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OPEN PROBLEMS IN LOGIC AND GAMES

Johan van Benthem, Amsterdam & Stanford, June 2005

1 The setting, the purpose, and a warning  

Dov Gabbay is a prolific logician just by himself. But beyond that, he is quite good at

making other people investigate the many further things he cares about. As a result,

King's College London has become a powerful attractor in our field worldwide. Thus,

it is a great pleasure to be an organizer for one of its flagship events: the Augustus de

Morgan Workshop of 2005. Benedikt Loewe and I proposed the topic of 'interactive

logic' for this occasion, with an emphasis on social software – the logical analysis and

design of social procedures – and on games, arguably the formal interactive setting par

excellence. This choice reflects current research interests in our logic community at

ILLC Amsterdam and beyond. In this broad area of interfaces between logic, computer

science, and game theory, this paper is my own attempt at playing Dov. I am, perhaps

not telling, but at least asking other people to find out for me what I myself cannot.

A word of historical clarification may help here. The last time the Dutch came up the

Thames (in 1667), we messed up the harbour, burnt down a few buildings, and took the

English flagship the Royal Charles with us as a souvenir. The Medway Raid was still

commemorated as late as 1967 in a joint ceremony. This time, however, our intentions

are wholly peaceful. May the Great Game of logic flourish to the benefit of all!

What follows is a sketch of some research lines on logic and games, which occur in

logic itself, computer science, and game theory. What I personally find most interesting

about these recent interfaces is the importance of interaction between several agents as

a fundamental theme in logic itself, and the new ways in which mathematical logics of

computation and philosophical logics of epistemic attitudes come together. The

following story is just my attempt at systematizing issues and problems. There is no

pretense at completeness. Comments – and solutions – are highly welcome!

A warning beforehand is in order though, to set the right expectations for the reader.

The descriptions of themes and open problems in this paper are more like a light

tourist guide for Places To Visit, than one for specific Things To Do. This reflects the

tentative state of the area of Logic and Games. It is less centered around one well-

established  family of formal systems than dynamic epistemic logic of information

update, where I have surveyed open problems earlier this year (van Benthem 2005C).
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2 Logic and Games

Logic and games meet in several different ways.

Logic games  First, argumentation itself is a sort of game where opposing players can

win or lose. And thus, in addition to its more dominant semantic or deductive

underpinnings, logical validity also has a game-like aspect of winning strategies for

players defending valid conclusions from given discourse positions. In addition to

argumentation or dialogue games, modern logicians also use a host of other scenarios,

usually two-player games of perfect information, for tasks of semantic evaluation in

given models, model construction, comparison of two models, proof search, or even

general interaction. Some well-known names in these developments are Lorenzen,

Ehrenfeucht-Fraïssé, Hintikka – but one can also mention more recent authors like

Hodges, Abramsky, Girard, or Hirsch & Hodkinson. For references to this literature,

cf. my lecture notes Logic in Games (van Benthem 1999–..., still under construction),

whose main line of exposition for the 'Logic & Games' interface is followed here. A

compact survey of logic games by Wilfrid Hodges is found in the Stanford Electronic

Encyclopedia of Philosophy: http://plato.stanford.edu/entries/logic-games/.

Game logics But indeed, general games of any sort have an obvious logical structure as

multi-actor process graphs that can be described in some logical language. This invites

the use of logical machinery, in addition to the standard mathematics of game theory.

One stream here consist of process languages like modal or dynamic logic, fixed-point

languages, temporal logic, or linear logic. This links up with research in logics of

computation, and in principle, it provides all the benefits achieved there for games as

well: such as better understanding of algorithms, and perhaps even better design.

But there is also another stream. From the outset, the predictions of game theory about

equilibria that 'rational' players will or must choose have been a matter of intensive

debate. Here, logic has entered since the 1970s as an analysis of the knowledge and

beliefs of players underpinning their choices, and the deliberations that go into them.

Thus, epistemic logic, conditional logic, and other high-lights of philosophical logic

have entered the scene (partially discovered independently by game theorists),

promising conceptual clarification of the issues involved, as well as a more systematic

view of options for 'rational' agents and rational procedures.  

'Game logics' are logical systems designed for the purpose of analyzing games.  

Modern game logics often combine the preceding two aspects, so that one could – and

does – have 'epistemic dynamic logics' for analyzing the strategies that a player might

consider or choose in a given game. Other current topics in this area concern more
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generic structure of games in general, such as the analysis of general game-forming

operations and the resulting algebraic laws. Such issues often cross over into the

special area of logic games – making the above distinction between logic games and

game logics one of convenience, rather than of principle. E.g., van Benthem 2003B

shows that special predicate-logical evaluation games are complete for the algebra of

sequential operations on arbitrary games. Finally, as in other newly developing areas,

there is a tendency to design new logics and coin new terminology, rather than using

the more boring expedient of using existing ones, like standard first-order and modal

logic. Who wants to use old tools when the World looks fresh and new? We will also

be guilty of this, though we also mention some more conservative  approaches.

General activities and information   Material on the Logic/Games interface may be

found at several places in the literature, though there is no standard source, let alone a

textbook. But cf. van Benthem 1999–..., Hodges 1998, van der Hoek & Pauly 2005 for

some broader perspectives. The Amsterdam web page http://www.illc.uva.nl/~lgc is a

public resource under construction, pointing at relevant papers and journals. Regular

conferences serving as a forum for work in this area include TARK (www.tark.org),

and LOFT (http://www.econ.ucdavis.edu/faculty/bonanno/LOFT6.html and the more

ad-hoc but quite frequent GLC meetings (http://www.illc.uva.nl/lgc/events.html).

Congenial activities at the games computer science interface include networks such as

the EC-sponsored GAMES, based in Aachen (http://www.games.rwth-aachen.de).

Here and elsewhere, for precise definitions of basic notions concerning games, we refer

to the literature. A good compact reference is Osborne & Rubinstein 1994, while

Hofbauer & Sigmund 2002 is an up-to-date one on modern evolutionary game theory.

2 Extensive Games as Processes

Extensive games of perfect information are trees whose nodes represent stages of the

game, while leaves represent possible final outcomes, which players can evaluate, and

compare as to their individual preferences. Players' turns are indicated at all non-final

nodes, and arrows pointing to daughter nodes represent their possible moves there.

Game trees can be finite or infinite. In the latter case, infinite branches may sometimes

be a nuisance, such as a computer getting stuck forever in a loop, or in argumentation,

a person's eternal inability  to come to the point. But infinite branches can also be

viewed positively as unbounded histories of successful interaction, as with unlimited

computational facilities like the internet, or indeed, the functioning of social life.

Whether finite or infinite, game structures are much like those used in computer

science or logic for representing processes via graphs, trees, or other mathematical
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notions. Thus, immediate analogies spring to mind with well-known logics for

describing computational processes and general action. We list a few topics here.

Caveat   The following questions are mainly concerned with comparing different

approaches, and unification across different traditions. A more ambitious goal would

be the study of wholly new topics that belong to neither logic nor game theory as

normally conceived. A good mine for clues is the extensive body of work on games in

temporal logic, where issues arise by mixing standard questions about games with

those about computational processes (cf. van der Meyden 2005, Ramanujam 2005).

2.1 Game equivalence and bisimulation   

Computational logics do not have one fixed level of detail for studying processes and

actions. Just as in different mathematical theories of space (affine or metric geometry,

topology, linear algebra), there are legitimate choices  of structural similarity relations,

reflecting what structure of a process one finds of interest (van Benthem 1996). The

spectrum runs from output-oriented identifications like finite trace equivalence,

through the finer modal bisimulation which also record internal choice points for

agents involved in the process, to the most demanding notion of isomorphism. The

same spectrum makes sense for games (van Benthem 2002A), from equivalence of

players' powers for determining final outcomes, through modal game bisimulation, to

again stronger notions of isomorphism preserving more game structure.

Action equivalence  versus outcome equivalence  Consider the following two games ,

which represent evaluation of the two sides of the logical law of Distribution:

p � (q � r)  � (p� q) � � p� r):

   A       E

          L        R              L  R

       p             E                A        A

        L      R     L       R   L        R

      q          r     p  q           p   r

Are these games the same? The answer depends on our level of interest:

(a) If we focus on turns and moves, then the two games are not equivalent.

For they differ in ‘protocol’ (who gets to play first) and in choice structure. This

natural level for looking at games with local moves and choices is that of modal

bisimulations. But one might also look at the achievable outcomes only. And then,

(b) If we focus on outcomes only, then the two games are equivalent.

The reason is that players can force the same sets of outcomes across games:
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A can force the outcome to fall in the sets  {p}, {q, r},

E can force the outcome to fall in the sets  {p, q}, {p, r}.

Here ‘forcing’ refers to sets of outcomes guaranteed by strategies for players, their

'powers'. A strategy forces a set X if all outcomes of the game, with arbitrary play by

the others, fall inside X. In the left-hand tree, A has 2 strategies, and so does E, yielding

the listed sets. In the right-hand tree,  E has again 2 strategies, while A has 4: LL, LR,

RL, RR. Of these, LL yields the outcome set {p}, and RR yields {q, r}. But LR, RL

guarantee only supersets {p, r}, {q, p} of {p}: i.e., weaker powers. Thus the same

control results in both games. More generally, at an input–output level, propositional

distribution switches the scheduling of a game without affecting players’ powers.

An appropriate bisimulation for this outcome level of game equivalence has been

proposed in many areas independently (van Benthem, van Eijck & Stebletsova 1994):

A power bisimulation between game models M, N is a relation

Z  between game states in M, N satisfying the two conditions:

(1) if  x Z y, then x, y satisfy the same proposition letters.

(2a)  for each  i, if  x Z y and i can force U starting from x,

then there is a set V which i can force starting from y,

such that � v � V  � u � U: u Z v

(2b) vice versa from y to x.

Thus, game equivalences come in varieties depending on one's level of interest: from

coarser to finer. But there has been no systematic theory so far of all natural levels.

� Problem 1 What are natural structural equivalences for games?

So far, we have only considered 'game forms' without the preferences among outcomes

that make for real games. But the same equivalence levels approach also works when

extra structure is present in games, such as players preferences (cf. Section 2.3).

Invariants and languages   Structural similarities among processes or games induce a

set of properties that are invariant: i.e., they hold for one structure if and only if they

hold for its structural equivalents. Invariants can typically be described in a language –

usually some logical formalisms describing just those properties that are relevant at the

given equivalence level. A typical result underpinning this connection says that two

finite models are isomorphic iff they satisfy the same first-order sentences. There are

much more sophisticated connection results in this vein, some of them involving (...)

logic games of model comparison, viz. the well-known Ehrenfeucht-Fraïssé games. In

process logics, one simple connection result in the same spirit says that
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There exists a bisimulation between two finite rooted process models (M, s)

and (N, t) iff the roots s, t satisfy the same formulas in the modal proposi-

tional language describing available moves and atomic properties of nodes.

A similar approach works for extensive games. Choosing a description level matches

choosing a particular logical language, modal, first-order, or yet other, to describe

properties of nodes in game trees. We start with some obviously available candidates.

2.2   Modal and dynamic logics for moves and strategies

Modal logic  Propositional modal logic describes process models

M = (S, (Ra}a, V)

with modal formulas � stating properties of states s 	 S, such as

 [a]<b>p: after every Ra-step from s to any t, there is an

Ra–step from t to some state u where p holds.

This 
 �  pattern of successive modalities is typical for interaction between players: any

a-move can be countered by some suitably chosen b-move leading to an outcome p.

Thus, modal logic describes possible moves and choices for players in a game tree.

The  modal similarity type for the latter looks roughly like this:

M   =   (NODES, MOVES, PLAYERS, turn, end, VAL)

Dynamic logic  A more explicit account of players' plans and strategies requires a

richer propositional dynamic logic PDL which also has programs � describing binary

relations between states, representing the transitions corresponding to successful

executions of � . One can think here of computation steps – but by now, PDL is used

as a very general logic for describing any complex action. These are constructed

from atomic moves a and tests ? �  by the three sequential

operations  of composition ;, choice   , and finite iteration *.

This language describes game trees in more detail than basic modal logic, using  e.g.,

iterations of single moves to describe arbitrary finite paths. But even more importantly,

PDL can describe the fundamental game-theoretic notion of a strategy. For, a player's

strategy is nothing but a binary relation giving her a move at each of her turns – where

non-deterministic strategies may even allow more than one option. Natural descriptions

of interactive strategies have precisely the sequential and conditional format of PDL:

"IF your opponent plays a, THEN play b ELSE play c",

"WHILE your have not reached some goal, DO move a".
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It is also easy to see that, at least in finite games, PDL can easily describe the unique

outcome states of games when players i play a profile of functional strategies � ��� i.
� ��� –calculus and LFP(FO)  Beyond PDL, richer fixed-point languages such as the

modal � –calculus define arbitrary smallest and greatest fixed-point predicates in the

modal language by means of recursive definitions. This genuine extension of PDL is

needed for a faithful rendering of basic game-theoretic algorithms such as Zermelo

Colouring when showing that finite two-player zero-sum games are determined. E.g.,

winning nodes for player i in such a game tree are defined by the following recursion:

WINi   �   (end & wini) � (turni & <E> WINi) � (turnj & [A] WINi)

Thus we can view the predicate WINi  as the smallest fixed-point defined by   

� p•  (end & wini) � (turni & <E> p) � (turnj & [A]p)

Van Benthem 2003C claims that game-theoretic equilibria essentially express fixed-

points in a general mathematical sense. But which ones, and definable where?

Note in any case that the � –calculus can also define behaviour of infinite branches, by

means of modal � –operators for greatest fixed-points. This reflects another strong

intuition about games, viz. the infinite-stream-like behaviour of strategies. If I am ill,

my strategy is to consult my doctor, and extract an advice. After that, my strategy

returns - intuitively - to exactly the same state as before. This suggests that game logics

will either involve both types of fixed-point, and may even suggest a co-algebraic

treatment of strategies – as has been proposed by Baltag, Moss, Venema  and others.

I feel that existing modal fixed-point languages, or their first-order extensions such as

LFP(FO (Ebbinghaus & Flum 1995, van Benthem 2004B) provide excellent means for

describing interactive game forms, i.e., the structure of moves and abstract outcomes –

while preference structure can also be added later without major difficulties. One good

way of testing this idea is by looking at existing notions and results in game theory:

� Problem 2 Do a standard formalization program for key theorems, proofs,

and algorithms in game theory, and see which existing logics are necessary.

E.g., De Bruin 2004 analyzes Backward Induction in  a � –calculus setting, with some

atomic propositions added for utility values. Van Benthem 1999– analyzes the proof of

the Gale-Stewart Theorem (extending Zermelo's colouring argument to infinite games),

identifying its Key Lemma as a law in a temporal logic of players' powers. Harrenstein

2004 provides further game logics (developed jointly with van der Hoek, Meijer, and

others) for similar purposes. So, why don't we just use standard logical systems – and
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then import what we already know about their deductive apparatus and computational

complexity for task like model checking or satisfiability? Why create new game logics?

Part of this may just be the New World philosophy mentioned before: 'never keep old

clothes when you can buy new ones'. A more respectable part of the new system

design, however, is the general 'modal philosophy' in process logic: try to see what

simple special-purpose languages do the job of analyzing classes of games, striking a

good balance between expressive power and computational complexity.

2.3 Adding preferences   

A bare game form only becomes a genuine game with some real drama for rational , or

irrational, actors when we look at pay-offs and preferences. For instance, consider the

earlier two games for Distribution, but now with the following preferences for players:

E p:  0 q: 2 r: 1

A p: 1 q: 0 r: 2

Here are the pairs  (A–value, E–value)  computed by the usual BI algorithm computing

node values in a bottom-up manner, starting from the leaves:

1, 0      2, 1

1, 0 0, 2  1, 0        2, 1

   0, 2          2, 1     1, 0           0, 2 1, 0         2, 1

These numerically annotated trees have roots which predict unique outcomes for the

joint behaviour of the players.  And these predictions are different on the two sides!

� Problem 3     Define good game equivalences when preferences are present.

Further analysis of games with preferences can be done in many ways (van Benthem

1999, JoLLI), but it does need a merge modal dynamic logics with preference logics.  

� Problem 4 Integrate game logics with the older preference logics.

I do not see one best formalism yet, but cf. Bonanno 1991, Harrenstein, van der Hoek,

Meijer & Witteveen 1999, van der Hoek, van Otterloo & Wooldridge 2004, Pauly

2001, Van Otterloo 2005, and Van Otterloo & Roy 2005 for ongoing attempts. In

particular, the latter paper has a perspicuous analysis of Backward Induction

arguments with minimal means, viz. a dynamic-preference logic with simple reduction

axioms relating backward induction subgames to available future moves. One

limitation to all these analyses, however, is the compositional simplicity of Backward

Induction, with current best actions built up in terms of those in subtrees lower down.
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Logical analyses of more complex game-theoretic solution concepts in a direct modal-

dynamic-preference setting are scarce. This will become particularly acute once games

with imperfect information are considered (Section 4). But cf. again De Bruin 2004

on extensive games in a 'proof-theoretic' format which achieves greater generality.

Deontic logic  Another take on preferences involves so-called deontic logics of

obligations and permissions. For the standard account of this and other branches of

philosophical logic, see the relevant chapter in the Handbook of Philosophical Logic.

In particular, a deontic statement O �  says that � is true in all 'best' worlds accessible to

the present one, with 'best' as seen from the viewpoint of some moral authority. More

generally, conditional obligations O � �  say that

� is true in all the best worlds satisfying the antecedent condition � .  

Now, generalizing the original motivation of deontic logic, one can let the 'authority'

vary here – including players in games themselves, who try to achieve best outcomes

from their own private perspectives. Deontic logic in its standard guise does not use

full-fledged binary comparisons between situations  – as in "anything you can do I can

do better". But it does suggest other interesting variations of relevance to games!

E.g., van der Meyden 1996 has an account of deontic preferences in dynamic logic as

located, not between worlds, but between available actions in a process. This is the

deontic sense in which we can command someone to do something, rather than achieve

something – letting the responsability for the resulting world lie with the commander.

Likewise, we might say: players' preferences could also lie between moves in a game,

not just between their outcome states – and these two perspectives on preference might

be complementary, rather than mutually reducible.

� Problem 5 Integrate deontic logic with dynamic preference logic.

2.4 Rationality assumptions  

The bulk of the mathematics underlying standard game theory consists of a definition

of games and Nash equilibrium between strategies, some basic existence theorems for

strategic equilibrium due initially to Von Neuman and Nash – and a host of refined

notions of equilibrium in the decades after the 1950s, whose proponents tried to zero in

more closely on natural or useful equilibria. But there has always been controversy

surrounding game-theoretic predictions, or recommendations, as the mathematical

model seems too poor to make all relevant considerations explicit. In particular,

whether players will play a Backward Induction  (BI) solution depends on assumptions

that underlie their deliberation.  This is well-illustrated in the Centipede Game:
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A E  A (2, 3)

(1, 0) (0, 2)  (3,1)

Backward Induction predicts that A plays down, blocking the better right region!  

So, which additional assumptions underwrite the BI prediction?  A famous example is

Rationality: the statement that every player will always opt for those available moves

that make her off best in future play. Much work on game logics is about formalisms

defining Rationality and the reasoning based upon it, locking players into the BI

solution, or whatever other notion of equilibrium may be bolstered by additional

assumptions like this. In particular, Aumann has shown a series of results (cf. de Bruin

2004 for an extensive survey and analysis) that, if players have enough common

knowledge of rationality in an extensive game, then backward induction must result.

To a first approximation, these characterization arguments require just dynamic-

preference logics, as above, for their formalization. And then, their structure turns out to

be remarkably similar to earlier arguments found in the philosophy of action. E.g., the

famous Practical Syllogism runs as follows from 'Is's to 'Ought's:

You can do a and b.

You prefer the outcome of a over that of b.

Therefore, you will do a.

� Problem 6  Connect the game logic of rationality with the earlier

logical tradition in the philosophy of action and practical reasoning.

2.5 Epistemic and doxastic logic  

Even so, there is much more to rationality analysis for deriving equilibria. One crucial

aspect to the whole scenario of deliberation is that players do not know yet what others

will do, and what they are going to do themselves. Thus, knowledge becomes important,

and here is where epistemic logic has first entered game theory (cf. Aumann 1976).

This requires an expansion of the notion of a game to that of a model for a game

(Stalnaker 1999), with a space of possible worlds containing different strategy profiles.

These models encode players' knowledge about what actions are possible in the usual

manner by relations of epistemic indistinguishability. Since this topic takes us into

philosophical logic, we postpone further details until Section 4.

More refined models of games in the literature also bring in doxastic structure: i.e.,

beliefs, and their revision, as well as probabilistic expectations concerning moves and
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strategies. Our logical approach to this baroque setting is 'deconstructionist': we start

by looking at subsystems of all this, putting the ingredients only together at the end.

2.6 Game theory and logic: what good does it do?  

Game logics look at fine-structure of games below the usual strategic forms, and they

describe step-by-step behaviour over time which remains hidden in the usual strategic

equilibria. But what good does this do? There have been deep mathematical existence

results for equilibria in games, and on the logic side, there are deep results on meta-

properties of first-order, modal, or yet other calculi. Still, the combination of good

things does not automatically cook well – witness Churchill's famous response about

combining his intelligence with a lady's beauty? But one is of course allowed to hope.

Here are a few things that might be expected:

(a) Systematizing the theory of possible equilibria via their properties as programs

(b) Cleaning up overly complicated notions of game model, such as 'type spaces'.

(c) Finding new mathematical results with a certain depth which integrate

Nash-style equilibrium existence theorems with logical meta-theorems.

Admittedly, beyond logical formalization per se, very little has happened so far in the

literature on logic and games justifying these expectations.

� Problem  7 Do any of the preceding!

2.7 Infinite games and temporal logic  

For infinite games in extensive form, tree models still suffice – but they suggest other

languages in addition to the preceding modal and dynamic ones. In particular, the

computational tradition of linear and branching temporal logics seems relevant, as

these describe universes of branching time where infinite games can unfold. This is the

perspective suggested by Fagin et al. 1995, Parikh & Ramanujam 2003 (both with

epistemic structure added), Goranko 2001B, and many others. In particular, Halpern

2003 uses the Fagin et al.-style epistemic-temporal modeling of run-based systems to

take a fresh look at open issues in game theory. Current expressive game logics of this

sort include alternating-time temporal logic (ATL; Alur, Henzinger & Kupferman

1998) and its epistemic version ATEL (van der Hoek & Wooldridge 2003). Also

relevant is the temporal STIT formalism of Belnap et al. 2001.

� Problem  8 Compare and relate existing modal and temporal game logics.

2.8 Games in set theory  

Infinite games have also played a role in descriptive set theory, where the Gale-Stewart

Theorem culminated in 'Martin's Theorem' saying that each infinite two-player game of

perfect information is determined, i.e., one of the players has a winning strategy.,
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provided the set of winning histories for one of the players lies in the Borel Hierarchy.

More foundationally, the Axiom of Determinacy even says that  all such games are

determined, contradicting the Axiom of Choice and thereby providing an alternative set

theory. Loewe 2002 and follow-up publications are nice examples of links between set

theory and game theory, introducing  the notion of a mixed strategy game solution into

the set-theoretic tradition, as well as investigating extended notions of Backward

Induction on infinite games, provided that players have suitably simple preference

ranking over the possible outcomes.

� Problem 9 Merge descriptive set theory and game theory of infinite games.

2.9 Operations on games  

Another tradition in process logics looks at processes as models identified under some

equivalence relation, such as bisimulation, and then studies operations defined on

equivalence classes that form new processes out of old. Examples are the operations of

process algebra (cf. the Handbook of Process Algebra, or other official sources),

which include Choice, Sequential Composition,  as well as Parallel Merges of various

kinds, There is also a logical system in this tradition, viz. linear logic, whose game

semantics (initially started by Andreas Blass; cf. Abramsky & Jagadeesan 1994,

Japaridze 1997) studies natural operations on infinite game trees such as

choices G1 + G2, role switch Gd, and parallel compositions G1 • G2.

Linear logic provides a sort of algebra for dealing with equivalences and implications

between complex games  – with 'validity' meaning that  some designated player P has a

winning strategy in all games of the given form. Still, these systems were designed to

model some pre-given repertoire of operations whose original motivation came from

logical  proof theory. What happens if we open our mind a priori?

� Problem 10 What is a natural repertoire of operations on games?

In particular, there are several parallel compositions for playing a number of games

'together'. One would like to have an expressive completeness result for a natural set of

game operations, on the analogy of those for process algebra in Hollenberg  1998.

3 Strategic Forms and Powers

Next consider the level where we are only interested in players' control over outcomes,

without getting ensnared in details of what happens en route as the game unfolds. This

is related to, but not quite identical with, the standard level of 'strategic forms' – as one

might say that strategies, and especially, full-fledged 'game models' based on them –
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pre-package all stepwise developments of the extensive game.  The difference would

rather be the more 'global' logical languages expressing what we find of interest now.

3.1 Powers and game representation

At a coarser level of identification, one looks merely at player's powers. Let's write
�

Gi  s, X player  i has a strategy for playing game G from state s  

onward whose resulting states are always in the set  X

There is some interesting structure at this level of outcome sets. For instance, it is very

easy to see that all games satisfy the following two conditions:

C1 if � G i s, Y  and Y �  Z, then  �  G i s, Z Monotonicity

C2 if �  G A s, Y and  �  G E s, Z,  then  Y, Z  overlap Consistency

Determined two-player games, such as those of Zermelo's Theorem, also satisfy

C3 if not  �  G A s, Y , then   �  G E s, S–Y;

and the same holds for  E  vis-á-vis  A Completeness

Here is a simple converse representation theorem:

Fact Any two families F1, F2 of subsets of some set S satisfying C1, C2, C3  

are the root powers for the two players  in some two-step game.

This result concerns games of perfect information: an analogue for games with

imperfect information requires just C1, C2 (van Benthem 2001). The proofs of these

representation results show one peculiarity though: it is crucial to be able to have the

same outcome at different leaves of the game tree. If we require that each leave in the

game tree is a unique outcome, then further principles beyond C1, C2, C3 will be valid

on finite games, and the restriction to two-step games is no longer appropriate. Here is

a more technical question for puzzle solvers:

� Problem 11        Find a representation theorem like the preceding

for players' powers in determined games with unique outcomes.

Much richer calculi of powers for two or more players,  based on earlier work in game

theory and social choice, are found in the coalition logics of Pauly 2001, whose crucial

axiom describes how powers of disjoint sets of players combine for their union. Here,

too, plausible further axioms emerge when uniqueness of outcomes is assumed. In

particular,  then, it seems that, in the converse direction, powers of coalitions may be

decomposed  as conjunctions of weaker powers for their disjoint component sets.
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3.2 Dynamic game logic  

Modal logic of powers  At this level of game structure, one can now introduce more

global modal languages that deal with players' powers directly,  in the following format:

M, s |= {G, i} �   iff there is a set X with   G
i s, X and ! s " X  M, s |= �  

These are related to so-called 'neighbourhood models' for modal logic (cf. Pauly

2001). This more general semantics differs from the usual relational models and their

minimal modal logic mainly in that the new modality {} with its # ! clause no longer

validates distribution laws over either $  or % .

Game operations  This modal language becomes more expressive when we also add

operations on games to obtain 'dynamic game logic' DGL (cf. Parikh 1985). Models

M = (S, {Rg}g, V) then stand for 'game boards' with a universe S of states associated

with – though not necessarily identical to – nodes in some extensive game, plus hard-

wired forcing relations Rg for given atomic games.  Over these structures, appropriate

semantic clauses define forcing relations for compound games constructed using

sequential composition G;H, union (choice) G & H, game dual Gd (role switch), and

finite game iteration G*. Modalities now refer to a game expression:

{G, i} � i has a strategy making sure game G ends only in states satisfying '

Typical axioms  validated by this semantics resemble those of PDL, such as

{G ( ((( H, i} �*) {G, i} �+% {H, i} �
{G ; H, i} �,) {G, i}{H, i} �

The characteristic axiom for role switch runs as follows in determined games:

{Gd, i} �-) ¬{G, i}¬ �

In non-determined games, these principles need to refer to different players explicitly.

Cf. Parikh & Pauly 2003 for the state of the art with DGL. In particular, the system is

completely axiomatizable and decidable without the dual operation. Here is one issue,

concerning the latter operation, which has no counterpart in the standard propositional

dynamic logic of programs  PDL:

. Problem 12 Axiomatize DGL completely with game dual Gd added.

Clearly, the modality {} is an existential quantifier over strategies, which are not

mentioned explicitly. One obvious question then is how DGL relates to more explicit

PDL-style analysis of games. Van Benthem 1999– suggests a two-pronged approach
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of game boards in tandem with families of games over them, relating the DPL-language

over those games with a DGL language of the board.

/ Problem 13 Merge DGL and DPL in some natural way.

Game algebra   DGL's main novelty is in terms of game algebra. Dynamic game

logic encodes the notion G 0  H: players have same powers in every concrete

interpretation of  G, H on a game board. Valid principles of game algebra include:

(a) De Morgan Algebra for the choice and dual:

Boolean Algebra minus its special laws for 0, 1

(b) Relation Algebra for composition, choice and dual:

; is associative, left-distributive, right-monotone,

and also we have that (G;H)d 0  G d;Hd

Typically invalid for games is right-distributivity:  G;(132 222 4 ) 0  (G;H) 2 222 (G;K).

Complete axiomatizations have been given in Goranko 2001A, Venema 2001. Here is a

connection with logic games after all (van Benthem 2003B):

Theorem First-order evaluation games are complete for basic game algebra.

Lacking here, however, are parallel game operations describing simultaneous or joint

moves, which go beyond the usual sequential modal or dynamic framework. One

natural stipulation for games played concurrently is the following product operation G

x H, which involves taking ordered pairs of states in both component games:

5 i 
GxH (s, t), X   iff  6 U: 5 i 

G s, U , 6 V: 5 i 
H  t, V : UxV  7  X

/ Problem 14 Find the complete game algebra of DGL plus product.

3.3 Temporal game logics

Games with players' powers can also be described in a temporal language. E.g., van

Benthem 1999– identifies this key lemma in the proof of the Gale-Stewart Theorem:

{G, E} 8:9  {G, A} A ¬{G, E} 8     

with A the temporal operator "always on the current branch"

This generalized determinacy principle holds for all games, and it says that either one

player has a winning strategy, or the other has a strategy preventing the first from ever

reaching a position where she has a winning strategy.

/ Problem 15

Axiomatize the temporal logic of  players' powers over arbitrary games.
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The branching temporal logic ATL used in computer science ((cf. Section 2.7) does

part of this job, but it does not seem to have sufficient expressive power.

On the analogy of DGL, one would also want to add game operations in this setting.

The best known system for that is linear logic, as mentioned above.

; Problem 16 Design and axiomatize a temporal version of linear

logic which can also speak of truth on branches of infinite games.

There are many epistemic versions of temporal logics, such as the earlier-mentioned

run-based systems of Fagin et al. 1995, or ATEL (van der Hoek & Wooldridge 2003).

These also make sense in our current setting. E.g., non-determined games are of the

essence in linear logic, and they naturally involve imperfect information (see our next

Section 4) and lack of knowledge by players, even in the finite case.

; Problem 17 Find natural epistemic versions of DGL and Linear Logic.

In particular, standard game semantics for linear logics has to use infinite games of

perfect information as non-determined counter-examples to Excluded Middle. With

game s of imperfect information, finite models might suffice for completeness.

4 Knowledge, Belief and Update

As stated in Sections 2.4, 2.5, logics of knowledge, belief, and other paraphernalia of

philosophical logic have entered game theory through the analysis of 'rationality'

underpinning the choice of specific strategic equilibria. In particular, epistemic logic

plays several roles in this connection, and it raises some new questions.

4.1 Epistemic characterizations

First, there is an extensive literature on epistemic characterizations of various game-

theoretic notions  of equilibrium, including Iterated Removal of Strictly Dominated

Strategies, or Perfect Rationalizability.  The format is as follows:

Model  M(G) of game G satisfies epistemic condition E iff the only strategy

profiles occurring in the model are those satisfying game solution concept C.

Often, the condition E is some form of iterated or common knowledge of rationality

among players. De Bruin 2004 is a thorough survey, as well as a proposal for a

uniform  logical format of analysis for these results. Still, the current literature consists

mainly of a small bunch of such characterization results, without  any obvious system.

; Problem 18 Find a more general  logical analysis of epistemic  

characterization results which establish a systematic equilibrium theory.
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The full form of such results in game theory usually also involves notions of belief and

probability – where the latter serves both to define equilibria requiring mixed strategies,

and also beliefs of players in the sense of subjective probability. This makes the logical

analysis more complex, and it points to further issues below.

4.2 Update about the future: knowledge and belief

The main epistemic characterization results have been about games in strategic form.

But knowledge and belief also come up naturally in thinking about player's moves in

an extensive game, and their deliberations about the remainder to be played. In this

area, one would want to move away from the excessive emphasis on Backward

Induction, and consider other scenarios – cf. van Benthem 2004D for some

alternatives, such as 'repaying past favours'. Presumably, existing logic of update and

revision can handle the game situation, but the issue is what good they can do.

< Problem 19 Use epistemic update and  belief revision to obtain

           a richer set of solution methods for extensive games.

4.3 Imperfect information and dynamic-epistemic logic

Knowledge also prepares the way for games of imperfect information, where players

do not know their current situation exactly. Card games are a good example, and so is

warfare. It is easy to add epistemic structure to games of imperfect information.

Dynamic-epistemic logic for extensive games  The usual game-theoretic trees with

information sets, or dotted lines, are already models for a combined dynamic-epistemic

language combining action modalities [= ] > with epistemic operators. Here, knowledge

assertions occur for both individuals and groups:

M, s |= Ki >   player i knows that >  is the case if > is true

   in all states i~indistinguishable from s

M, s |= CG >   > is common knowledge in the group G if

  >  is true  in all states reachable from s by a finite

   sequence of accessibility steps for any player.

This is a modal language again, but now over models consisting of worlds with

equivalence relations for players' indistinguishabilities, and typical interactions.  Much

is known about this system in the standard modal literature.

A combined dynamic-epistemic language DEL can describe many situations of

interest. The following is a brief survey of van Benthem 2001, which explains the DEL

view of imperfect information games for both extensive and strategic forms. For the

sake of concrete illustration, consider the following two-step game:
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    A
             L R

 E         E     E

            l r      l            r

       winA          winE    winE   winA

Allowing only strategies that can be played despite her uncertainty, E has only two:

‘left’, ‘right’. Note that determinacy is lost here: neither player has a winning strategy.

The following formulas describe player E's plight at her right-most turn:

(a) KE (<l>winE ? <r> winE)

E knows that some move will make her win

(b) ¬KE <l>winE) @  ¬KE <r>winE)

there is no particular move of which E knows that it will make her win.

The complete logic of this system is a well-known fusion of PDL plus epistemic S5. It

has been proposed by Moore 1985 as a logic of planning in situations where agents do

not know all the relevant information. In particular, no interaction axioms occur

between knowledge and action modalities. When these occur, they express special

features of agents. This is brought out by standard modal correspondence analysis.

Theorem The DEL formula KE[a] A  B  [a]KE A  is true in a frame

iff E has Perfect Recall in the sense that, if Ra xy and

y ~E z, then there exists a u with x ~Eu and Ra uz:

The latter condition requires this commutative diagram in the game trees:

       E x E u

         a    a

y E z

More complex versions of Perfect Recall yield to exactly the same analysis (Bonanno

2003). And one can also analyze other types of player, such as those having finite-state

memories. One virtue of logic analysis here is the discovery that complexity of valid

reasoning may differ widely for these different types of agent (Halpern & Vardi 1989).

Here are two questions about further possible connections with game theory:

C Problem 20 Use DEL to analyse the various notions of game-theoretic

equilibrium that have been proposed for imperfect information games.
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D Problem 21       The 'Harsanyi trade-off' relates incomplete information

about the future for players in perfect information games with games of

imperfect information. Analyze this reduction in logical DEL terms.

Uniform strategies   One can also add a calculus of strategies again, in a PDL-style

extension. In game theory, imperfect information games involve uniform strategies,

which prescribe the same move for a player across her uncertainty link. These can be

correlated with programs whose only test conditions are formulas which the relevant

players  know. Cf. Fagin et al. 1995 on 'knowledge programs' for this purpose, or the

definability result for uniform strategies in van Benthem 2001.

Knowledge and powers  DEL also has a counterpart at the outcome level. As we noted

above, any two families of sets satisfying only the monotonicity and consistency

conditions on powers  can be realized by means of a two-step imperfect information

game. Here is an example displaying the necessary tricks. Suppose we are given:

powers for E   {A, B, C}, {C, D}      powers for A     {B, C}, {A, D}

An appropriate game with just these powers  is

E

A  A  A

B A    C    A C D    D   D    B A   A   C

But the language of powers, or even the full DGL of Section 3 can be easily combined

with epistemic logic. In a sense (van Benthem 2001), Hintikka's 'IF logic' of Section 5

below is already a calculus of game operations plus implicit knowledge operators.

4.4 Information update in games

Concrete epistemic actions  'Dynamic epistemic logic' is also used in another sense

these days for concrete systems that update information (cf. Baltag, Moss & Solecki

1998). Van Benthem 2005B is an extensive survey of open problems in this area. Here,

we just mention a few issues specifically related to games. For the purposes of this

Section, we use the letter combination EDL for this second sense of dynamics, which

may be viewed as an instantiation of DEL in the above more abstract sense. One now

adds PDL style operators referring to concrete informational actions. The basic case is

public announcement  !A of a proposition A, removing all worlds from the current

model M where A does not hold to obtain the relativized submodel M|A:

M, s |= [!A] E iff  M|A, s |= E
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This says that, after truthful announcement of A, F  holds. Public announcement has a

complete decidable logic (cf. van Benthem, van Eijck & Kooi 2005 for an up-to-date

version), whose  axioms essentially compute  [!A] F by relativizing  F to A.

More complex informative events over an epistemic model M involve hiding of one's

own actions, or partial observation by others. This happens frequently in ordinary

communication, where we whisper in lecture theatres, use bcc in emails to make

information flow in complex manners, or just cheat... A sharp focus for all this are

parlour games where not all players can see all details of some current move – cf. van

Ditmarsch 2000 on the logical analysis of 'knowledge games' of this kind.

Product update via event models  To deal with such more sophisticated informative

events, the right update mechanism is not just world elimination, but rather a product of

the current epistemic model M with some new dynamic structure.  

One first takes an event model A consisting of all relevant actions with the

preconditions for their occurrence, while encoding also which agent can distinguish

which events. E.g., if I read my card in your view, you know that I am performing one

of a number of possible reading actions, but you do not know which one. And If I read

my card secretly, you even think my action is the same as doing nothing.

The next stage then computes a  product  model MxA whose worlds are pairs (s, a) of

current states s in M and those events  a from A which are possible at s (Baltag, Moss

& Solecki 1998). For game trees, this product construction specializes as follows:

Take a game with current state x, and uncertainty relations ~i  among

the nodes at x's tree level computed so far. Let a new move be made.

The new states are the nodes at the next level of the game tree, which

can be identified with ordered pairs  (previous state, action last made).

Now we define the uncertainties at the next tree level as follows:

(y, b) ~i  (z, c)    iff y ~i z  and  b ~i c

Thus, new uncertainty equals ‘old uncertainty + indistinguishable actions’.

Example  Updates during play: propagating ignorance along a game tree

     Game Tree Action Diagram

A   a b c

            a   b      c         E     

         E   E  E

    d       e     e       f       f   d      e f

                    A   
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Here are the successive updates:

stage 1

stage 2     E

stage 3

     A           E

One can analyze this update mechanism by its dynamic-epistemic properties. For

product update, we find two major ingredients, the earlier Perfect Recall, and  

Uniform No Learning   If two actions are ever indistinguishable,

then they will never make indistinguishable states distinguishable.

Uniform No Learning typically validates a converse of the earlier knowledge-action

interchange law for players who obey it (van Benthem 2001). Note that this means that

product update is not a neutral stipulation: it only works for idealized agents.

Evolution in the Update Universe   The impact of product update, in whatever

formulation, may be studied in the following mathematical setting.  One considers a

process universe of infinite trees whose nodes are finite sequences of events (cf. Fagin

et al. 1995, Parikh & Ramanujam 2003), and allows arbitrary uncertainty relations for

agents between nodes. Such uncertainty patterns will encode what agents know, and

more generically, what types of agent are present. One important special kind of such

trees then arises from product update. Define the infinite tree-like structure

Tree(M, A) to consist of all successive product levels   M, MxA, (MxA)xA, ...

The above game tree was an example. Now we can ask which patterns of epistemic

uncertainty relations are characteristic for the latter setting. Van Benthem & Liu 2004

give the following representation result:

Theorem An arbitrary epistemic event tree is isomorphic to some

model  Tree(M, A)  iff its uncertainty relations for all agents

satisfy both Perfect Recall and Uniform No Learning.

The same paper also discusses the possibility of a classification of agents' strategies in

terms of restrictions on their format of definability.

General epistemic trees support epistemic temporal languages, as much as dynamic

epistemic logics of information update (van Benthem 2004C is a first attempt):
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G Problem 22 Can the theory of EDL be generalized to an epistemic temporal

        logic allowing more general temporal pre- and postconditions for events?

Yap 2005 is a first attempt in this direction.

4.5 Diversity of agents

The preceding characterization result can be extended to other types of agent,

corresponding to other structural constraints. E.g., van Benthem 2001 characterizes the

dynamic-epistemic properties corresponding to memory-free agents:

G Problem 23     Find a general EDL-style classification of types of

agent based on logically expressible dynamic-epistemic constraints.

Perhaps the more interesting question, however, is what happens with groups of agents

with different logical behaviour. How do we detect the 'memory-type' of an opponent,

and can we take advantage of it, once we know? The recent movie "Memento" provides

nice examples of this scenario, and so do many other more SF-like current films.

4.6 Other uses of EDL: solution algorithms for strategic games

Another striking aspect of games is the dynamic-epistemic character of the usual

solution procedures. Notably, Iterated Removal of Strictly Dominated Strategies (SDH )
successively removes rows and columns from game matrices to arrive at a submodel of

the full set of strategy profiles where common knowledge of rationality reigns.

Van Benthem 2003C  uses repeated announcement of rationality assertions for players

to analyze game solutions, not as sets of strategy profiles, but rather directly on the

algorithmic procedures themselves which solve games. This works over a simple

account of game models as sets of strategy profiles where players know their own

action, but not that of the others. Standard algorithms iteratively eliminate profiles from

the initial model, in a process whose steps can be viewed as announcements of some

suitable epistemic statement. In any model M, any statement I , repeated sufficiently

often, gets to a fixed-point #(M, I ). Now, either the latter submodel is empty ( I is then

self-defeating), or it is non-empty, while announcing it has no further effect, so that the

statement has become common knowledge in #(M, I ) ( I  is self-fulfilling).

Theorem The algorithm SDH  of Iterated Removal of Strictly Dominated

Strategies produces just the models #(M, WR) where WR is the statement

that no one plays an action for which there is one that she knows to be better.

This type of result establishes a correspondence between (a) epistemic assertions

whose announcement can be iterated, and (b) game solution algorithms. Van Benthem
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2003C gives an illustration, defining a new solution algorithm stronger than SDJ  using

the new statement that "no one thinks that her current action is ever a worst response".

K Problem 24 Develop the dynamic epistemic analysis  

of game solution procedures more systematically.

As for the logical background of these scenarios, for iterated existential epistemic

assertions L M the domains of the solution models #(M, L ) can be defined explicitly

inside the initial model by greatest fixed-point formulas in an epistemic N –calculus.

But the general case requires an extension with inflationary fixed-points. Now, the

general language of epistemic inflationary fixed-point logic is ill-behaved. E.g., it is

undecidable (Dawar, Grädel & Kreutzer  2004) and other quirks occur, too.

K Problem 25 Find well-behaved fragments of epistemic

inflationary fixed-point logic which suffice for game analysis.

4.7 Belief revision

EDL may be viewed also as a logic for update of belief, rather than knowledge.

Nothing much changes on a doxastic interpretation of its language, semantics, or

logical laws as describing players' beliefs about moves and their effects. For instance,

K Problem 26 Extend the analysis  of game solution with iterated epistemic

statements to a scenario where players' beliefs are taken into account.

But, in the context of games, we also need belief revision, as we encounter unexpected

behaviour of our opponents contradicting our expectations so far (cf. Gärdenfors &

Rott 1995). Now, as explained in van Benthem 2005C, doxastic product update does

not perform belief revision: contradictory new evidence leads to inconsistent belief. But

its methodology can be extended to a system which does, by enriching models with

plausibility values for worlds according to agents (Spohn 1988). Then, product update

can be extended to plausibility update in a natural manner (Aucher 2003), supporting

the same sorts of perspicuous logics which are the trade-mark of EDL.

Still, there is a difference in spirit. As pointed out in Liu 2004, diversity of revision

policies (from more radical to more conservative) is a desideratum in belief revision

theory, and hence no unique update rule can work for everyone. Her proposal  is then

to parametrize the plausibility assignment function to pairs (s, a) with weight for the

past world s and the last-observed event a. This is like parametrized update rules in

inductive logic or Bayesian probability.

K Problem  27 Apply the Spohn-Aucher-Liu analysis to extensive games.
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Long-term learning  Viewed in the long run, belief revision becomes a special case of

learning strategies over time. The time seems ripe for a merge between temporal logic

(cf. Sections 3.3, 4.4), systems of update and belief revision, and the game perspective

on learning developed , e.g., in Kelly 1996. After all, a {Student, Teacher} class-room

setting is very much like a two-person game. Learning agents over time have been

considered in Kelly 2002, Hendricks 2002. The above detailed level of local moves and

their effects in extensive games seems relevant here, but so does the more global

analysis in terms of powers, and general topological structure of sets of runs.

O Problem  28 Find a merge between belief revision, learning theory, and

            temporal logic. In particular, are there significant completeness theorems

capturing non-trivial properties of learning mechanisms in logical terms?

4.8 Preference Dynamics

While we are dynamifying various aspects of games, we might also consider doing the

same with preferences. One might imagine that there are actions which change

preferences. Zarnic 1999 analyses goals and planning in this way, with commands of

the form FIAT P : "make P  become the case". Yamada 2004 takes the same thinking to

deontic logic. A command like "you ought to make sure that P "is some authority's

instruction to give possible future outcomes satisfying P high(er) priority. (Related

ideas are found in Tan & van der Torre 1998.) Thus, one can have an account of

dynamic commands and their effects in the same style as EDL. But still, there are non-

trivial issues here, having to do with the fact that EDL events are 'precondition oriented'.

They convey information about the situation when the event took place, following

which we just see or deduce what will hold afterwards – perhaps after a change took

place. By contrast, most commands are postcondition-oriented. They tell us to do

something that will make sure that a certain condition will hold afterwards.

O Problem 29 Develop a complete expressive dynamic logic of commands.

5 Logic Games

As mentioned in Section 1, many logical key tasks themselves have a game character.

Most of these involve two-person zero-sum games of perfect information, some with

finite extensive game trees, some allowing infinite runs. Van Benthem 1999–, 2002C

have chapters on most of the basic varieties.  We run through a few basic cases.

5.1 Standard logic games

Evaluation games  Semantic evaluation games exist for most logical languages.     

The original case are Hintikka's evaluation games between a Verifier and a Falsifier for

formulas of first-order logic, whose basic feature is an equivalence between
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(a) truth of Q in some model M with assignment s,

(b) the existence of a winning strategy for Verifier

     in the associated evaluation game game(M, s, Q ).

These games have a finite length measured by the quantifier depth of the formula. With

this bridge, many logical and game-theoretic notions can be correlated. E.g., the game-

theoretic import of Excluded Middle is that evaluation games are determined by

Zermelo's Theorem. More complex games are needed for more expressive languages,

such as LFP(FO) with monotone fixed-point operators. These involve infinite runs,

and counting of parity of infinitely recurring  R – or S –subformulas.

T Problem 30 Find a systematic logical use for the surplus information in

the game  account, viz. the different specific winning strategies for players.

T Problem 31 Develop an abstract model theory of logical

languages based on a natural classification of game types..

Model construction games   Games for constructing models exist in great variety (cf.

Hodges 1985). One simple option is to turn semantic tableaus into logic games (van

Benthem 2005B). Now there can be infinite runs, corresponding to the construction of

an infinite model. The tableau rules and processing procedure can be manipulated in

many different ways for this. Here a model exists for a given set of statements iff

Builder has a winning strategy, and different such strategies even encode different

possible models directly. This setting also suggests introducing new vocabulary, such

as an explicit instruction for dealing with a true universal quantifier more than once.

Here is a question which arises then:

T Problem 32 Use variations on tableau games to model various

substructural (categorial, linear) versions of first-order logic.

Proof games and argumentation   The oldest logic games are Lorenzen's for

dialogue, where the main result is that sequents are intuitionistically provable iff the

Proponent of the conclusion has a winning strategy against an Opponent granting the

premises. Even more constructively, there is an effective correspondence between

(a) proofs,

(b) winning strategies in the dialogue game.

These dialogue systems are driven by a mixture of 'logical rules' for decomposing

complex statements, and 'procedural rules' setting the schedule and determining other
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points of order. More informal versions of Lorenzen games, with both features, are

used in modern argumentation theory, as a model for rational debate.

U Problem 33 Analyse the procedural component of dialogue games

more systematically, and find a systematic prediction what logic

comes out of what package of logical and procedural rules.

As finding proofs is the dual of looking for counter-examples, there is also

U Problem 34 Compare dialogue games with model construction games,

and also the co-existence of strategies-as-proofs and strategies-as-models.

By the way, van Benthem 2004A has a more gloomy game analysis of argumentation,

as involving little logic, but rather a calculus of values of arguments decreasing with

familiarity, and making one's statements, whether weak or strong, with the right timing.

Model comparison games    The most widely used logic games are Ehrenfeucht-

Fraïssé games of model comparison, where two models M, N satisfy the same first-

order sentences up to quantifier depth k iff the player called Duplicator has a winning

strategy against the counter-player Spoiler in the game comp(M, N, k) over k rounds.

Here, the concrete correspondence is between

(a) first-order formulas distinguishing the models, and

(b) winning strategies for the 'difference player' Spoiler.

Comparison games give fine-structure to more global structural equivalences such as

isomorphism, potential isomorphism, or bisimulation. Thus, we could also use them to

compare extensive games! Here we just mention a technical question related to the

strong logical systems that we have advocated for analyzing general games:

U Problem 35 Find a useful comparison game matching first-order logic

with fixed-points LFP(FO).

One intriguing thing is that model comparison games measure similarity of structures.

Thus, one can play such games to study similarity between general games!

Operations on logic games   Other logic games include more complex constructions,

such as model extension (Hirsch and Hodkinson 2002) or recursion-theoretic priority

arguments (Moschovakis 1980). Many of these, intuitively, involve combination of

subgames into larger games. Some of these combinations are the earlier-mentioned

choices, compositions, and role switches. But others involve more complex forms of

parallel product formation. Here is an illustration from van Benthem 1999–:
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Theorem Ehrenfeucht-Fraïssé games are isomorphic to

'interleaved products'  of Hintikka evaluation games.

V Problem 36 Find a good typology of game operations used for logic games.

5.2 Modified logic games

Next, even though logic games have largely developed in isolation from game theory

proper, there have been some cultural influences from game theory coming this way.

Imperfect information    Logic games with imperfect information have been proposed

by Hintikka and the 'IF school' (Hintikka & Sandu 1997) for the purpose of analysing

more freely scoped quantifier languages, with motivations from linguistics, philosophy,

mathematics, and these days even quantum mechanics.  Here is the well-known 'slash

notation' for such a new kind of logical evaluation game:

W
x X y/x xY y.  

This expresses, when played in any model M, that Verifier has a uniform strategy for

winning this semantic game, even when she does not know the value of x chosen earlier

by her opponent Falsifier. At the level of powers, this game is equivalent to the reverse

scope order X y 
W

x/y  Rxy. This observation is just one instance of general IF logic,  for

which we refer to Sandu & Tulenheimo 2005 (cf. also Dechesne 2005). In particular,

the full power of the system is equivalent to that of existential second-order logic. But

Tulenheimo 2004 shows that some IF variants of modal logic remain decidable. In

addition to the host of more specialized questions in this technical area, we mention

V Problem 37 What is the complete game algebra of IF logic?

V Problem 38 What are natural decidable fragments of the IF language?

The IF move from sequential to uniform strategies makes sense for any logic game.

V Problem 39 Develop IF versions of games of proof or model comparison.

Preferences   Finally, one can also add more finer preferences to logic games, and

introduce more sophisticated equilibria than just those far, being 'winning strategy

versus any counter-play '. Harrenstein 2004 develops some quite original extensions of

logical notions of consequence along these lines.  Other possibilities abound:

(a) Measure effort, in making branch length to end node

an additional factor in the pay-offs for players.  

(b) Form new games out of existing logical tasks.
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A good source for the latter additional structure is computing updates, as in Section 4.

Parts of the update universe can be turned into conversation games with a restricted set

of available assertions (cf. van Otterloo 2005), where the point is for one player to be

the first to find out the actual world. Nash values for these games can be hard to

compute, as complexity increases quickly. Winning strategies clearly have something

to do with solving the Reachability Problem from one epistemic model to another by a

sequence of admissible actions satisfying certain epistemic assertions.

Z Problem 40 Develop a general theory of conversation games.

6 Further Topics

This survey of issues and questions, broad as it is, has still left out a number of issues

that are crucial to games. We conclude by merely listing a few directions:

Probability All of the above needs to be integrated with probability theory, in

particular, Bayesian update (cf. van Benthem 2003A for general product update in this

setting). One good reason is that game solutions in general involve probabilistic mixed

strategies in an essential way as admissible forms of behaviour. This trend is also

emerging, interestingly, in IF logic with Hintikka's use of 'generalized Skolem

functions' (cf. van Benthem 2004C) to deal with quantum-mechanical particles whose

positions and moments satisfy the Heisenberg Uncertainty  Principle.

Infinite and evolutionary games    Infinitely repeated games are essential in modern

game theory, starting from Axelrod's famous work on the emergence of cooperation in

Prisoner's Dilemma encounters, and continuing into modern evolutionary game theory

(cf. Skyrms 2004). A systematic connection between such games and those found in

logic seems rewarding. E.g., how does the strategy calculus of infinite linear logic

games, with its emphasis on 'memory-free strategies' like Copy-Cat (i.e., Tit-for-Tat in

Axelrod's account) or finite-automaton computable strategies relate to similar topics in

game theory? More generally, evolutionary game theory turns around the mathematics

of dynamical systems – and its relationship with epistemic temporal and update logics

seems a potentially important short-term/long-term  interface.

Joint action  Games naturally involve collective behaviour. Just as epistemic logic has

moved to considering knowledge of groups which need not be reducible to knowledge

of individuals, it makes sense to look at group action per se. Compare also the

philosophical tradition on shared agency (Bratman 1993), which addresses congenial

issues. Coalition logics do part of this job, but there is much more potential structure

to collective action and collective information than what has been considered so far.
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7 Conclusion

This concludes our survey of current directions and open problems at the interface of

logic and game theory. If all of this comes together in a meaningful way, we would

have a broad theory of interaction and information that should be of interest to

logicians, game theorists, computer scientists, and philosophers.
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