Winning Strategies in Two-Player Games with Partial Information

Bernd Puchala

RWTH Aachen University
Infinite Two-Player Win-Loss Games

\[G = (V, V_0, (f_a)_{a \in A}, W_0) \]
Infinite Two-Player Win-Loss Games

\[G = (V, V_0, (f_a)_{a \in A}, W_0) \]

- game played on a finite graph with labelled edges
Infinite Two-Player Win-Loss Games

\[G = (V, V_0, (f_a)_{a \in A}, W_0) \]

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
Infinite Two-Player Win-Loss Games

\[G = (V, V_0, (f_a)_{a \in A}, W_0) \]

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- choosing deterministic actions from the set \(A \)
Infinite Two-Player Win-Loss Games

\[G = (V, V_0, (f_a)_{a \in A}, W_0) \]

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- choosing deterministic actions from the set \(A \)
- for \(\omega \) many rounds,
Infinite Two-Player Win-Loss Games

\[G = (V, V_0, (f_a)_{a \in A}, W_0) \]

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- choosing deterministic actions from the set \(A \)
- for \(\omega \) many rounds,
- with player 0 having the goal to establish a play in \(W_0 \subseteq V^\omega \).
Infinite Two-Player Win-Loss Games

\[G = (V, V_0, (f_a)_{a \in A}, W_0) \]

- game played on a finite graph with labelled edges
- by two antagonistic players 0 and 1,
- choosing deterministic actions from the set \(A \)
- for \(\omega \) many rounds,
- with player 0 having the goal to establish a play in \(W_0 \subseteq V^\omega \).
- As usual, game graphs are non-terminating.
Strategies

- Strategy for player i:
Strategies

- Strategy for player i:

 Function $f : V^*V_i \rightarrow A$ with $f(\pi v_i) \in \text{act}(v_i)$,

 prescribing a next move for each finite play prefix where it is player i’s turn.
Strategies

- Strategy for player i:

 Function $f : V^*V_i \rightarrow A$ with $f(\pi v_i) \in \text{act}(v_i)$,

 prescribing a next move for each finite play prefix where it is player i’s turn

 and being compatible with the knowledge of player i.

Strategies

- Strategy for player i:

 Function $f : V^* V_i \rightarrow A$ with $f(\pi v_i) \in \text{act}(v_i)$,
 prescribing a next move for each finite play prefix where it is
 player i’s turn

 and being compatible with the knowledge of player i.

- The knowledge of player i in the game is modelled by an
 equivalence relation on V^*.

Strategies

- Strategy for player i:
 Function $f : V^* V_i \rightarrow A$ with $f(\pi v_i) \in \text{act}(v_i)$,
 prescribing a next move for each finite play prefix where it is player i’s turn
 and being compatible with the knowledge of player i.

- The knowledge of player i in the game is modelled by an equivalence relation on V^*.
 $\pi \sim_i \pi'$ means, that after π has been played and after π' has been played, player i has exactly the same information.
Strategies

- Strategy for player i:

 Function $f : V^*V_i \rightarrow A$ with $f(\pi v_i) \in \text{act}(v_i)$, prescribing a next move for each finite play prefix where it is player i’s turn

 and being compatible with the knowledge of player i.

- The knowledge of player i in the game is modelled by an equivalence relation on V^*.

 $\pi \sim_i \pi'$ means, that after π has been played and after π' has been played, player i has exactly the same information.

$$\pi \sim_i \pi' \implies f(\pi) = f(\pi')$$
In principle, any equivalence relation can be used here, but:
In principle, any equivalence relation can be used here, but:

- we would like to impose certain natural restrictions on \sim_i.
In principle, any equivalence relation can be used here, but:

- we would like to impose certain natural restrictions on \sim_i.
- for algorithms, we need a finite representation of \sim_i.

Knowledge Representation
In principle, any equivalence relation can be used here, but:

- we would like to impose certain natural restrictions on \sim_i.
- for algorithms, we need a finite representation of \sim_i.

 Finite representation of game graphs: finite graphs, pushdown graphs, graphs generated by finitary construction rules, . . .
Knowledge Representation

In principle, any equivalence relation can be used here, but:

- we would like to impose certain natural restrictions on \sim_i.
- for algorithms, we need a finite representation of \sim_i.

- Finite representation of game graphs: finite graphs, pushdown graphs, graphs generated by finitary construction rules, . . .
- Finite representation of winning conditions: LTL, S1S, parity conditions, . . .
Knowledge Representation

In principle, any equivalence relation can be used here, but:

- we would like to impose certain natural restrictions on \sim_i.
- for algorithms, we need a finite representation of \sim_i.

- Finite representation of game graphs: finite graphs, pushdown graphs, graphs generated by finitary construction rules, . . .
- Finite representation of winning conditions: LTL, S1S, parity conditions, . . .
- Finite representation of knowledge:
Define the information that a player has about the positions in the game graph:
Equivalence relation \sim_i on V.

1st Extend \sim_i to \sim_i.
Define the information that a player has about the positions in the game graph:
Equivalence relation \sim_i^V on V.

Now we make some natural assumptions:
Knowledge Representation

1st Define the information that a player has about the positions in the game graph:
Equivalence relation \sim^V_i on V.

Now we make some natural assumptions:

(1) $v \sim_i w \implies v, w \in V_i$ or $v, w \notin V_i$
1st Define the information that a player has about the positions in the game graph:
Equivalence relation \sim_i^{V} on V.

Now we make some natural assumptions:

(1) $v \sim_i w \implies v, w \in V_i$ or $v, w \notin V_i$

(2) $v, w \in V_i$ with $v \sim_i w$, $a \neq b \implies f_a(v) \not\sim_i f_b(w)$
Define the information that a player has about the positions in the game graph:
Equivalence relation \sim_i on V.

Now we make some natural assumptions:

1. $v \sim_i w \implies v, w \in V_i$ or $v, w \notin V_i$
2. $v, w \in V_i$ with $v \sim_i w, a \neq b \implies f_a(v) \not\sim_i f_b(w)$
3. $v, w \in V_i$ with $v \sim_i w \implies \text{act}(v) = \text{act}(w)$
Define the information that a player has about the positions in the game graph:
Equivalence relation \sim^V_i on V.

Now we make some natural assumptions:

1. $v \sim^V_i w \implies v, w \in V_i$ or $v, w \notin V_i$
2. $v, w \in V_i$ with $v \sim^V_i w$, $a \neq b \implies f_a(v) \not\sim_i f_b(w)$
3. $v, w \in V_i$ with $v \sim^V_i w \implies \text{act}(v) = \text{act}(w)$

Extend \sim^V_i to \sim_i.
Knowledge Representation

~ If player i does observe any move, then
Knowledge Representation

\[\sim \text{ If player } i \text{ does observe any move, then} \]
\[\pi \sim_i \pi' \text{ iff } |\pi| = |\pi'| \text{ and } \pi(j) \sim^V_i \pi'(j) \text{ for all } j. \]

(Synchronous case, player share a clock.)
If player i does observe any move, then

$$\pi \sim_i \pi' \text{ iff } |\pi| = |\pi'| \text{ and } \pi(j) \sim_Y^i \pi'(j) \text{ for all } j.$$
(Synchronous case, player share a clock.)

Now, hide moves from player i in which he can’t observe anything that happens:
Knowledge Representation

~ If player i does observe any move, then
$$\pi \sim_i \pi' \text{ iff } |\pi| = |\pi'| \text{ and } \pi(j) \sim_i^V \pi'(j) \text{ for all } j.$$ (Synchronous case, player share a clock.)

↑ Now, hide moves from player i in which he can’t observe anything that happens:
$$\pi \overset{\leftarrow}{\sim}_i \pi' \text{ iff } \overset{\leftarrow}{\pi} \sim_i \overset{\leftarrow}{\pi'} \text{ where }$$
$$\overset{\leftarrow}{\pi} \text{ is obtained from } \pi \text{ by deleting all moves } u \to v \text{ from } \pi \text{ such that } u \in V_{1-i} \text{ and } u \sim_i^V v.$$ (Asynchronous case.)
The Question

Given a finite game $G = (G, (V_i)_{i=0,1})$ and a position v, does player 0 have a strategy for G from v which is winning against all strategies of player 1?
The Question

Given a finite game $\mathcal{G} = (G, (\sim^V_i)_{i=0,1})$ and a position v, does player 0 have a strategy for \mathcal{G} from v which is winning against all strategies of player 1?

However, this is the same as asking:
Given a finite game $\mathcal{G} = (G, (\sim^V_i)_{i=0,1})$ and a position v, does player 0 have a strategy for \mathcal{G} from v which is winning?
The Question

Given a finite game $G = (G, (\sim_i V)_{i=0,1})$ and a position v, does player 0 have a strategy for G from v which is winning against all strategies of player 1?

However, this is the same as asking:
Given a finite game $G = (G, (\sim_i V)_{i=0,1})$ and a position v, does player 0 have a strategy for G from v which is winning?

Thus, we can ignore the partial information of player 1 here!

$$\sim G = (G, \sim V)$$
Aim

For large classes of games, find
Aim

For large classes of games, find

- (efficient) algorithms for the strategy problem.
Aim

For large classes of games, find

- (efficient) algorithms for the strategy problem.
- (efficient) methods to implement winning strategies with (small) finite memory.
Aim

For large classes of games, find

- (efficient) algorithms for the strategy problem.
- (efficient) methods to implement winning strategies with (small) finite memory.

Idea:
Turn a game with partial information into a game with full information such that the existence of winning strategies for player 0 is preserved.
For large classes of games, find

- (efficient) algorithms for the strategy problem.
- (efficient) methods to implement winning strategies with (small) finite memory.

Idea:
Turn a game with partial information into a game with full information such that the existence of winning strategies for player 0 is preserved.

\rightarrow Powerset Construction
Synchronous Case

\[\mathcal{G} = (G, \sim^V) \leadsto \overline{G} = (V, V_0, (E)_{a \in A}, W_0) \]
Synchronous Case

\[\mathcal{G} = (G, \sim^V) \sim \bar{G} = (\bar{V}, \bar{V}_0, (\bar{E})_{a \in A}, \bar{W}_0) \]

- Positions in \bar{V} are subsets of \sim^V-classes.
Synchronous Case

\[G = (G, \sim^V) \mapsto \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0) \]

- Positions in \(\overline{V} \) are subsets of \(\sim^V \)-classes.

- The set of \(\overline{E} \)-successors of \(\overline{u} \) is obtained from the set of all successors of positions in \(\overline{u} \), divided by \(\sim^V \).
Synchronous Case

\[G = (G, \sim^V) \sim \overline{G} = (\overline{V}, \overline{V_0}, (E)_{a \in A}, \overline{W_0}) \]

- Positions in \(\overline{V} \) are subsets of \(\sim^V \)-classes.

- The set of \(\overline{E} \)-successors of \(\overline{u} \) is obtained from the set of all successors of positions in \(\overline{u} \), divided by \(\sim^V \).

- \(\overline{W_0} \) : for parity conditions with observable colors, let \(\text{col}(\overline{u}) = \text{col}(u) \) for any \(u \in \overline{u} \).
Synchronous Case

\[G = (G, \sim^V) \rightsquigarrow \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0) \]

- Positions in \(\overline{V} \) are subsets of \(\sim^V \)-classes.

- The set of \(\overline{E} \)-successors of \(\overline{u} \) is obtained from the set of all successors of positions in \(\overline{u} \), divided by \(\sim^V \).

- \(\overline{W}_0 \): for parity conditions with observable colors, let \(\text{col}(\overline{u}) = \text{col}(u) \) for any \(u \in \overline{u} \).

- Arbitrary winning conditions?
Synchronous Case

\[G = (G, \sim^V) \leadsto \overline{G} = (\overline{V}, \overline{V}_0, (\overline{E})_{a \in A}, \overline{W}_0) \]

- Positions in \(\overline{V} \) are subsets of \(\sim^V \)-classes.
- The set of \(\overline{E} \)-successors of \(\overline{u} \) is obtained from the set of all successors of positions in \(\overline{u} \), divided by \(\sim^V \).
- \(\overline{W}_0 \) : for parity conditions with observable colors, let \(\text{col}(\overline{u}) = \text{col}(u) \) for any \(u \in \overline{u} \).
- Arbitrary winning conditions?
- Let \(\overline{u}_1 \overline{u}_2 \ldots \in \overline{W}_0 \) \iff \ldots
Synchronous Case

\[G = (G, \sim^V) \sim \bar{G} = (V, V_0, (E)_{a\in A}, W_0) \]

- Positions in \(\bar{V} \) are subsets of \(\sim^V \)-classes.

- The set of \(\bar{E} \)-successors of \(\bar{u} \) is obtained from the set of all successors of positions in \(\bar{u} \), divided by \(\sim^V \).

- \(\bar{W}_0 \) : for parity conditions with observable colors, let \(\text{col}(\bar{u}) = \text{col}(u) \) for any \(u \in \bar{u} \).

- Arbitrary winning conditions?

- Let \(\bar{u}_1 \bar{u}_2 \ldots \in \bar{W}_0 : \iff \forall u_1u_2\ldots \in V^\omega : [u_i \in \bar{u}_i \ \forall i] \implies u_1u_2\ldots \in W_0. \)
Synchronous Case

- For parity conditions with observable colors, this is equivalent to coloring the positions in \overline{G}.
Synchronous Case

- For parity conditions with observable colors, this is equivalent to coloring the positions in \overline{G}.

- Also true for more general notions of observable winning conditions.
For parity conditions with observable colors, this is equivalent to coloring the positions in G.

Also true for more general notions of observable winning conditions.

For arbitrary ω-regular winning conditions?
For parity conditions with observable colors, this is equivalent to coloring the positions in G.

Also true for more general notions of observable winning conditions.

For arbitrary ω-regular winning conditions?

For arbitrary ω-regular winning conditions?

$\bar{u}_1 \bar{u}_2 \ldots \not\in \bar{W}_0 \iff \bar{u}_1 \bar{u}_2 \ldots \not\in \bar{W}_0$
Synchronous Case

- For parity conditions with observable colors, this is equivalent to coloring the positions in \overline{G}.
- Also true for more general notions of observable winning conditions.
- For arbitrary ω-regular winning conditions?

\[\overline{u_1 u_2 \ldots} \not\in \overline{W}_0 \iff \exists u_1 u_2 \ldots \in V^\omega \setminus W_0 : u_i \in \overline{u_i} \ \forall i \]
For parity conditions with observable colors, this is equivalent to coloring the positions in G.

Also true for more general notions of observable winning conditions.

For arbitrary ω-regular winning conditions?

$$\overline{u_1 u_2 \ldots} \notin \overline{W_0} \iff \exists \, u_1 u_2 \ldots \in V^\omega \setminus W_0 : u_i \in \overline{u_i} \, \forall i$$

Given a Büchi automaton \mathcal{B} with $L(\mathcal{B}) = W_0$, one can construct a Büchi automaton $\overline{\mathcal{B}}$ with $L(\overline{\mathcal{B}}) = \overline{W_0}$.

(ω-regular languages are closed under complementation.)
Theorem

- The strategy problem for \(\omega \)-regular games with partial information is decidable.

- Finite memory strategies can be synthesized.
Asynchronous Case

\[\mathcal{G} = (G, \sim^V) \leadsto \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0) \]
Asynchronous Case

\[\mathcal{G} = (G, \sim^V) \rightarrow \bar{G} = (\bar{V}, \bar{V}_0, (\bar{E})_{a \in A}, \bar{W}_0) \]

- Positions in \(\bar{V} \) are subsets of \(\sim^V \)-classes.
Asynchronous Case

\[\mathcal{G} = (G, \sim^V) \mapsto \tilde{\mathcal{G}} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0) \]

- Positions in \(\tilde{V} \) are subsets of \(\sim^V \)-classes.

- We call a position \(\nu \) an extended successor of a position \(\mu \), if \(\nu \) is reachable from a successor \(\mu' \) of \(\mu \) via a sequence of moves which are hidden from player 0.
Asynchronous Case

\[G = (G, \sim^V) \sim \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0) \]

- Positions in \(\tilde{V} \) are subsets of \(\sim^V \)-classes.
- We call a position \(v \) an extended successor of a position \(u \), if \(v \) is reachable from a successor \(u' \) of \(u \) via a sequence of moves which are hidden from player 0.
- The set of \(\tilde{E} \)-successors of \(\tilde{u} \) is obtained from the set of all extended successors of positions in \(\tilde{u} \), divided by \(\sim^V \).
Asynchronous Case

\[G = (G, \sim^V) \leadsto \tilde{G} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0) \]

- Positions in \(\tilde{V} \) are subsets of \(\sim^V \)-classes.

- We call a position \(v \) an extended successor of a position \(u \), if \(v \) is reachable from a successor \(u' \) of \(u \) via a sequence of moves which are hidden from player 0.

- The set of \(\tilde{E} \)-successors of \(\tilde{u} \) is obtained from the set of all extended successors of positions in \(\tilde{u} \), divided by \(\sim^V \).

- \(\tilde{W}_0 \) : for parity conditions with observable colors, let \(\text{col}(\tilde{u}) = \text{col}(u) \) for any \(u \in \tilde{u} \).
Asynchronous Case

\[\mathcal{G} = (G, \sim^V) \leadsto \tilde{\mathcal{G}} = (\tilde{V}, \tilde{V}_0, (\tilde{E})_{a \in A}, \tilde{W}_0) \]

- Positions in \(\tilde{V} \) are subsets of \(\sim^V \)-classes.

- We call a position \(v \) an extended successor of a position \(u \), if \(v \) is reachable from a successor \(u' \) of \(u \) via a sequence of moves which are hidden from player 0.

- The set of \(\tilde{E} \)-successors of \(\tilde{u} \) is obtained from the set of all extended successors of positions in \(\tilde{u} \), divided by \(\sim^V \).

- \(\tilde{W}_0 \) : for parity conditions with observable colors, let \(\text{col}(\tilde{u}) = \text{col}(u) \) for any \(u \in \tilde{u} \).

- Arbitrary winning conditions?
Asynchronous Case

Let $\tilde{u}_1\tilde{u}_2\ldots \in \tilde{W}_0$:
Asynchronous Case

Let $\tilde{u}_1\tilde{u}_2\ldots \in \tilde{W}_0 : \iff$

$\forall u_1u_2\ldots \in V^\omega :$
Asynchronous Case

Let $\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 : \iff \\
\forall u_1 u_2 \ldots \in V^\omega : \\
[\exists 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \ \forall \ i \ \text{and} \ \ k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0]
Asynchronous Case

Let $\tilde{u}_1 \tilde{u}_2 \ldots \in \tilde{W}_0 : \iff
\forall u_1 u_2 \ldots \in V^\omega :
\left[\exists 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \ \forall \ i \ \text{and} \ k_{i+1} - k_i = 1 \ \text{if} \ \tilde{u}_i \in \tilde{V}_0 \right]
\implies u_1 u_2 \ldots \in W_0
Let $\tilde{u}_1\tilde{u}_2\ldots \in \tilde{W}_0 \iff \\
\forall u_1u_2\ldots \in V^\omega :\\n[\exists 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \forall i \text{ and } \\
k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0]\\n\implies u_1u_2\ldots \in W_0}$

- For parity conditions with observable colors, this is equivalent to coloring the positions in \overline{G}.
- Also true for more general notions of observable winning conditions.
Asynchronous Case

Let $\tilde{u}_1\tilde{u}_2\ldots \in \tilde{W}_0 \iff \
\forall \ u_1u_2\ldots \in V^\omega : \
\exists 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \forall i \text{ and } k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0 \]
$u_1u_2\ldots \in W_0$

- For parity conditions with observable colors, this is equivalent to coloring the positions in \overline{G}.
- Also true for more general notions of observable winning conditions.
- For arbitrary ω-regular winning conditions?
Asynchronous Case

\[\overline{u_1 u_2 \ldots} \notin \overline{W_0} \iff \]
Asynchronous Case

\[
\bar{u}_1 \bar{u}_2 \ldots \not\in \overline{W}_0 \iff \\
\exists u_1 u_2 \ldots \in V^\omega \setminus W_0
\]
Asynchronous Case

\[\bar{u}_1 \bar{u}_2 \ldots \notin \overline{W}_0 \iff \exists u_1 u_2 \ldots \in V^\omega \setminus W_0 \]

\[
[\exists 0 := k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_{i+1}-1} \in \tilde{u}_i \forall i \]

and \(k_{i+1} - k_i = 1 \) if \(\tilde{u}_i \in \tilde{V}_0 \)]
Asynchronous Case

\[\overline{u_1 u_2 \ldots} \notin \overline{W}_0 \iff \exists u_1 u_2 \ldots \in V^\omega \setminus W_0 \]
\[\exists 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_i+1-1} \in \tilde{u}_i \forall i \]
\[\text{and } k_{i+1} - k_i = 1 \text{ if } \tilde{u}_i \in \tilde{V}_0 \]

• Given a Büchi automaton \(B \) with \(L(B) = W_0 \), one can construct a Büchi automaton \(\overline{B} \) with \(L(\overline{B}) = \overline{W}_0 \).
Asynchronous Case

- $\overline{u_1 u_2 \ldots} \notin \overline{W_0} \iff \exists u_1 u_2 \ldots \in V^\omega \setminus W_0$

 $[\exists 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_i+1-1} \in \tilde{u}_i \forall i$

and $k_{i+1} - k_i = 1$ if $\tilde{u}_i \in \tilde{V}_0]$

- Given a Büchi automaton B with $L(B) = W_0$, one can construct a Büchi automaton \overline{B} with $L(\overline{B}) = \overline{W_0}$.

- In the synchronous case, from a given S1S-formula φ with $L(\varphi) = W_0$, one can construct an S1S-formula $\overline{\varphi}$ with $L(\overline{\varphi}) = \overline{W_0}$ directly.
Asynchronous Case

- \(\overline{u_1 u_2 \ldots} \notin \overline{W_0} \iff \exists u_1 u_2 \ldots \in V^\omega \setminus W_0 \)

\[\exists 0 =: k_0 < k_1 < k_2 < \ldots \text{ with } u_{k_i}, \ldots, u_{k_i+1-1} \in \overline{u}_i \forall i \]

and \(k_{i+1} - k_i = 1 \) if \(\overline{u}_i \in \overline{V}_0 \]

- Given a Büchi automaton \(\mathcal{B} \) with \(L(\mathcal{B}) = W_0 \), one can construct a Büchi automaton \(\overline{\mathcal{B}} \) with \(L(\overline{\mathcal{B}}) = \overline{W}_0 \).

- In the synchronous case, from a given S1S-formula \(\varphi \) with \(L(\varphi) = W_0 \), one can construct an S1S-formula \(\overline{\varphi} \) with \(L(\overline{\varphi}) = \overline{W}_0 \) directly.

- In the asynchronous case?
Asynchronous Case

Theorem

- The asynchronous strategy problem for ω-regular games with partial information is decidable.
- Finite memory strategies can be synthesized.
<table>
<thead>
<tr>
<th>The Model</th>
<th>Powerset Construction</th>
<th>Finite Memory</th>
<th>Alternating Tree Automata</th>
<th>Future Prospects</th>
</tr>
</thead>
</table>

First Lower Bound
First Lower Bound

G_n: The number of positions and the time bound are linear in n.
First Lower Bound

G_n:
- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses $2^n - 1$ memory states.
First Lower Bound

G_n:

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses $2^n - 1$ memory states.
- Player 0 does not have a winning strategy which uses at most $2^n - 2$ memory states.
The number of positions and the time bound are linear in n.

Player 0 has a winning strategy which uses $2^n - 1$ memory states.

Player 0 does not have a winning strategy which uses at most $2^n - 2$ memory states.

Player 0 has a memoryless winning strategy for the underlying game with full information.
First Lower Bound

G_n:

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses $2^n - 1$ memory states.
- Player 0 does not have a winning strategy which uses at most $2^n - 2$ memory states.
- Player 0 has a memoryless winning strategy for the underlying game with full information.

However:

- There are $O(n!)$ many actions in the game.
First Lower Bound

G_n:

- The number of positions and the time bound are linear in n.
- Player 0 has a winning strategy which uses $2^n - 1$ memory states.
- Player 0 does not have a winning strategy which uses at most $2^n - 2$ memory states.
- Player 0 has a memoryless winning strategy for the underlying game with full information.

However:

- There are $O(n!)$ many actions in the game.
- It is not a reachability game.
First Lower Bound

\(G_n: \)

- The number of positions and the time bound are linear in \(n \).
- Player 0 has a winning strategy which uses \(2^n - 1 \) memory states.
- Player 0 does not have a winning strategy which uses at most \(2^n - 2 \) memory states.
- Player 0 has a memoryless winning strategy for the underlying game with full information.

However:

- There are \(O(n!) \) many actions in the game.
- It is not a reachability game.

\[\sim 2^{\sqrt[3]{n}} \]
<table>
<thead>
<tr>
<th>The Model</th>
<th>Powerset Construction</th>
<th>Finite Memory</th>
<th>Alternating Tree Automata</th>
<th>Future Prospects</th>
</tr>
</thead>
</table>

Second Lower Bound (Berwanger et al.)
Second Lower Bound (Berwanger et al.)
Second Lower Bound (Berwanger et al.)
Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:
Nonemptiness for nondeterministic tree automaton \mathcal{A}:

\[L(\mathcal{A}) \neq \emptyset \iff \exists \text{ player } \exists \text{ wins the game.} \]
Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton \mathcal{A}:

\[L(\mathcal{A}) \neq \emptyset \iff \exists \text{ tree } t \exists \text{ run } \rho \text{ of } \mathcal{A} \text{ on } t : \]

all infinite paths through ρ are accepting.
Nonemptiness for nondeterministic tree automaton \mathcal{A}:

$L(\mathcal{A}) \neq \emptyset \iff \exists \text{ tree } t \quad \exists \text{ run } \rho \text{ of } \mathcal{A} \text{ on } t$

all infinite paths through ρ are accepting.

Game:
Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

$L(A) \neq \emptyset \iff \exists \text{ tree } t \exists \text{ run } \rho \text{ of } A \text{ on } t :$

all infinite paths through ρ are accepting.

Game:

- Player \exists : Chooses tree and run
 (by choosing transitions)
Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton \mathcal{A}:

$L(\mathcal{A}) \neq \emptyset \iff \exists \text{ tree } t \exists \text{ run } \rho \text{ of } \mathcal{A} \text{ on } t :
\text{ all infinite paths through } \rho \text{ are accepting.}$

Game:

- Player \exists : Chooses tree and run
 (by choosing transitions)
- Player \forall : Chooses path
 (by choosing directions in the tree = directions in the run)
Nondeterministic Tree-Automata

Nonemptiness for nondeterministic tree automaton A:

$L(A) \neq \emptyset \iff \exists$ tree $t \exists$ run ρ of A on t:
all infinite paths through ρ are accepting.

Game:

- Player \exists: Chooses tree and run
 (by choosing transitions)
- Player \forall: Chooses path
 (by choosing directions in the tree = directions in the run)

$L(A) \neq \emptyset \iff$ Player \exists wins the game.
Alternating tree automaton:

- Directions in the input tree \neq directions in the run.
 (Several directions in the run may correspond to one direction in the tree.)
Alternating tree automaton:

- Directions in the input tree ≠ directions in the run. (Several directions in the run may correspond to one direction in the tree.)

- Labelling of the input tree may depend on the directions of the input tree that ∀ chooses but it must not depend on the directions of the run that ∀ chooses.
Alternating tree automaton:
- Directions in the input tree \neq directions in the run.
 (Several directions in the run may correspond to one direction in the tree.)
- Labelling of the input tree may depend on the directions of the input tree that \forall chooses but it must not depend on the directions of the run that \forall chooses.

Idea:
Split \exists into players T, guessing the tree and A, guessing the run of the automaton.
Alternating tree automaton:

- Directions in the input tree \neq directions in the run. (Several directions in the run may correspond to one direction in the tree.)

- Labelling of the input tree may depend on the directions of the input tree that \forall chooses but it must not depend on the directions of the run that \forall chooses.

Idea:
Split \exists into players T, guessing the tree and A, guessing the run of the automaton.

\sim Three player game with partial information.
Players \forall and A have full information
Players \forall and A have full information.

Player T sees only the branches of the input tree which are chosen.
From Automata to Games

- Players \forall and A have full information
- Player T sees only the branches of the input tree which are chosen

$L(A) \neq \emptyset$ if and only if T and A can cooperate to win.
From Automata to Games

- Players \forall and A have full information
- Player T sees only the branches of the input tree which are chosen

$$L(A) \neq \emptyset$$ if and only if T and A can cooperate to win.

If A is universal, then the game is a two-player game with partial information!
From Games to Automata

Problem:
Given three-player game with partial information where only player 0 has partial information, position v, can player 0 and 1 cooperate to win from v?
Problem:
Given three-player game with partial information where only player 0 has partial information, position v, can player 0 and 1 cooperate to win from v?

(1) Construct nondeterministic tree automaton such that a tree is accepted \iff
Problem:
Given three-player game with partial information where only player 0 has partial information, position v, can player 0 and 1 cooperate to win from v?

1. Construct nondeterministic tree automaton such that a tree is accepted \iff it is the unravelling of the game graph from v
From Games to Automata

Problem:
Given three-player game with partial information where only player 0 has partial information, position \(v \), can player 0 and 1 cooperate to win from \(v \)?

(1) Construct nondeterministic tree automaton such that a tree is accepted \(\iff \)
- it is the unravelling of the game graph from \(v \)
- the labellings at the positions of player 0 define a full information strategy \(f \) for player 0
From Games to Automata

Problem:
Given three-player game with partial information where only player 0 has partial information, position \(v \), can player 0 and 1 cooperate to win from \(v \)?

(1) Construct nondeterministic tree automaton such that a tree is accepted \(\iff \)
- it is the unravelling of the game graph from \(v \)
- the labellings at the positions of player 0 define a full information strategy \(f \) for player 0
- there is a strategy \(g \) for player 1
From Games to Automata

Problem:
Given three-player game with partial information where only player 0 has partial information, position v, can player 0 and 1 cooperate to win from v?

(1) Construct nondeterministic tree automaton such that a tree is accepted \iff

- it is the unravelling of the game graph from v
- the labellings at the positions of player 0 define a full information strategy f for player 0
- there is a strategy g for player 1
- the composition of f and g is winning.
From Games to Automata

Problem:
Given three-player game with partial information where only player 0 has partial information, position \(v \), can player 0 and 1 cooperate to win from \(v \)?

(1) Construct nondeterministic tree automaton such that a tree is accepted if and only if it is the unravelling of the game graph from \(v \)
- the labellings at the positions of player 0 define a full information strategy \(f \) for player 0
- there is a strategy \(g \) for player 1
- the composition of \(f \) and \(g \) is winning.

(2) Restrict the strategies of player 0 to information based strategies.
From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. ’99)
From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. (’99))

If the game is a two-player game:
From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. (’99))

If the game is a two-player game:
- The automaton from the first step is deterministic.
From Games to Automata

Technique for (2):

“Narrowing”
(Kupferman, Vardi: “Church’s Problem Revisited”. (’99))

If the game is a two-player game:

- The automaton from the first step is deterministic.
- The “narrowing” of a deterministic automaton is universal.
Future Work

- Stochastic Games
Future Work

- Stochastic Games
 - Stochastic Moves
Future Work

- **Stochastic Games**
 - Stochastic Moves
 - Randomized Strategies
Future Work

- Stochastic Games
 - Stochastic Moves
 - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
Future Work

- Stochastic Games
 - Stochastic Moves
 - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of \sim_i and $\overline{\sim}_i$
Future Work

- Stochastic Games
 - Stochastic Moves
 - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of \sim_i and \preceq_i
 - Automata over Relations
Future Work

- Stochastic Games
 - Stochastic Moves
 - Randomized Strategies

- Efficient Algorithms for Interesting Classes of Games

- Generalization of \sim_i and $\bar{\sim}_i$
 - Automata over Relations
 - Logical Formulas
Future Work

- Stochastic Games
 - Stochastic Moves
 - Randomized Strategies
- Efficient Algorithms for Interesting Classes of Games
- Generalization of \sim_i and \leftarrow_i
 - Automata over Relations
 - Logical Formulas
- Connection to Logic
Future Work

- Stochastic Games
 - Stochastic Moves
 - Randomized Strategies

- Efficient Algorithms for Interesting Classes of Games

- Generalization of \sim_i and $\overleftarrow{\sim}_i$
 - Automata over Relations
 - Logical Formulas

- Connection to Logic
 - Dynamic/Temporal Process/Epistemic Logic
Future Work

- Stochastic Games
 - Stochastic Moves
 - Randomized Strategies

- Efficient Algorithms for Interesting Classes of Games

- Generalization of \sim_i and $\widetilde{\sim}_i$
 - Automata over Relations
 - Logical Formulas

- Connection to Logic
 - Dynamic/Temporal Process/Epistemic Logic
 - IF-Logic, Dependence Logic, ...