_0}$ . We define  $\mathcal{M}[X_0, M] \models A$  by induction on c(A).

- 1. c(A) = 0. Then  $\mathcal{M}[X_0, M] \models A$  iff  $M \models A$ . (Note: this depends only on  $M|_{X_0}$ .)
- 2.  $A = B \wedge C$ . Then  $\mathcal{M}[X_0, M] \models A$  iff  $\mathcal{M}[X_0, M] \models B$  and  $\mathcal{M}[X_0, M] \models C$ .
- 3.  $A = B \lor C$ . Then  $\mathcal{M}[X_0, M] \models A$  iff  $\mathcal{M}[X_0, M] \models B$  or  $\mathcal{M}[X_0, M] \models C$ .
- 4.  $A = \neg B$ . Then  $\mathcal{M}[X_0, M] \models A$  iff  $\mathcal{M}[X_0, M] \not\models B$ .
- 5.  $A = (\exists x)B(x)$ . Then  $\mathcal{M}[X_0, M] \models A$  iff there exist  $a \in X, b \in X_0 \cup \{a\}, N \in \mathcal{M}[X_0, M]$ such that  $\mathcal{M}[X_0 \cup \{a\}, N] \models B(b)$ .
- 6.  $A = (\forall x)B(x)$ . Then  $\mathcal{M}[X_0, M] \models A$  iff for all  $a \in X, b \in X_0 \cup \{a\}, N \in \mathcal{M}[X_0, M],$  $\mathcal{M}[X_0 \cup \{a\}, N] \models B(b).$

**Theorem 14** Let  $\mathcal{M}$  be a regular \*-structure on  $\mathcal{A}$ . Let  $\mathcal{M}_1 = \langle \mathcal{F}, \mathcal{H} \rangle$  be defined as follows

$$\mathcal{F} = all finite submodels D_i of \mathcal{A}, \\ \mathcal{H} = all monomorphisms D \to D' with \overline{D'} - \overline{D} \leq 1.$$

Let  $X_0 = \{a_1, a_2, \dots, a_n\}, A(a_1, a_2, \dots, a_n) \in \mathcal{L}_{u * X_0}, M \in \mathcal{M} \text{ and }$ 

$$b_1, b_2, \dots, b_n \in |\mathcal{A}|$$
 such that  $\mathcal{A}|_{b_1, b_2, \dots, b_n} = M|_{a_1, a_2, \dots, a_n}$ .

Then

$$\mathcal{M}[X_0, M] \models A(a_1, a_2, \dots, a_n) \quad iff \quad \mathcal{M}_1, D \models A^c(b_1, b_2, \dots, b_n),$$

where  $\{b_1, b_2, \ldots, b_n\} \subseteq |D|$ .

**PROOF.** Trivial if A is atomic, a negation, conjuction, or disjunction.

Suppose  $A = (\forall x)B(x)$ . Then,  $\mathcal{M}[X_0, M] \models A(a_1, a_2, \dots, a_n)$  gives, for all N, a, b as provided,

$$\mathcal{M}[X_0 \cup \{a\}, N] \models B(a_1, a_2, \dots, a_n, b).$$

Now, let  $g: D \to D'$  be an allowable map. We need to show that

$$\mathcal{M}, D' \models B^c(g(b_1), \dots, g(b_n), c), \text{ for all } c \in |D'|.$$

Now, there is a permutation  $\phi$  such that  $\phi(g(b_i)) = a_i$ . Take  $a = \phi(b)$ , where  $b \in D' - g[D]$ , if  $D' \neq g[D]$  and let  $a \in \{a_1, \ldots, a_n\}$  otherwise. Let  $b = \phi(c)$ . Let  $N = \phi(\mathcal{A})$ . Then

$$N|_{\{a_1,...,a_n\}} = M|_{\{a_1,...,a_n\}}$$
  

$$\simeq \mathcal{A}|_{\{b_1,b_2,...,b_n\}}$$
  

$$\simeq \mathcal{A}|_{\{g(b_1),g(b_2),...,g(b_n)\}}.$$

and we get

$$\mathcal{M}[X_0 \cup \{a\}, N] \models B(a_1.a_2..., a_n, b)$$

hence

 $\mathcal{M}, D' \models B^c(g(b_1), \ldots, g(b_n), c)$ 

Thus

$$\mathcal{M}, D' \models (\forall x) B^c(g(b_1), \dots, g(b_n), x)$$

Hence,

$$\mathcal{M}, D \models \Box(\forall x) B^c(g(b_1), \dots, g(b_n), x)$$

which was to be proved.

The backward argument and the  $\exists$  case are quite similar.

We now show that a *D*-structure  $\mathcal{M} = \langle \mathcal{F}, \mathcal{H} \rangle$  corresponds to a regular \*-structure if

- 1.  $\mathcal{M}$  is weakly directed,
- 2.  $D \in \mathcal{F}$  and  $D' \subseteq D \to D' \in \mathcal{F}$ ,
- 3. the allowable maps are those monomorphisms  $D \to D'$  where

$$\overline{\overline{D'}} = \overline{\overline{D}} \le 1.$$

**Theorem 15** Let  $\mathcal{M}$  be a D-structure as above. Choose a maximal subfamily  $\mathcal{K} \subseteq \mathcal{H}^t$  such that  $\mathcal{K}$  is closed under composition and  $\mathcal{K}$  contains at most one map from any D to D'. Let  $\mathcal{A}$  be the direct limit of  $\mathcal{F}$  under  $\mathcal{K}$ , and  $\mathcal{M}_1$  a regular \*-structure on  $\mathcal{A}$ . Suppose  $X_0 \subseteq |\mathcal{A}|, M \in \mathcal{M}_1$  and  $D, a'_1, a'_2, \ldots, a'_n$  are such that  $D \in \mathcal{F}$  and  $D|_{\{a'_1, a'_2, \ldots, a'_n\}} \simeq M|_{X_0}$ . Then,

$$\mathcal{M}_1[X_0, M] \models A(a_1, a_2, \dots, a_n) \quad iff \quad \mathcal{M}, D \models A^c(a'_1, a'_2, \dots, a'_n).$$

PROOF. The proof is straightforward.

## 2 A Game Theoretic Characterisation

Let  $\mu$  be a relational type,  $\mathcal{M}$  a D-structure of type  $\mu$ ,  $D \in \mathcal{M}$ ,  $\mathcal{L} = \mathcal{L}_{\mu*D}^{\mathcal{M}}$ the language of modal logic (with quantifiers) and nonlogical symbols from  $\mu$ and |D|, A a closed formula of  $\mathcal{L}$ . We define a game  $\mathcal{G}_{A,D}$  by induction on the complexity of A. (1), (2) are two players.

- 1. A is atomic.  $\mathcal{G}_{A,D}$  is won by (1) iff  $D \models A$ . Otherwise, it is won by (2).
- 2.  $A = B \wedge C$ . Player (2) may choose either game  $\mathcal{G}_{B,D}$  or  $\mathcal{G}_{C,D}$  which is then played.
- 3.  $A = B \lor C$ . Player (1) may choose either game  $\mathcal{G}_{B,D}$  or  $\mathcal{G}_{C,D}$  which is then played.
- 4.  $A = \neg B$ . (1) wins  $\mathcal{G}_{A,D}$  iff (s)he loses  $\mathcal{G}_{B,D}$ .
- 5.  $A = (\forall x)B(x)$ . Player (2) chooses an  $a \in |D|$ . The game  $\mathcal{G}_{B(a),D}$  is then played.
- 6.  $A = (\exists x)b(x)$ . Player (1) chooses an  $a \in |D|$ . The game  $\mathcal{G}_{B(a),D}$  is then played.
- 7.  $A = \Box B(a_1, a_2, \dots, a_n)$ . Player (2) chooses an  $f : D \to D', f \in \mathcal{H}$ . The game  $\mathcal{G}_{D',B(f(a_1),f(a_2),\dots,f(a_n))}$  is then played.
- 8. Like (7) except player (1) chooses the f.

(In 7, the elements of |D| are displayed.)

**Theorem 16**  $\mathcal{M}, D \models A$  iff player (1) has a winning strategy for  $\mathcal{G}_{A,D}$ .

**Corollary 17** Let  $\mathcal{M} = \mathcal{G}_M$  be a regular \*-structure where M is classical and  $\mathcal{G}$  is a group containing all finite permutations of |M|. Let A closed such that,  $\mathcal{M}\models A$ . There exists a finite  $X \subseteq |M|$  such that if  $N = M|_X$  and  $\mathcal{G}_1 = all$  permutations of X, then  $\mathcal{G}, M\models A$ . (This can be called the "finite model property".)

PROOF. Let l = c(A). There are only finitely many possible diagrams of type  $\mu$  and size  $\leq l$  (upto isomorphism). Choose  $X_i \subseteq M$  such that  $M|_{X_i}$  is a representative of the *i*th type occuring inside M. Let X = the union of all the  $X_i$ . Let  $N = M|_X$ .

Let  $\mathcal{M}_1$  be the *D*-structure consisting of all diagrams in *N* with allowable maps being monomorphisms  $D \to D'$  with  $\overline{\overline{D'}} - \overline{\overline{D}} \leq 1$ .

 $\mathcal{M}_2$  is the analogous *D*-structure for *M*.

Then, clearly, a closed formula of complexity  $\leq l$  holds in  $\mathcal{M}_1, D$  iff it holds in  $\mathcal{M}_2, D$ , where D is the empty diagram. Hence, we get

$$\mathcal{G}_M \models A \quad \text{iff} \quad \mathcal{M}_2 \models A \\ \text{iff} \quad \mathcal{M}_1 \models A \\ \text{iff} \quad \mathcal{G}, N \models A$$

using theorem 14.

**Theorem 18 (Skolem-Lowenheim theorem for** *D*-structures) *Let*  $\mathcal{M} = \langle \mathcal{F}, \mathcal{H} \rangle$  be a *D*-structure. Then there exist countable  $\mathcal{F}_1, \mathcal{H}_1, \mathcal{F}_1 \subset \mathcal{F},$  $\mathcal{H}_1 \subset \mathcal{H}$  such that for all  $D \in \mathcal{F}_1, A \in \mathcal{L}^M_{\mu * D}$ ,

$$\mathcal{M}_1 = \langle \mathcal{F}_1, \mathcal{H}_1 \rangle \models A \quad iff \quad \mathcal{M} \models A.$$

Moreover,  $\mathcal{M}_1$  is rigid, directed, weakly directed as a category etc. iff  $\mathcal{M}_1$  is. Thus  $\mathcal{M}_1$  corresponds to an intuitionistic, classical, or regular \*-structure iff  $\mathcal{M}$  does.

PROOF. Let

$$X = \mathcal{F} \cup \mathcal{H}^t \cup [ ]{|D| | D \in \mathcal{F}}.$$

We look at the classical structure with base set and relations, constants corresponding to these in  $\mu$  plus some others. Thus for a relation  $R(x_1, \ldots, x_n) \in u$ we have a relation  $R'(y, x_1, \ldots, x_n)$  which holds iff y is a digram and  $R(x_1, \ldots, x_n)$  holds in y. We also have monadic predicates corresponding to  $\mathcal{F}, \mathcal{H}, \mathcal{H}^t, \bigcup \{|D| \mid D \in \mathcal{F}\}$ . In addition we have a function f of two arguments such that

$$f(x,y) = x(y) \qquad \qquad \text{whenever } x \in \mathcal{H}^t \text{ and } y \text{ in some } D,$$
  
where  $x : D \to D',$ 

= something *not* an element if the conditions are not fulfilled.

Then we have the following. For each formula A of  $\mathcal{L}^{M}_{\mu*D}$ , there is a formula A' in the language of M with constants from |D|, such that

$$\mathcal{M} \models A$$
 iff  $M \models A'$ .

Moreover, there are formulae of M expressing various properties of  $\mathcal{M}$  mentioned. Now take a countable substructure  $M_1$  of M and take the  $\mathcal{M}_1$  corresponding.

Special cases of this theorem include: classical structures, intuitionistic structures, regular \*-structures and rigid D-structures. Note that many properties not explicitly mentioned will be elementary in M (possibly after expanding the language) and will be inherited by  $M_1$ .

Game theoretic arguments can be used to give very direct proofs of many results of [EGGdJ] about regular \*-structures.

## 3 The logic of *D*-structures

We recall the three systems M, M', M'' for modal quantificational logic. M consists of

- 1. the axioms and rules for the predicate calculus,
- 2. the axioms

$$\begin{array}{c} A \to \diamond A \\ \Box A \leftrightarrow \neg \diamond \neg A \\ \diamond (A \lor B) \leftrightarrow \diamond A \lor \diamond B, \end{array}$$

3. the rules

and

if  $\vdash A \leftrightarrow B$  then  $\diamond A \leftrightarrow \diamond B$ if  $\vdash A$  then  $\Box A$ .

**Theorem 19** All theorems of M are valid in all D-structures.

**PROOF.** It is clear that the axioms are valid and the rules preserve validity.

The system M' is **S4** and is obtained by adding the axiom  $\Box A \to \Box \Box A$ . The system M'' is **S5** and is obtained by adding, in addition, the axiom  $(\diamond \Box A) \to \Box A$ .

**Definition 20**  $\mathcal{M} = \langle \mathcal{F}, \mathcal{H} \rangle$  is *filtered* if for all allowable maps  $f : D \to D'$ ,  $g : D \to D''$  there exist D''', h, k such that the diagram



commutes.  $\mathcal{M}$  is weakly filtered if  $\langle \mathcal{F}, \mathcal{H}^t \rangle$  is filtered.

**Theorem 21** If  $\mathcal{M}$  is a category then  $\mathcal{M}\models$ **S4**.

**PROOF.** Immediate from the definition.

The converse is not true. Suppose we have a situation



where  $g \circ f$  belongs to  $\mathcal{H}$  but  $g' \circ f'$  does not. However  $D'_1$  is a copy of  $D_1$  as far as D is concerned. Then the structure given above will act logically like a category. We do not know if there are any nontrivial examples.

Acknowledgements: I thank K. Georgatos for transcribing my handwritten notes and Ruili Ye for some corrections.

## References

- [EGGdJ] A. Ehrenfeucht, J. Geiser, C. E. Gordon and D. H. J. de Jongh. A semantics for non iterated local observation. Preprint 197?
- [Eh74] Andrzej Ehrenfeucht "Logic without Iterations" Proceedings of the Tarski Symposium (1974) pp. 265-268.
- [Fit69] Melvin C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North-Holland, Amsterdam, 1969.
- [GJP72] Dick H.J.de Jongh, Nick Goodman and Rohit Parikh "On Regular \*-structures with Classical Theories", J. Symb. Logic 37 (1972) 777.
- [Pa72] Rohit Parikh "D-Structures and their Semantics", Notices of the Amer. Math. Soc. 19 (1972) A329.
- [PM72] Rohit Parikh and John Mayberry "D-structures and \*-structures", Notices of the Amer. Math. Soc. 19 (1972) A454.