
1

MODAL LOGIC IN TWO GESTALTS

Johan van Benthem, Amsterdam & Stanford

in M. de Rijke, H. Wansing & M. Zakharyashev, eds., Advances in

Modal logic, vol. II, Uppsala 1998, CSLI Publications, Stanford, 73–100.

Abstract

We develop a translation-based view dual of modal logic as the study of intensional languages

that are at the same time interesting expressive and decidable parts of standard logical systems.

This tandem approach improves our understanding of modal logic – while at the same time,

it extends the range of modal notions and techniques into broader areas of standard logic.

1Translation as a Way of Life

1.1Basic modal logic and the modal fragment of FOL

Modal languages as used to-day can be considered a species of their own, inhabiting the

realm of Intensional Logic. But they can also be translated into fragments of standard

logical languages, mostly first-order, sometimes higher-order or infinitary. These

translations reflect the truth conditions for modal operators in possible worlds models.

The ur-example is the basic modal language of possibility and necessity, whose standard

translation  ST  inspired Correspondence Theory (van Benthem 1976, 1985):

an existential modality  <>p  goes to a bounded quantifier   �y (Rxy & Py)

stating that the current world  x  has a successor  y  in which  p  holds
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In this manner, the basic modal language transcribes into a fragment of a first-order

language over possible worlds models, in the appropriate similarity type with a binary

accessibility relation and unary local atomic properties of worlds. The fundamental

semantic feature that locates this syntactic modal fragment inside the full first-order

language is a semantic invariance property, measuring expressive power with respect to

the appropriate structural equivalence 'between models, comparing 'bisimilar nodes':

     Modal Invariance Theorem     

A first-order formula is definable by a modal formula

if and only if it is invariant for bisimulation.

The basic modal fragment has a 'nice package' of properties. It is reasonably expressive

for many recurrent purposes. It has a good model theory  – based on bisimulation, rather

than classical potential isomorphism - enjoying all the classical meta-theorems

(compactness, interpolation, Los-Tarski, etcetera). It also has a good proof theory.

In addition, however, unlike full first-order logic, the basic modal logic is decidable.

In this paper, we want to generalize this observation. Our presentation revolves mostly

around minimal modal logic of model classes (better called 'universal' or 'central' logic),

and on first-order semantics on models (rather than second-order semantics on frames).

1.2General translation of modal truth conditions

The same translational view can be applied any (more expressive) modal or temporal or

dynamic language with a well-defined semantics. Examples may be taken from any

presentation at the AiML-II conference. Here are two cases out of many:

intuitionistic modal logic

A � <>B�y (x�y �(Ay ��z (Ryz & Bz)))

interpretability logic

A |> B�yz (Rxyz � (Ay ��u (Szu & Bu)))

Our general approach to modal logic will be to develop these two viewpoints: modal

formalisms per se, and their standard counterparts, in tandem for purposes of language

design and meta-logical analysis. Quite radically, we see this as instances of a desirable

Gestalt switch: one should develop the ability to see them as both. This tandem approach

has several virtues. Seeing your favourite modal language in a broader environment

allows for transfer of known results from standard logics, which saves time and effort.
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(Of course, not every property of the larger standard language will transfer automatically

to its modal fragments. Additional effort is often required...)  A broader standard setting

may even suggest redesign for recalcitrant modal languages. A case in point is

Since/Until temporal logic, whose basic operators are double quantifiers  �� that work

better when decomposed into iterated single ones, living in a suitable two-dimensional

modal logic. But profitable traffic can also run in the opposite direction. The tandem view

allows for natural penetration of notions and techniques that were first developed inside

modal logic into broader areas of standard logic. Various demonstrations of this occur in

this paper. Thus, a systematic translational perspective has both practical and theoretical

value when engaging in modal logic.

2Syntactic Fine-Structure: Quantifier Guards

The results in this section are largely based on Andréka, van Benthem & Németi 1998, to

which we refer for missing definitions and proofs, and statements of further results.

2.1From basic modal logic to the Guarded Fragment

Here is the more general thrust of modal logic in standard first-order logic. One can

extend the above pattern for an existential modality to the more general polyadic format

�y (G(x, y) & �(x, y))called guarded quantification.

Here, the 'guard atoms'  G( x, y)  bounding the existential quantifier may have their

variables occurring in any order and multiplicity. Bounded quantification is a known

concept, witness the important 'absolute'  	0–formulas of set theory. The new idea here is

that guards totally restrict the group of objects about which the subsequent matrix

statement  �(x, y)  may make assertions. (Allowing new objects beyond  x, y  in the

matrix, as is allowed in standard  	0–formulas, leads to undecidability.) The sublan-

guage of first-order predicate logic with this syntax is the Guarded Fragment   GF.

GF has a semantic characterization much like that for basic modal logic in the Modal

Invariance Theorem, but now involving invariance under guarded bisimulations. The

latter are classical 'potential isomorphisms', i.e. non-empty families  I  of finite partial

isomorphisms between two models  M, N, but with only guarded choices of tuples of

new elements in the back-and-forth clauses. More precisely,
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Let  f
I  and let a guard atom  G( d, e)  hold in  M  for objects  d  from the 

domain of  F  plus new objects  e . Then there exists a tuple  e'  of objects

in the other model N  verifying G(f(d), e')  while the partial isomorphism 

sending the  d  to their old  f-values, and objects in  e  to the corresponding 

objects in the tuple  e'  belongs to  I . The opposite direction asks the same.

This generalizes basic modal bisimulation in an obvious manner.

M
f

ee'

df(d)

f
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N

Theorem     The first-order formulas invariant for guard ed bisimulations 

are precisely those definable by means of guarded ones.

Proof   The modal proof of the MIT lifts to first-order logic.�

The main result establishing the interest of GF is the following. Its proof, again,

generalizes a modal method of reasoning, namely, filtration (using 'quasi-models'):

Theorem     GF is decidable.

Proof   For later reference, we reproduce the basic steps f rom Andréka, van Benthem &

Németi 1997. Their method amounts to a generalization of modal filtration arguments.

Any satisfiable GF-formula  �has a finite so-called 'quasi-model', consisting of 'types'

made up of subformulas of  �
 of some effectively computable size – and conversely,

each such quasi-model generates a model for  �. Thus, whether a guarded formulais

satisfiable is equivalent to its having a finite quasi-model: a decidable property.

From Standard Models to Finite Quasi-Models     Suppose that formula  �is satisfiable

in standard model  M . Let  V  be the set of variables occurring in  �  (free or bound).

Henceforth, we restrict attention to the finite set  Sub �  consisting of  �  and all its
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subformulas, closed under simultaneous substitutions using only variables in  V, that do

not change syntactic forms. (This is feasible, by the Remark following this proof:

simultaneous substitutions do not need bound variables beyond the original supply.) Each

variable assignment verifies a 'type'  �  of finitely many formulas from this set. Our

quasi-model will have a universe that consists of the finitely many types realized in the

model  M . Moreover, evidently, in this syntactic structure, for each guarded formula  �y

(Qxy � �(x, y)) �� , there exists a type  �'  with (i)  Qxy , �(x, y) ��' , (ii)  �, �'  agree

on all 'unaffected' formulas with only free variables  in  x .

Definition        (i)  Let  F  denote the finite set of all guarded formulas of length  � |�|  that

use only variables from  V . Note that  ��F  and  F  is closed under taking subformulas

and 'alphabetic variants'.   (ii)  An  F- type is a subset  �  of  F  for which we have

(a)  ¬ ���  iff   not ���  whenever  ¬ ��F

(b) �����  iff   ���and  ���whenever  ����F

(c)[u/y]�  implies�y ���  whenever  �y ��F

[u/y]�comes from  �by replacing each free variable in  y  with the corresponding

variable in u , simultaneously.  (iii)  Let  y  be a sequence of variables, and ���' types.

Write   �=y �'  if  � ,  �'  have the same formulas with free variables disjoint from  y .

(iv)  A quasimodel  is a set of  F–types  S  such that, for each ��S  and each guarded

formula  �y (Qxy ��) �� , there is a type  �' �S  with  Qxy  and  �(x, y)  in  �'  and

� =y �' . We say that  �holds in a quasi-model  if  ���  for some  �  in this model.     �

Clearly, if  �is satisfied by some model, then  �alsoholds in some quasi-model.

From Quasi-Models to Standard Models       From any quasi-model  M , we can define a

standard model  N . Call  �  a path if  � = < �1, �1, ..., �n, �n, �n+1 >  where  �1,  �n+1

are  types in  M , each formula  �i  is of the form  �y (Qxy ��) ��i  and  �i+1  is an

alternative type as described above (i.e.,  Q xy , �(x, y) in  �i+1  and  �i+1 =y �i ) . We say

that the variables in  y  changed their values from  �i  to  �i+1 (the others did not).

Finally, variable  z  is called new in path  �  if either  |�| = 1  or  z's value was changed at

the last round in  � . Objects in  N  are all pairs  (�, z)  with  �  a path,  z  new in  �.

Next, we interpret predicates over these objects.  I(Q)  holds of the sequence of objects

<(�j, xj)>j�J   iff  the paths  �j  fit into one linear sequence under inclusion, with a

maximal path  �*  such that  (i)  the atom  Q<xj>j�J��*  (the last type on  �* ) and for no
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(�j, xj)  does  xj  change its value on the further path to the end of  �* . Finally, we define

an assignment    s�  for each path. We set  s�(x)  =def  (�', x)  with  �'   the unique subpath

of  �*  at whose end  x  was new, while it remained unchanged afterwards.

The correctness of this model construction shows at last(�), the last type on the path  � :

Truth Lemma        For all paths  �  in  N , and all formulas  �� F,

N, s� |=  �iff�� last(�) .

Proof      Induction on � . Boolean cases  are immediate by the closure conditions for  ¬ , �

on types. Atoms: involve a straightforward calculation, via the linearity condition in the

interpretation function I, plus  the '=y -clause' in quasi-models ensuring transfer of

'unaffected formulas' along paths. For later reference, we repeat the full argument for

bounded Existential Quantifiers   y (Qxy ��(x, y)) . (i) First, suppose that   y (Qxy  �

�(x, y)) �last(�) . Then there is an extended path  �+  =def  �  concatenated with            

<  y (Qxy � �(x, y)), !' > , where  !'  is a successor type for  !  chosen as above with

Qxy, �(x, y) �!'  (satisfying the transfer condition for unaffected formulas with free

variables  x ). All objects  (� +, yi)  with   yi  in  y  are new here. By definition, the atomic

guard  I(Q)  holds for the object tuples  s �"(y) , s�"(x) ( = s�(x)) . Also, by the inductive

hypothesis,  N,  s�" |= �(x, y) . Therefore,  N,  s�" |=   y (Qxy � �(x, y)) . And by  x-

invariance in the standard model  N , then, indeed  N,  s� |=  y (Qxy � �(x, y)) .

(ii) Conversely,  suppose that  N,  s� |=  y (Qxy � �(x, y)) . By the truth definition, there

are objects  di  =  (�i, ui)  with N,  s�yd |= Qxy � �(x, y) . (Here,  s�yd  is the assignment

which is like  s�  except for setting all  yi  to  di .) In particular,  I(Q)  holds of the objects

s�(x),  di . This leads to a picture of forking paths. The  s �(x)  were all introduced by

stage  �*  inside  � ,  and then the di  were (either interpolated, or) added to form a

maximal sequence  �+  with the atom  Qxy  true at the end. The fork is such that  x-values

do not change any more from  �*  onward, whether toward  �  or  �+ .

This is the only case where the atomic guard  restriction

on our quantifiers comes in essentially.)

We now analyse this 'forking situation' a bit more carefully:
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Now, the variables  ui  do not have to be the  y i . Say,   '+  has s()(ui)  =  ('i, ui)  =  di .

Thus, the assignments  s(yd  and  s()agree on  x , and for all  yi*y  we have  s(yd(yi) =

di  =  s() (ui) . Then, by  N, s(yd |= Qxy +,  and the above observations, we have  N, s()

|= [u/y]Qxy,  N, s() |= [u/y], . By the inductive hypothesis,  [ u/y],*last('+) . Also,

from the initial description of  '+ , we see at once that  [ u/y]Qxy *last('+)  (by the

interpretation of atomic predicates). By closure conditions (b), (c) for types, one gets  -y

(Qxy  + ,(x, y)) *last('+) . Finally, since no changes in  x-values occurred on the fork

from  '* , the transfer condition for unaffected formulas along successor types along

paths ensures that this same formula is in last( ') .        .

Thus having a quasi-model implies having a real model, and the Theorem is proved. .

Remark       Finite Variable Fragments are closed under Simultaneous Substitutions

Our proof assumes the finite set of relevant formulas is closed under simultaneous

substitutions – without enlarging the set  V  of relevant variables. To see this, consider

any substitution  [x := f(x)] /   in a  k-variable fragment with variables  x = x1, ..., xk .

Atomic replacements are straightforward. Also, we can push substitutions inside over

Booleans. The only interesting case is when we encounter an existential quantifier:

[x := f(x)] -xj , . Then, the assignment clause  x j := f(xj)  has no effect, and so it can be

omitted. Hence, in the remaining substitution  000 0 , at least one variable  xk  is not used at

all on the right-hand side in any assignment. But then, the following formula is easily

shown to be equivalent to the original one:  -xk [xj :=xk , 000 0] , .  This gives a simple

recursive algorithm computing substitutions inside our fragment. (With function symbols

present, however, the result fails: witness the case of  [x:= fxy] -y Rxy .)       1
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This analysis of modal languages is orthogonal to a well-known alternative, via finite-

variable fragments. Guarded fragments seem better-behaved than finite-variable ones in

qua meta-theory and complexity (Andréka, van Benthem & Németi 1998 review pros and

cons). Indeed, GF offers a new perspective of 'syntactic quantifier bounds', different in its

thrust from the usual decidable fragments of first-order logic. The latter go by restrictions

on predicate arities, or quantifier prefixes, or numbers of variables (cf. the survey in

Börger, Grädel & Gurevich 1996). Thus, the above results about the Guarded Fragment

by themselves show how modal logic can inspire classical logic.

2.2Guarded analysis of modal languages

As an immediate application, modal languages have a decidable minimal logic when their

modalities translate into GF. Examples are

(1) basic temporal logic: existential past quantifiers  2y (Ryx & Py)

over predecessors are guarded (just as the future ones)

(2) relevant logic: ternar y implications 3yz (Rxyz 4(Ay 4Bz))

and conjunctions  2yz (Rxyz & Ay & Bz)  are guarded

(3) the algebraic logic CRS of 'cylindric relativised set algebras':

where the relativization supplies uniform guards.

Sometime, a little ingenuity is needed in finding a suitable translation. For instance, as a

challenge, consider the 'second-order' neighbourhood semantics  for the basic modal

language. This involves a binary relation  R  between worlds  w  and sets of worlds  X

(serving as 'neighbourhoods'), where one stipulates that

w|= <>5   iff  there exists a set  X  with  RwX  all of whose members satisfy  5

The resulting minimal logic is weaker than minimal modal  K, dropping distributivity of

possibility over disjunction. Now, the new truth condition may obviously be written as

follows in second-order notation:  2X (RwX & 3y (y6X 4 5(y)) . This is guarded,

however, if we read the formula as a two-sorted first-order one – noting at the same time

that this move makes no difference to the functioning of neighbourhood semantics.

Further working examples of guarded analysis are found in van Benthem 1997B, which

analyses various 'Sofia fragments' in extended modal logic.
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On top of a minimal logic, one often imposes extra frame conditions. Even for the basic

modal language, these need not fit into GF! (We never promised a miracle cure.) E.g.,

symmetry is guarded, but transitivity is not – as may be seen by exhibiting two models,

one transitive, one non-transitive, with a guarded bisimulation between them. This fact

points to a natural division of labour. The Guarded Fragment was invented to explain

decidability for general modal formalisms. But there may well be different sources of

decidability beyond it, in the special theories of specific well-behaved frame classes. (But

read on for some enjoyable subtleties in the range of guarded analysis...) In any case, our

main point is not the selling of GF as some uniquely preferred modal system. What we

advertize is rather the study of a fundamental theme, namely quantifier bounding

patterns, and the practical ability of guarded analysis, paying attention to the syntactic

fine-structure of modalities wherever they occur.

3Packed Conjunctions and the Edge of Undecidability

The results in this section are drawn largely from the unpublished paper 'Extending the

Guarded Fragment to Betweenness and Pair Arrows' occurring in van Benthem 1997A.

3.1From single guards to conjunctive ones

Returning to general modal languages, there are natural decidable cases beyond GF.

These often involve conjunctions of guard atoms. A typical example is betweenness of

points in temporal logic, which leads to inherently non-guarded assertions.

Example      The modality  UNTIL AB  says  7y (x<y 8 Ay 8 9z ((x<z 8 z<y) :  Bz)).   Its

betweenness clause has a composite guard  x<z 8 z<y . This assertion is not in GF, even

though the minimal temporal logic of UNTIL (and its dual SINCE) is decidable.

Another illustration is the technique of relativization in Relational Algebra, which

weakens classically undecidable systems to decidable ones. In so-called Arrow Logic,

one quantifies over arrows as primary objects, treating relations as unary predicates over

these. A typical clause is the truth condition for relational composition – which involves

an underlying primitive ternary relation Comp of arrow composition:

RoS (a)iff7bc (R(b) & S(c) & Comp (a, bc))



10

This is guarded, and the decidability of basic Arrow Logic follows immediately from that

of GF. But algebraic logicians have a slightly more concrete technique for relativizing,

letting relations still be set of ordered pairs, but now over arbitrary 'top relations'   U  (not

just full Cartesian squares  DxD ). That is

Example     Pair arrow models have their binary composition defined as follows:  R oS

=def  ;xy• <z ((Uxz = Uzy) = Rxz = Szy), with a composite guard  Uxz = Uzy .

The point here cannot be that arbitrary conjunctions of atoms are acceptable guards.

Proposition    GF extended with arbitrary conjunctions of guards is undecidable.

Proof     The 3-variable fragment of first-order logic is known to be undecidable. Here is an

effective reduction taking its satisfiability problem into that for GF with arbitrary

conjunctive guards. Clearly, any  3-variable formula  >  is satisfiable iff its guarded

relativization  (>)U  to some new ternary predicate  U  is satisfiable in a full Cartesian

product  U = DxDxD. Now, it suffices to observe that the latter assertion can be expressed

as the satisfiability of a formula

(>)U  & CART(U) 

where CART(U)  =def

(i)  <xyz Uxyz  & (ii)  ?xyz (Uxyz @AAA AU-followed-by"all permutations and 

identifications among {x, y, z}")  & (iii)  ?xyzuvw ((Uxyz & Uuvw) @AAA A

U-followed-by "all selections of three variables from among {x, y, z, u, v, w}").

Note that the latter formula is indeed in GF with added conjunctions of guards.B

3.2The Packed Fragment

Here is the proper generalization covering the above two positive examples. We call a

quantification pairwise guarded, or packed, it has the following syntactic format:

<y ( &Qxy = C(x, y)) ,

where  &Qxy  is a conjunction of atoms with free variables  y, x  in which every

two variables from  yD x  co-occur in at least one of the listed atoms.
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An obvious inductive definition gives the Packed Fragment  PF, where the matrix

formula  E(x, y)  itself comes from PF . The above temporal and arrow formulas were

packed (with UNTIL, the match  x<y  was given 'on the outside' already). By contrast, the

above formula CART(U) is not packed. Another typical non-example is transitivity

Fy1y2y3 ((y1<y2 G y2<y3) H y1<y3)

without co-occurrence of  y1, y3  in a guard atom: the point of this relational condition is

precisely to get a relationship between the latter.

Theorem     PF is decidable.

Proof      We analyse the representation argument for GF. The definition of quasi-models

carries over without major changes, as does their representation via 'path models'. Here,

we now allow path extensions via the new generalized form of bounded quantification.

Again, the crucial result is the Truth Lemma, saying that guarded formulas hold under the

assignment induced by a path iff they occur in the last set encoded in that path. The step

from right to left here is as before. Thus, the key is a combinatoric aspect of the converse

direction, whose main step was illustrated in the above picture. The argument for true

existential formulas still works with a conjunction of atomic guards like above. We look

at the maximal position  I*  as before. For each new variable  y , again given the truth

condition for atomic statements, loose guardedness requires that the path of the new  y-

value fits linearly with the original path on which the x-values occurred. Therefore, it

either lies on the latter, or it extends it starting from  I* . Moreover, the condition also

applies to all new values  y  amongst each other - and hence, these form at worst some

linear path  I+  extending I*, up to some maximal node where the highest new  y-value

has been introduced. The rest of the argument is as before, since all relevant  y-atoms

hold at  I+, and no  y-values change in going back towards I*. Cases of mere

interpolation of the new  y-values on the old path  I  are merely simpler. (Here, we

heavily use the constancy of relevant variable values in an atom along the path up to the

highest variable mentioned. This requires some checking of cases.)       J

There is also a semantic characterization of the Packed Fragment, in terms of invariance

under appropriately enriched guarded simulations, which will not be pursued here.
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4Boosting Decidability: Infinitary Languages and Fixed Points

The above does not yet represent the limit of guarded analysis. For there are further ways

around apparent failures. An instructive case is the above non-pairwise-guarded

transitivity. Consider the modal logic K4. Why is it (quite easily) decidable? There are

two possible lines of attack here. One tries to extend the syntactic scope of PF and its ilk,

to find broader decidable logics covering K4. We doubt this is feasible. Transitivity is

dangerous: it is known to make first-order fragments undecidable (Börger, Grädel &

Gurevich 1996). But there is a way-around this difficulty, by an alternative diagnosis of

K4's decidability, transcending first-order logic, while still retaining the key role of

bisimulation invariance. Recall that propositional dynamic logic PDL (or the modal

K–calculus) is decidable. Now it is easy to see – reinterpreting the usual decidability

arguments as they stand – that  K4  is also the logic of any iteration modality  [a *] , on

which we impose no special frame restrictions at all. This is a genuinely different

strategy. For, the PDL-language cannot define transitivity of models! Like the basic

modal language, it is invariant for bisimulation (the infinitary conjunctions needed to

define iteration do not affect this), while transitivity is not.

Conjecture    GF  extended with fixed points for defining new assertions is decidable.

This result has been claimed already informally, and we have a proof for the special case

of fixed points that occur with so-called 'finitely distributive' monotone operators (the

latter always stabilize at the ordinal  L). Presumably, the Tree Model Property high-

lighted in Vardi 1997 for decidable modal logics, which also underlies the decidability

of GF, will prove the key notion here. ( Added in print, February 1999: Erich Graedel

& Igor Walukiewicz have just circulated such a proof, to be presented at LICS 99. )

But there is a further subtlety.

A positive answer to the conjecture may be viewed as a natural generalization of the

celebrated decidability of the modal  M –calculus. This is poly-modal logic extended with

fixed point operators  Kp• N(p)  defining new propositions (where all occurrences of the

proposition letter  p  are syntactically positive in  N). But there is a subtlety here. The

K–calculus has only part of its possible fixed points, viz. those that define assertions

about states. What it lacks, however, are fixed points that define new program

constructions, by recursing over transition relations. E.g., a transitive closure  <a *>p    is
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mimicked by the fixed-point assertion  Oq• <a>p  P<a>q . But the natural recursion  a * =

a Qa;a*  over binary relations  is not expressed directly.

Question    Is the  O–calculus with relational fixed points decidable, too?

This distinction between state assertions and state transitions is a natural one – and it will

return in later sections. In particular, it also makes sense for guarded fragments and their

ilk. 'State recursion' and 'action recursion' are two different ways of adding fixed points.

E.g., finite approximations for state-predicate based fixed point equations remain inside

GF, but those for action predicates need not. The reason is that substituting an arbitrary

guarded formula for a guard atom need not produce a guarded formula (e.g., substitute ¬
Rxy for Axy in  Ry (Axy & Qy)). Only so-called safe formats  for action expressions

have this substitution property, which unpack into iterated guarded quantifications. (A

precise definition of safety is not attempted here: cf. van Benthem 1996, Ch. 5, 1998C, or

Hollenberg 1998 – or the sketch given in Section 7.) ( Graedel & Janin also show that

GF with arbitrary action fixed-points is undecidable.) The dangers of unbridled action

fixed-points show once more in the tiling problems of Section 5, where transitive closure

of action predicates North, East gives undecidability.

Remark    Shifting between truth conditons and frame conditions

Our re-analysis of K4 high-lights a usually implicit division of labour in modal logic: viz.

between general truth conditions and special frame conditions. What we see is that the

same effects can be obtained by manipulating the 'balance' between these two semantic

features. Another example is the 'Brouwer logic' B of symmetric frames, which is also the

minimal logic of the existential modality  Ry (Rxy & Ryx & S(y)). This trade-off is far

from being understood in its generality.

Remark    Higher-order extensions of decidable fragments

Decidable fragments of first-order logic are not just weakenings. They may be able to

carry 'extra weight' which first-order logic as a whole cannot bear without pain. The

earlier fixed-point operators provide one example of this: added to FOL they generate

highly exprerssive and complex parts of infinitary languages. But on top of modal

languages, they seem more harmless. Another example found at AiML-II was the second-

order quantifier "most". On top of FOL, it creates a logic which can define the natural

numbers categorically, and hence incurs very high complexity. But the methods of



14

Ohlbach & Koehler 1998 show that basic modal logic with a new numerical modal

operator saying "more a-successors are  A  than  b-successors are  B" remains decidable.

What about similar extensions of GF with non-standard generalized quantifiers?

Remark    Weaker propositional bases

As in description logics, one can study our main questions over a weaker underlying

propositional logic: e.g., with just conjunction plus existential and universal guarded

quantifiers. What happens then to the complexity of satisfiability and consequence? And,

what are appropriate 'directed bisimulations'? Cf. Kurtonina & de Rijke 1997.

5A Dynamic Perspective: From Sequential Action to Parallellism

This section is based on the analysis of dynamic logic in the unpublished paper 'Guarded

Questions and Variations', which occurs in van Benthem 1997A.

5.1State predicates versus action predicates

Syntactic decidability analysis without some concrete point of view may become blind.

One powerful more focused view takes modal languages dynamically as descriptions of

actions and their effects across states. That is, one thinks of possible worlds models as

process graphs or 'labeled transition systems'.  Intuitively, GF is about states which can

be changed by 'guard actions'  G( x, y), going either from  x  to  y,  or from  x  to  x, y .

This is still like basic modal logic, or propositional dynamic logic, in that it describes the

effects of sequential actions. By contrast, conjunctive guards suggest parallel action,

where different actors (sub-processes) change components of one global state. Here is a

typical quantifier pattern which arises with 'collective action':

x

y

z

u

G

R

PW

For a concrete interpretation, let  P ('poor')  describe the sum total of our current

possessions,  G  your action of gambling at the casino,  R  my action of robbing the bank,

while  W  ('wealthy')  describes the sum of our new individual financial states. The

typical quantifier pattern describing this outcome is the non-guarded, non-packed
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Pxy & Tzu (Gxz & Ryu & Wzu)

We can think of this as a 'product action'  GxH, of a kind studied in process theories.

Given its syntactic shape, must we conclude that 'Parallellism implies Undecidability'?

Such a clear-cut outcome might be pleasing. Indeed, our negative result in Section 3 on

free conjunctive guards said that unconstrained parallellism leads to undecidability .  But

the situation with collective action is more delicate, and much more can be said. For that

purpose, we need to backtrack a bit from GF.

Basic modal logic has an intuitive distinction between action predicates  Rxy  that jump

across accessibility links (from x to y), and state predicates  Px making static assertions

about the current state x. This distinction is obliterated in GF syntax, whose atomic

predicates can serve indifferently for describing moves between states, or fixed states.

But, by maintaining such a distinction, we can be more liberal with quantifier bounds –

and in the limit, allow any conjunction at all. Henceforth, we distinguish between state

atoms  Qx  and action atoms  Rx, y . The comma in action atoms separates input states on

the left from output  states on the right. The total language has both 'action formulas' and

'state formulas', whose syntax can be manipulated independently – as happens in

propositional dynamic logic. Here are some concrete options for languages like this.  We

start with two sequential action formalisms.

GSAL1 Action formulasRx,y
State formulasQx, Booleans,  Ty (Rx, y & U(y))

This 'guarded state-action language' describes transitions from an old state to a new one,

but without any cross-comparison between old states and new ones. The input-output

distinction has various effects. E.g., action atoms Rx, y are very different from their

converses  Ry, x . Moreover, the above restriction to only action-guarded quantifiers has

the effect of making every formula depend on some initial  tuple of free variables. Thus,

all formulas in GSAL1 are 'local': there are no closed sentences. As in ordinary modal

logic, 'satisfiability' then refers to local truth at some tuple of states in a model. 'Global

satisfiability', truth at all tuples in a model, is a much more powerful notion. Next, if

some input states are allowed to to persist as output, we need further atoms like Rx, yx,

while quantifiers  Ty  only range over the new components of the output state. Naturally,
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a matrix statement may now refer to these new  y  plus the persistent x . These additional

syntactic features turn  GSAL1  into a more expressive modal action language  GSAL2 .

Both are effective parts of GF, and thus inherit its decidability. Note that their syntax has

no explicit operations on action predicates . One may add certain safe operations,

however (cf. Section 4) – mainly some forms of 'choice' and 'composition' – without

increasing the expressive resources of these fragments.

5.2Modal logics for parallel action

This was all 'sequential' action. Genuinely parallel versions enrich the action formulas by

(unsafe!) conjunctions, while imposing various constraints on quantifier patterns.

Quantifiers then collect all output states mentioned in conjunctions of atoms  &Rx, y .

Moreover, to emphasize that the new objects form a coherent state, one may require the

occurrnce of an atomic guard, either over the new y, or over the new y plus the persistent

x. We list some options. But before proceeding, a warning may be in order. The purpose

of all this variation is not to create a boring catalogue of formal languages – but rather, to

demonstrate the effect of various expressive resources on decidability.

P-GSAL1Action formulasRx,y, conjunctions

State formulasQx, Booleans,  Vy (&Rx, y & W(y))

P-GSAL1*Action formulasRx,y, conjunctions

State formulasQx, Booleans,  Vy (&Rx, y & Qy & W(y))

As before, both languages allow only 'local' formulas, describing some tuple of states.

The second fragment is obviously a part of the first. P-GSAL2 and P-GSAL2* are

defined analogously, but now allowing input states from x to reappear as output states.

None of these languages lies inside GF (even though P-GSAL2* adds strong guards):

Vy1y2 (Rx1, y1 & Rx2, y2 & Qy1y2)  is in P-GSAL1*, but not in GF

Vy1y2 (Rx1, y1 & Sx2, x2y2 & Qx2y1y2)  is in P-GSAL2*, but not in GF

By a somewhat brute force argument, one can obtain the following result.

Theorem     Satisfiability in P-GSAL1*  is decidable.

Proof     We start again from the decidability proof for GF, with a universe of 'types' (sets

taken from the finite family of relevant formulas) satisfying suitable closure conditions.
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From this, we constructed paths of types recording which formulas are true at any stage.

We modify this idea slightly, allowing types that describe desired behaviour on only

some subset of the variables. Transitions extending a path are triggered explicitly by

existential formulas  Xy (&Rx, y & Y(y))  occurring in the last type so far, with the  y

'changing their values' – while the new end-type only has formulas with free variables

among the y . As a result, the 'life-time' of the input variables  x  ends at such a step. In

the model construction, we use objects  ( Z, x) as before, where x is among the active

variables at the end of the path  Z. For the interpretation of predicates, we set

(a)  a state atom  Qd  is only true of a tuple of objects if these lie on the same path,

 and were introduced simultaneously  at the final transition, whose result-type

contains the atom with the variables of the  d  (in the same order)

(b)an action atom  Ad, e  is only true if all its objects lie on the same path,

and the atom with the corresponding variables plugged in (as in (a))

occurred in the conjunctive action prefix of some transition.

Each path has an associated assignment  s [  defined on the variables in the last and one-

but-last types of the path, sending  x  to the object  ( Z*, x) , where  Z* is that subpath of  Z
in which  x  was changed last. Clearly, action atoms will only hold between objects in the

one-but-last and last stages. The Truth Lemma then says that

a (relevant) state formula   Y  holds under the assignment

of a path  iff  Yliterallyoccurs in the last type of that path

As in the original decidability argument for GF, there are two cases of major interest. ( 1)

First, consider state atoms  Qx . If  Qx  is in the last type of  Z , then – by our restriction

on result-types of path transitions  – its variables were among those affected by the final

change. So, we have the above condition for truth of the atom. Conversely, if  Q x  is true

under  s[ , this can only have happened by a simultaneous introduction  on  Z, with  Qx

explicitly present. (2) Now consider existential quantifiers  Xy (&Rx, y & Qy & Y(y)). If

the latter occurs in the final type, then it is true – by an argument as for GF: one looks at

the obvious path extension triggered by the existential formula. The crucial case is when

such a formula is true under  s[: while it should occur in the last type of  Z. Let some

tuple  d  of objects satisfy the specified action predicates, plus the state guard  Q y  and

the matrix statement  Y(y) . By the definition of true action predicates, the  d  must have

been introduced following the end of the current path. Moreover, as the state atom  Q y
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holds, they were introduced together in one transition, resulting in one final type  \  (i.e.,

they do not lie on separate forks) containing  Q y . Call this extended path  ]+ . Its s-

assignment sends the variables  y  to the objects  d . By the inductive hypothesis then,

^(y)  occurs in  \, the last type of ]+ . But then, by an obvious existential closure

condition on quasi-models,  _y (&Rx, y & Qy & ^(y))  occurred in the type before that,

which was the final type of  ] .     `

We think that P-GSAL1 (without the guard condition on new state tuples) is decidable,

too. But the above proof method does not work, since there is no guarantee that the new

states introduced by a true existential quantifier _y (&Rx, y & form a 'simultaneous set'

introduced in one parallel action step. (Different y might come from different steps.)

On the other hand, various parts of the preceding proof seem to admit of generalisation.

As for the two stronger languages P-GSAL 2 and P-GSAL2*, we leave their decidability

as an open question. Finally, note that the above proof is about local satisfiability only.

It does not settle the decidability of global satisfiability (truth in all states of a model).

This issue will return below.

Remark    Parallel Bisimulation

Guarded bisimulations for GSAL may be extended to stricter bisimulations for the richer

language PGAL. We need additional zig-zags for joint actions, with clauses like

 if  a E b , and Ra'c', S a''c'',  then there must be d', d''

with  Rb'd', S b''d''  such that c'c'' E d'd''

The above parallel languages are a new area for modal analysis. We noted several open

questions of decidability. But also, their model theory remains to be explored.

6   The Danger Zone: Grids and Tiling Problems

Let us now approach these issues from a different angle, and see where undecidability

strikes for sure. We will use insights on this matter from Spaan 1993, Marx 1997.

6.1Encoding tiling problems

Consider the embedding of tiling problems. The undecidable task is to put coloured tiles

on the infinite grid NxN, with some finite set of colours, and tiles having four coloured

edges, subject to the constraint that adjacent tiles have the same colour along their
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boundary. First-order formulas expressing the relevant constraints have a definite P-

GSAL flavour, with actions N (go one step north), E (go one step east ) and state

predicates Cx for the colours. Here are some examples. Adjacency of colours can be

expressed by straightforward universal conditions of the form

ax:ay ( Nx, y b  (C1x bccc cC2y))

ax:ay ( Ex, y b  (C1x bccc cC2y))

where the unary predicates  Ci  describe the various possible kinds of tiles. General

behaviour of colours is expressed by conditions of the form

ax:"at least and at most one C holds of x"

Next, the crucial grid pattern seen from x  is expressed by the assertions

ax:dy Nx, y ax:dy Ex, y

and more importantly,

ax:ayz ( (Nx, y & Ex, z) bdu (Ey, u & Nz, u))

These assertions lie in P-GSAL 1, modulo one unbounded universal quantifier in front.

Let us call their conjunction  TILE. Now it is not hard to prove the following

Fact   NxN has a tiling  iff  TILE is satisfiable.

Proof    Here is a sketch (for detailed arguments of this kind, cf. Blackburn, de Rijke &

Venema 1998). Clearly, if a tiling exists, NxN itself, suitably expanded, verifies TILE.

Conversely, consider any model for TILE. It is easy to define a map  f  from NxN,

sending the origin to any point in the model, with the following property:

if  y  is a northern  (eastern)  neighbour of x, then  N f(x), f(y)  (E f(x), f(y))

To see this, use the last three formulas above repeatedly to construct a grid of squares    x

N y E u, x E z N u, which provides all necessary  f-values. Then, a colouring for  NxN

meeting all constraints can be copied from the  C-behaviour of the f-values.       e
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6.2Exactly what causes undecidability?

This result tells us that the expressive power of parallellism comes close to encoding

grids, and hence undecidable problems may arise. But the encoding does not quite lie in

P-GSAL1. We need one unbounded universal quantifier  in front to make TILE work –

and the latter's dangers are well-known. Spaan 1993 shows how decidable modal logics

can become undecidable with this simple addition. She states this in terms of adding a

'universal modality' to the logic, but also observes that one such modality in front, i.e.,

our earlier global satisfiability, would do the harm already. An alternative would use only

those points (in models for TILE) reachable from some fixed origin by a finite number of

E, N steps. This uses transitive closure of the relation NfE, which is again outside our

fragments – and even more dangerous for decidability, as it can embed the g11-hard

problem of 'recurrent tiling'. Thus, a mixture of encoding grids plus some weak form of

universal prefix quantification will make process logics undecidable. Nevertheless, things

remain delicate. Adding one universal quantifier up front to the non-conjunctively-

bounded Guarded Fragment does no harm! (Cf. van Benthem 1997B for similar

observations on formalisms in extended modal logic.)

Fact   Satisfiability in GF with one universal prefix quantifier is decidable.

Proof      Start with any type containing a few universally quantified guarded formulas  x

hx i(x) . Add all instances  [u/x]i  (for the relevant variables  u ) to the types in the

quasi-model. The original tree-model construction will still work as it stands – and it is

easy to show that  iwill hold for all tuples of 'path objects' of the form  ( j, u).      k

Recall that minimal modal logic plus a 'universal modality' remains decidable. Thus, it is

the mixture of parallellism and universal quantification that generates undecidability. As

to extensions of our observation about GF, Marx 1997 presents undecidable modal logics

with characteristic universal Horn frame conditions. Therefore, allowing universal prefix

quantification over larger tuples seems problematic already.

Remark     The formulas in TILE did not satisfy the syntactic constraint of the language

PGSAL1* , that new objects in quantification must come simultaneously guarded by some

state predicate Q. But we can modify the definition of TILE by using a trivial unary

predicate P at all points, as well as a trivial binary predicate Q  at all point pairs:
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lx:Pxlxy:Qxy

Without the (double) universal prefix quantifiers allowing this trivial obedience, it is

unclear how to modify the necessary grid encoding, and get things right for proper tiling

within the syntactic constraint on outputs imposed by PGSAL 1*.

Summing up, parallel constructions (with conjunctive guards) flirt with undecidability.

On the other hand, they need not do so in general (witness the decidability of PGSAL 1),

and they seem harmful mainly in league with universal prefix quantifiers. We leave the

intermediate possibilities alone here. We hope to have shown at least how guarded

analysis can probe the effects of expressive power on decidability in a sensitive manner.

7Model Theory: Simulations and Splitting Expressive Power

In this section, we explore the outline of a model theory for our extended formalisms.

The results stated here are generalisations of ones already known for basic modal logic,

and the proofs of the relevant results in van Benthem 1996, chapters 4, 5 largely go

through, with some straightforward obvious modifications. Therefore, we omit details.

7.1The state–action split in model theory

In addition to decidability, the above fragments have other interesting logical features.

Consider the central notion of bisimulation. First, the split between state predicates and

action predicates may be given a concrete meaning in standard first-order logic by

assigning them different roles in guarded bisimulations. Action predicates regulate the

picking of suitable object tuples in back-and-forth moves, while state predicates

determine the 'quality' of what counts as a 'partial isomorphism'. (This difference of two

meaningful roles is of more general interest, as standard first-order logic seems highly

uniform in its treatment of non-logical vocabulary.) In the other Gestalt of this paper, one

can also design various modal languages incorporating this distinction. Our example is a

multi-state version of propositional dynamic logic, to be defined below.

7.2Case-study: multi-state propositional dynamic logic

Consider sequential actions performed on 'collective states' with many components. This

requires a shift from binary transition relations to general finitary relations  Rxy between

finite tuples of individual states. One modal language for this is a many-dimensional one,

with two components:  state predicates, and action predicates. The new system PDL*
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requires a two-level syntax, as for PDL, plus some book-keeping of arities for both levels

(position numbers, or with variables themselves as 'positions').

Assertions
State atoms Px, all Boolean operations, existential modalities <R> x,y
taking y-state formulas to x-state formulas, and 'lifters'  [m, T]z
(from  x-state formulas m to x+z-state ones).

Programs
Action atoms Rx,y, relation composition (with arity fit), union (with arity fit),

tests (m)?, projections  nx,y  (from x to some subset y).

Note that both formulas and programs of this language translate immediately into the

Guarded Fragment. So, we can either view it as a modal formalism, or as a piece of first-

order logic. Either way, models and the truth definition are obvious. In particular, the

lifter holds at an x+z-tuple if  m  holds at its x-subtuple. It is also straightforward to

generalize the original modal bisimulation (which still works for PDL) to an appropriate

notion of guarded bisimulation, slightly modifying the back-and-forth clauses stated in

Section 2.1 when analysing GF. (A small technical feature here: one has to close the

relevant families under sub-partial isomorphisms.)

We will briefly discuss the further theory of PDL *, which may be viewed as either

'modal' or 'classical' model theory demonstrating some interesting themes. To prove an

Invariance Theorem for our two-level language, just as with PDL, we also have to

identify another basic notion (cf. van Benthem 1996, Chapter 5). As before, we call a

first-order formula m(x)  invariant for guarded bisimulations  E  if,

whenever  a E b , then  M |= m(a)  iff     N |= m(b)

But next, we call a first-order formula  o(x, y)  safe for guarded bisimulations  if,

whenever  E  is a guarded bisimulation (zigzagging for the basic action

predicates of the language), the above zigzag clauses hold automatically

for the new relation defined by  o  in the models  M, N
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Thus, safe formulas define transition relations that 'stay inside' our simulation semantics,

i.e. our process realm. The following basic property of PDL * is proved by a simultaneous

induction on formulas and programs.

Proposition    

(1) All formulas are invariant for guarded bisimulations.

(2) All programs are safe for guarded bisimulations.

An adaptation of a known argument for modal logic shows a converse result as well.

Invariance Theorem     

For all first-order formulas p, the following assertions are equivalent:

(1) p  is invariant for guarded bisimulations

(2) pis definable in PDL*

Another modally inspired proof (cf. van Benthem 1998C) captures the safe operations.

This amounts to expressive completeness  for the key operations in the above language.

Safety Theorem     

The safe operations are precisely those definable using

(1) atomic action predicates, (2) tests for arbitrary state formulas,

(3) projections, (4) relation composition, and (5) union.

We can vary a bit on this syntactic description. Instead of having all tests, just atomic

ones will do, if one adds an 'impossibility negation' ~ on actions. Essentially, the safe

programs describe unions (OR-trees) of finite sequences of multi-states linked by action

steps or projections, with test assertions interspersed. The model theory of PDL * is a

blend of 'modal ideas pursued by first-order means'. Guarded bisimulation is like plain

bisimulation, though a bit more difficult to visualise, as matches are between finite tuples

of states. There is an unraveling method creating tree models – involving paths

<atom  Ra, b, selected object  bi , atom  Sb', c, etcetera>

This can be used for various purposes, amongst others for interpolation and preservation

properties. Here is a sample result, used in proving the Safety Theorem. A formula  p(Q)

is totally distributive in the displayed state predicate  Q  if its truth for the union of any
family  {Qi | iqI}  is equivalent to that for some  Qi  separately.



24

Distribution Theorem     

A formula is totally distributive in the state predicate  Q x   iff  it can be 

defined in the form  <r>Qx , with  r  a safe program as above whose

test conditions on intermediate states do not involve the predicate  Q.

PDL*  is decidable, because GF is. It even has an effective Finite Model Property, since

it lies inside a simple fragment of GF with 'distinguished guards' for which Andréka, van

Benthem & Németi 1998 provide an effective decidability argument. Valid principles are

much as in PDL itself. Several methods for completeness exist (many-dimensional modal

logic, algebraic representation, or proof-theoretic modification of decidability proofs).

As with PDL or GF, there is also an interest in adding general fixed-point operators, and

especially, ones that can be reached in s steps. In our first-order Gestalt, PDL-style

operators suffice for all s–fixed points  tQ•u(Q)  that can be computed with a matrix

formula  u(Q)  involving one  suitable occurrence of the atom  Qx . Semantically, general

s-stability follows from Finite Distribution, i.e.,

uholds of  Q  iff  it holds of some finite subpredicate  Q 0

The latter allows forms of definition with a finite number of suitable occurrences of Q.

Full first-order logic has this syntactic normal form for finite-distributive operators:

tQ• u(Q)  where the occurrences of  Q-atoms in  u

lie only in the scope of logical operators  v, w, x

For PDL*, a similar syntactic classification exists, of finite distributivity for state

predicates. It involves finite action trees, being AND-trees whose steps are safe actions,

and whose nodes may carry both  Q-free test conditions and atomic tests involving Q.

Finite Distribution Theorem     

For state-formulas  u, the following two assertions are equivalent:

(1) u  is finitely distributive in  Q,

(2)  u  says there exists one out of some set of finite action trees.

We have a simple quasi-model proof on probation to the effect that PDL * extended with

fixed-point operators for state predicates defined by the above operations is decidable. (It

generalizes the standard Fisher-Ladner filtration argument for PDL.) But see the earlier



25

positive news about fixed-point extensions of the Guarded Fragment. One open questions

is whether they can also be obtained by direct quasi-model-style arguments.

7.3Further issues in modal model theory

We conclude with some further issues in modal logic that seem to have a more general

model-theoretic interest. First, in modal logic, one often encounters two related versions

of basic results. For instance, modal interpolation theorems state that

if  y |=z , then there exists an interpolant  { with  y |={|=z

which lies in the 'joint language' of  y   and  z

The latter may either refer to the joint vocabulary of proposition letters, or also to the

joint modalities indexed by actions. Also, Los-Tarski theorems may characterize

preservation, either when dropping worlds from a model, or when dropping arrows from

its accessibility relation. This split between state predicates and action predicates returns

in our more general languages. For instance, the above discussion of  PDL * had

preservation theorems for semantic distributivity w.r.t. state predicates. But there are

similar (open) questions concerning action predicates. This split also has repercussions

for other basic semantic notions, like monotonicity. One final example was already

mentioned in Section 4. There are two natural kinds of fixed-point operator: one for state

predicates, and one for action predicates. The two turned out to be different.

Remark       Boosting via bisimulation

Also, well-known modal representation and completeness theorems suggest new standard

notions and results. Consider the 'model surgery' that occurs in many modal completeness

arguments. One finds a simple (Henkin) countermodel to some non-theorem  |, and then

constructs a bisimulation equivalent (where modal  |still fails) satisfying some desired

extra feature defined by, say,  }. Behind this technique lies an existential preservation

property, different from the usual universal versions:

whenever  M |=|,  there exists a bisimilar model  N |= |& }

'Boosting via bisimulation' is a new notion of general interest (cf. the paper on

'Information Links and Logical Transfer' in van Benthem 1998A).

Another set of open questions arises when we move from sequential to parallel modal

formalisms allowing conjunctive guards. In that case, our simulations must be extended
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with new clauses, and the above basic model theory of modal invariance and safety (van

Benthem 1996, Chapters 4 & 5) needs to be redone. In particular, can one find

expressively complete sets of natural modal operations for parallel actions?

Digression         The notion of 'partial isomorphism' needs change, too, due to the special

status of identity in our fragments. Identity statements  ~y (Rx1x2, y & ... & y=x1 & ...)

circumvent the distinction between input and output states, and their effect is hard to

predict. But without identity, bisimulation must be adjusted, even for GF itself. The basic

building blocks will now be binary relations between finite tuples of objects of the same

length  – or alternatively, binary relations between finite variable assignments.

We conclude with some more general issues behind the above language constructions.

There is a general spectrum of correspondences between  simulations and languages ,

running from 'modal-logic/bisimulation' to 'first-order-logic/potential-isomorphism'. This

needs to be understood more generally. In particular, why are the modal fragments of

first-order logic chosen on this spectrum usually so well-behaved? Do the specific

choices that people make perhaps obey some implicit transfer principles for a good meta-

theory? (Caveat. A warning example is the recent discovery reported in Hoogland and

Marx 1998 that Craig interpolation fails for GF. What is the general picture?)

Even in this discursive format, with more questions than answers, we hope to have shown

that modal logic engenders interesting novel themes for standard logic.

8Proof-Theoretic Alternatives

For the record, we note that generality in modal logic can also come from proof-theoretic,

rather than model-theoretic considerations. Here are two illustrations.

8.1Resolution

Decidability of modal languages may also be analysed in a computational perspective.

There are new resolution strategies for GF, providing a complete but finite search space

(De Nivelle 1998), using Skolemisation techniques plus sophisticated proof strategies.

A theorem prover 'Bliksem' incorporating these reached second place over-all at the inter-

national competition CADE, Konstanz 1998. Here, the emphasis is not so much on the

syntax of modal languages as on correctness and termination of specific proof strategies.



27

This is a really different approach, based on algorithmics rather than syntax or semantics,

to what makes modal decidability tick. Our second illustration is in the same vein.

8.2Contraction

It is easy to show (Andréka, van Benthem & Németi 1998) that basic modal logic can be

axiomatized completely with the usual Gentzen introduction rules for the logical

operators plus all structural rules minus Contraction. This follows from a simple

reduction method for valid modalized/atomic sequents. For stronger modal fragments,

effectively finitely bounded versions of contraction often suffice. This observation again

suggests an independent proof-theoretic perspective. As is well-known, in linear logic,

one 'shuts off' the contraction rule, and then sees what (decidable) logics remain. What

we observed here is that basic modal logic is insensitive to this shift: no validities are

lost. Moreover, generalized modal languages can make do with effectively limited

contraction without losing validities. So, we ask  just which fragments of full classical

logic can do with effectively limited forms of contraction (keeping the search space

finite). Will the outcomes of this query match up with the results of guarded analysis?

9A Summary of General Themes

What we have advocated are the virtues of general translation and adopting a tandem

approach. We do note that this should be done with care. Our 'standard translations'

enshrine one particular view of the semantics for a modal language, and hence, they may

encourage undue conservatism. These issues were hotly debated in the seventies: cf. van

Benthem 1977 on intrinsic versus translationist views of temporal logic. For a

contemporary example, in the 'logic of proofs' of Artemov 1998, the box modality  []  is

not a universal quantifier (over all accessible worlds), but an existential one (running

over available proofs). But when well-defined, such alternative views, too, can always be

'translated'. Also, modal translations need not run into first-order logic. For instance,

when translating Beth semantics for intuitionistic logic, one will naturally encounter

second-order quantification over 'bars' of nodes across a tree. Here too, translation may

still be useful, because it forces one to rethink the given semantics. Do we really want

this second-order version, or rather a many-sorted first-order one treating nodes, bars and

branches on a par as first-class semantic citizens? (Van Benthem, van Eijck &

Stebletsova 1995 make a similar point concerning process logics with states and paths.)

And thus, 'translationism' need not be a conservative force after all.
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Next, we have emphasized the duality between language design and the search for

characteristic simulations. There are no qualifications here: this is just a Good Thing.

Then, in this language design, we stressed the importance of quantifier fine-structure,

especially that involving guards. Our claim is not that this gives us a miracle cure

explaining every form of decidability in modal logic. Our discussion of minimal logics

versus extra frame conditions has shown clear limitations to the guarded approach – but

also some surprising extensions (witness the discussion of transitivity and fixed-points in

Section 4). Then, we have advocated the use of concrete metaphors in extending the

range of modal logic, in particular, a dynamic perspective with new distinctions between

state versus action predicates, and sequential versus parallel actions. Thus we are

traveling in a landscape of modal languages, where we want to study general phenomena,

rather than enjoy the attractions of any particular spot forever. This landscape also has its

exciting features, such as undecidability thresholds, occurring in a generally undetectable

manner (it is undecidable if a given modal logic is decidable: Chagrov & Zakharyashev

1993), much like the deep cracks in the ice-cap of Antarctica. This perhaps outlandish

methodology of 'landscapism' (cf. Moss' 1998 review of van Benthem 1996) puts broad

logical phenomena in focus as our real topic of research, rather than – pace our Uppsala

ancestor Linnaeus – the usual 'botany of modal logics'.

Nevertheless, this paper has offered no definition of Modal Logic. The most I will say

here is this. Our field is concerned with the balance between expressive power and

complexity in designing logical systems. This is not a minor issue. If there are universal

conservation principles underlying logic (as I myself believe: cf. van Benthem 1997C),

then one must surely be some kind of Golden Rule inversely relating expressive power

and complexity. Our investigations in this paper are about just that subtle relationship.
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