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Abstract

In these notes we shall be concerned with a semantic object which is a generalization
of classical structures, Kripke structures and the regular ∗-structures of Ehrenfeucht-
de Jongh. We shall start by showing how these different cases can be obtained by
imposing different regularly conditions on the basic object (D-structures) and the se-
mantics can then be directly interpreted into the semantics of D-structures. We shall
then give a game-theoretic explanation of the semantics of the D-structures from which
the finite model property of regular ∗-sructures can be easily obtained. We go on to
look at the proof theory of these objects.
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1 Introduction

In this survey we shall show that a D-structure is a very flexible (but nontriv-
ial) type of object and includes classical structures, intutionistic structures1,
and the regular ∗-structures of Ehrenfeucht-de Jongh as special cases The in-
tuitive idea is this. At any moment of time, what we know about the world
is a finite amount, but as time passes, and if our memory is good, this finite
amount increases. In other words, the old information is embedded in the new
information. The way in which the old information is embedded can be chosen
in various possible ways and these different choices lead to different semantics.

In the following, µ will be a finite relational type. Constants are permitte
but not function symbols.

Definition 1 A D-structure M of type µ consists of two objects:

1. a family F of finite relational structures (diagrams), all of type µ and

2. a family H of homomorphisms between elements of F . H includes all
the identity maps. Ht is the closure of H under composition and clearly
〈F ,Ht〉 will be a category.

Remark: Note that homomorphisms preserve atomic formulae but not nec-
essarily their negations. Members of H will be called allowable maps.

Definition 2 A D-structure M will be said to be rigid if all allowable maps
are inclusions. It is directed if given D1, D2 in F there is a D3 and allowable
maps p1 : D1 → D3 and p2 : D2 → D3. M is weakly directed if 〈F ,Ht〉 is
directed.

Definition 3 Let A be a sentence of the language Lu augmented by constants
from a diagram D (we shall take the elements themselves to be these constants)
and modal operators 2 and �. We recall that 2 means “necessarily” and �
means “possibly”. We define M,D|=A by induction on the complexity c(A) of
A.

1. c(A) = 0. Then M,D|=A iff A is true in D.

2. A = B ∧ C. Then M,D|=B ∧ C iff M,D|=B and M,D|=C.

3. A = B ∨ C. Then M,D|=B ∨ C iff M,D|=B or M,D|=C.

4. A = ¬B. Then M,D|=¬B iff M,D 6 |=B.

5. A = (∃x)B(x). Then
M,D|=(∃x)B(x) iff there exists a ∈ |D| such that M,D|=B(a).

6. A = (∀x)B(x). Then
M,D|=(∀x)B(x) iff for all a ∈ |D|, M,D′|=B(a).

7. A = 2B(a1, . . . , ak). Then
M,D|=2B(a1, . . . , ak) iff for all allowable f : D → D′,

M,D′|=B(f(a1), . . . , f(ak)).

1 The finiteness requirement on elements ofM has to be dropped in this case, for technical
reasons on the diagrams.

2



8. A = �B(a1, . . . , ak). Then
M,D|= �B(a1, . . . , ak) iff for some allowable f : D → D′,

M,D|=B(f(a1), . . . , f(ak)).

In 7, 8 the constants from |D| are explicitly displayed.
Before studying D-structures in general we shall verify the claim made on

before Definition 1.

Definition 4 Let A be a formula of the language Lµ∗D, i.e. Lµ with constants
from |D|. Ac is the formula obtained from A if we replace ∃ everywhere by �∃
and ∀ everywhere by 2∀.

Theorem 5 Let A be a classical µ-structure. Mc(A) = M is th D-structure
where F consists of all finite substructures of A. H consists of all inclusion
maps. (Thus M is directed and rigid.) A is any sentence of Lµ∗D. Then

A|=A iff M,D|=Ac,

where D contains all constants of A.

Proof. ¬, ∨, ∧ and atomic sentences are trivial. Suppose now that A is
(∃x)B(x, a1, . . . , ak) then Ac is �(∃x)Bc(x, a1, . . . , ak).

[left to right] Suppose A|=A. Then there is an a ∈ |A| such that

A|=B(a, a1, . . . , ak).

Let D′ be a substructure containing D and a. Then by induction hypothesis,
M,D′|=Bc(a, a1, . . . , ak) hence M,D′|=(∃x)Bc(x, a1, . . . , ak) hence

M,D|= � (∃x)Bc(x, a1, . . . , ak).

I.e. M,D|=Ac.
[right to left] Suppose

M,D|= � (∃x)Bc(x, a1, . . . , ak)

then there is a D′ such that D ⊆ D′ and a ∈ D′ such that
M,D′|=Bc(a, a1, . . . , ak). But then A|=B(a, a1, a2, . . . , ak) and hence

A|=(∃x)B(x, a1, a2, . . . , ak).

The ∀ case is similar.

Theorem 6 Let M be a directed, rigid D-structure. Let

A =
⋃

Da∈F
Da.

(This union makes sense since M is directed and rigid.) Then, for sentences
A of Lu∗A, we have if D contains all constants of A,

M,D|=Ac iff A|=A.

Proof. Quite similar to above.
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Definition 7 Let A be a formula of the intuitionistic predicate calculus with
symbols from µ and additional constants. We define Ai by induction on c(A).

1. c(A) = 0, Ai = A

2. A = B ∧ C, Ai = Bi ∧C i

3. A = B ∨ C, Ai = Bi ∨C i

4. A = ¬B, Ai = 2¬Bi

5. A = B → C, Ai = 2(Bi → C i)

6. A = (∀x)B(x), Ai = 2(∀x)Bi(x)

7. A = (∃x)B(x), Ai = (∃x)Bi(x).

(In cases 2,3,7, we could take Ai = 2(∃x)Bi(x) etc. and the next theorem
will still hold.)

Definition 8 Let A be an intuitionistic structure (as in [Fit69] p.46). Let
DΓ be the structure with base set P (Γ), and in which precisely those atomic A
hold where Γ|=A. There is a homomorphism (which comes from set inclusion)
from DΓ to DΓ′ just in case R(Γ,Γ′). Then, M = Mi(A) is 〈F ,H〉 where
F = {DΓ : Γ ∈ G} and H consists of the homomorphisms just mentioned.

Theorem 9 Let A be a sentence in P̂ (Γ). Then

M,DΓ|=Ai iff Γ|=A.

Proof. The proof is immediate if A is atomic. Also, ∧,∨,∃ will work in a
parallel way. Suppose A = ¬B. Then, Ai = 2¬Bi. We have:

Γ|=¬B iff for all Γ∗, Γ∗ 6 |=B
iff for all DΓ∗ , M,DΓ∗ 6 |=B (ind. hyp)
iff for all DΓ∗ , M,DΓ∗ |=¬B
iff M,DΓ|=2¬Bi

A = B → C and A = (∀x)B(x) are similar.

Suppose now that M = 〈F ,H〉 is a D-structure which is a category. We
construct a Kripke structure corresponding to M. Given D ∈ F , a selection S
for D is a set of maps into D such that if there are any maps D′ → D there is
just one such map in S. Take G = the set of all pairs < D,S >, where D ∈ F
and S in a selection for D. For Γ = < D,S > ∈ G, take P (Γ) = |D| and
an atomic sentence A in P(Γ) is forced by Γ iff it holds in D. We let ΓRΓ′ iff
there is a map g ∈ S′, g : D → D′ such that for all f ∈ S, f ◦ g ∈ S′. (We point
out that given g : D → D′ there is always such an S′.)

Theorem 10 For A in the language of IPC with constants from D, with Γ =
〈D,S〉,

Γ|=A iff M,D|=Ai.

Proof. Quite routine. To check one case, suppose A = ¬B. Then, Ai = 2¬Bi.
Then,
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Γ|=A iff ∀Γ∗, Γ∗ 6 |=B
iff ∀D′ with allowable g : D → D′, M,D′ 6 |=Bi

iff ∀D′ with allowable g : D → D′, M,D′|=¬Bi

iff M,D|=2¬Bi

etc.

Definition 11 Let A be a (classical) structure of type µ and f a permutation
o |A|. Then f(A) is the structure with base set |A| in which

f(A)|=R(f(a1), f(a2), . . . , f(an)) iff A|=R(a1, a2, . . . , an),

where R ∈ u and a1, a2, . . . , an ∈ |A|. A regular ∗-structure over A is a family
{f(A) | f ∈ G}, where G is some group containing all finite permutations of
|A|.

Definition 12 Let M be a family of first order structures all of the same
type µ and with the same base set X. If X0 ⊆ X, M ∈M then

M[X0,M ] = {N | N ∈M and N |X0 = M |X0}

Definition 13 (Ehrenfeucht) LetM be a regular ∗-structure on A. X0 ⊆ |A|,
M ∈ M. A is a sentence of Lµ∗X0 . We define M[X0,M ]|=A by induction on
c(A).

1. c(A) = 0. Then M[X0,M ]|=A iff M |=A.
(Note: this depends only on M |X0 .)

2. A = B ∧ C. Then
M[X0,M ]|=A iff M[X0,M ]|=B and M[X0,M ]|=C.

3. A = B ∨ C. Then
M[X0,M ]|=A iff M[X0,M ]|=B or M[X0,M ]|=C.

4. A = ¬B. Then
M[X0,M ]|=A iff M[X0,M ] 6 |=B.

5. A = (∃x)B(x). Then
M[X0,M ]|=A iff there exist a ∈ X, b ∈ X0 ∪ {a}, N ∈M[X0,M ]

such that M[X0 ∪ {a},N ]|=B(b).

6. A = (∀x)B(x). Then
M[X0,M ]|=A iff for all a ∈ X, b ∈ X0 ∪ {a}, N ∈M[X0,M ],

M[X0 ∪ {a},N ]|=B(b).

Theorem 14 Let M be a regular ∗-structure on A. Let M1 = 〈F ,H〉 be
defined as follows

F = all finite submodels Di of A,

H = all monomorphisms D → D′ with D′ −D ≤ 1.
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Let X0 = {a1, a2, . . . , an}, A(a1, a2, . . . , an) ∈ Lu∗X0 , M ∈M and

b1, b2, . . . , bn ∈ |A| such that A|b1,b2,...,bn = M |a1,a2,...,an .

Then

M[X0,M ]|=A(a1, a2, . . . , an) iff M1,D|=Ac(b1, b2, . . . , bn),

where {b1, b2, . . . , bn} ⊆ |D|.

Proof. Trivial if A is atomic, a negation, conjuction, or disjunction.
Suppose A = (∀x)B(x). Then, M[X0,M ]|=A(a1, a2, . . . , an) gives, for all

N, a, b as provided,

M[X0 ∪ {a},N ]|=B(a1, a2, . . . , an, b).

Now, let g : D → D′ be an allowable map. We need to show that

M,D′|=Bc(g(b1), . . . , g(bn), c), for all c ∈ |D′|.

Now, there is a permutation φ such that φ(g(bi)) = ai. Take a = φ(b), where
b ∈ D′− g[D], if D′ 6= g[D] and let a ∈ {a1, . . . , an} otherwise.Let b = φ(c). Let
N = φ(A). Then

N |{a1,...,an} = M |{a1,...,an}
' A|{b1,b2,...,bn}
' A|{g(b1),g(b2),...,g(bn)}.

and we get
M[X0 ∪ {a},N ]|=B(a1.a2. . . . , an, b)

hence
M,D′|=Bc(g(b1), . . . , g(bn), c)

Thus
M,D′|=(∀x)Bc(g(b1), . . . , g(bn), x)

Hence,
M,D|=2(∀x)Bc(g(b1), . . . , g(bn), x)

which was to be proved.
The backward argument and the ∃ case are quite similar.

We now show that a D-structure M = 〈F ,H〉 corresponds to a regular
∗-structure if

1. M is weakly directed,

2. D ∈ F and D′ ⊆ D → D′ ∈ F ,

3. the allowable maps are those monomorphisms D → D′ where

D′ = D ≤ 1.
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Theorem 15 Let M be a D-structure as above. Choose a maximal subfamily
K ⊆ Ht such that K is closed under composition and K contains at most one
map from any D to D′. Let A be the direct limit of F under K, and M1 a
regular ∗-structure on A. Suppose X0 ⊆ |A|, M ∈M1 and D,a′1, a′2, . . . , a′n are
such that D ∈ F and D|{a′

1,a′
2,...,a′

n} ' M |X0 . Then,

M1[X0,M ]|=A(a1, a2, . . . , , an) iff M,D|=Ac(a′1, a
′
2, . . . , a

′
n).

Proof. The proof is straightforward.

2 A Game Theoretic Characterisation

Let µ be a relational type, M a D-structure of type µ, D ∈ M, L = LMµ∗D
the language of modal logic (with quantifiers) and nonlogical symbols from µ
and |D|, A a closed formula of L. We define a game GA,D by induction on the
complexity of A. (1), (2) are two players.

1. A is atomic. GA,D is won by (1) iff D|=A. Otherwise, it is won by (2).

2. A = B∧C. Player (2) may choose either game GB,D or GC,D which is then
played.

3. A = B∨C. Player (1) may choose either game GB,D or GC,D which is then
played.

4. A = ¬B. (1) wins GA,D iff (s)he loses GB,D.

5. A = (∀x)B(x). Player (2) chooses an a ∈ |D|. The game GB(a),D is then
played.

6. A = (∃x)b(x). Player (1) chooses an a ∈ |D|. The game GB(a),D is then
played.

7. A = 2B(a1, a2, . . . , an). Player (2) chooses an f : D → D′, f ∈ H. The
game GD′,B(f(a1),f(a2),...,f(an)) is then played.

8. Like (7) except player (1) chooses the f .

(In 7, the elements of |D| are displayed.)

Theorem 16 M,D|=A iff player (1) has a winning strategy for GA,D.

Corollary 17 Let M = GM be a regular ∗-structure where M is classical and
G is a group containing all finite permutations of |M |. Let A closed such that,
M|=A. There exists a finite X ⊆ |M | such that if N = M |X and G1 = all
permutations of X, then G,M |=A. (This can be called the “finite model prop-
erty”.)

Proof. Let l = c(A). There are only finitely many possible diagrams of type
µ and size ≤ l (upto isomorphism). Choose Xi ⊆ M such that M |Xi is a
representative of the ith type occuring inside M . Let X = the union of all the
Xi. Let N = M |X .
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Let M1 be the D-structure consisting of all diagrams in N with allowable
maps being monomorphisms D → D′ with D′ −D ≤ 1.

M2 is the analogous D-structure for M .
Then, clearly, a closed formula of complexity ≤ l holds in M1,D iff it holds

in M2,D, where D is the empty diagram. Hence, we get

GM |=A iff M2|=A
iff M1|=A
iff G,N |=A

using theorem 14.

Theorem 18 (Skolem-Lowenheim theorem for D-structures) Let
M = 〈F ,H〉 be a D-structure. Then there exist countable F1, H1, F1 ⊂ F ,
H1 ⊂ H such that for all D ∈ F1, A ∈ LM

µ∗D,

M1 = 〈F1,H1〉|=A iff M|=A.

Moreover, M1 is rigid, directed, weakly directed as a category etc. iff M1 is.
Thus M1 corresponds to an intuitionistic, classical, or regular ∗-structure iff
M does.

Proof. Let
X = F ∪Ht ∪

⋃
{|D| | D ∈ F}.

We look at the classical structure with base set and relations, constants cor-
responding to these in µ plus some others. Thus for a relation R(x1, . . . , xn) ∈ u
we have a relation R′(y, x1, . . . , xn) which holds iff y is a digram and
R(x1, . . . , xn) holds in y. We also have monadic predicates corresponding to
F , H, Ht,

⋃{|D| | D ∈ F}. In addition we have a function f of two arguments
such that

f(x, y) = x(y) whenever x ∈ Ht and y in some D,
where x : D → D′,

= something not an element if the conditions are not fulfilled.

Then we have the following. For each formula A of LM
µ∗D, there is a formula A′

in the language of M with constants from |D|, such that

M|=A iff M |=A′.

Moreover, there are formulae of M expressing various properties of M men-
tioned. Now take a countable substructure M1 of M and take the M1 corre-
sponding.

Special cases of this theorem include: classical structures, intuitionistic
structures, regular ∗-structures and rigid D-structures. Note that many proper-
ties not explicitly mentioned will be elementary in M (possibly after expanding
the language) and will be inherited by M1.

Game theoretic arguments can be used to give very direct proofs of many
results of [EGGdJ] about regular ∗-structures.
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3 The logic of D-structures

We recall the three systems M , M ′, M ′′ for modal quantificational logic.
M consists of

1. the axioms and rules for the predicate calculus,

2. the axioms
A → �A

2A ↔ ¬ � ¬A
�(A ∨B) ↔ �A ∨ �B,

3. the rules
if ` A ↔ B then � A ↔ �B

and
if ` A then 2A.

Theorem 19 All theorems of M are valid in all D-structures.

Proof. It is clear that the axioms are valid and the rules preserve validity.

The system M ′ is S4 and is obtained by adding the axiom 2A → 22A. The
system M ′′ is S5 and is obtained by adding, in addition, the axiom (�2A) →
2A.

Definition 20 M = 〈F ,H〉 is filtered if for all allowable maps f : D → D′,
g : D → D′′ there exist D′′′, h, k such that the diagram

D

D′

D′′

D′′′

f

g

h

k

�������*

HHHHHHHj

HHHHHHHj

�������*

commutes. M is weakly filtered if 〈F ,Ht〉 is filtered.

Theorem 21 If M is a category then M|=S4.

Proof. Immediate from the definition.

The converse is not true. Suppose we have a situation

D

D′
1

D1

D2

f ′

f

g′

g

�������*

HHHHHHHj

HHHHHHHj

�������*
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where g ◦ f belongs to H but g′ ◦ f ′ does not. However D′
1 is a copy of D1 as

far as D is concerned. Then the structure given above will act logically like a
category. We do not know if there are any nontrivial examples.

Acknowledgements: I thank K. Georgatos for transcribing my handwritten
notes and Ruili Ye for some corrections.
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