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Should we fear Benacerraf’s 
multiple reducibility 

challenge? 
Definitions and logical forms in 

philosophy of mathematics.



Benacerraf’s Dilemma

Benacerraf 1973: 

Two quite distinct kinds of concerns motivated accounts of the 
nature of mathematical truth : 

“(1) the concern for having a homogeneous semantical theory in which 
semantics for the propositions of mathematics parallel the semantics 
for the rest of the language, and 

(2) the concern that the account of mathematical truth mesh with a 
reasonable epistemology.”

Benacerraf argued that one of these masters can only be served at the 
expense of the other. 



An homogeneous semantical theory

Benacerraf 1973:

“Consider the following two sentences:

(1) There are at least three large cities older than New York

(2) There are at least three perfect numbers greater than 17.

Do they have the same logicogrammatical form? More specifically, are they 
both of the form

(3) There are at least three FG’s that bear R to a,

(…) What are the truth conditions of (1) and (2)? Are they relevantly parallel?”

“I suggest that, if we are to meet (the requirement of having an homogeneous 
semantic), we shouldn’t be satisfied with an account that fails to treat (1) 
and (2) in parallel fashion, on the model of (3). 

There may be differences, but I expect these to emerge at the level of the 
analysis of the reference of the singular terms and predicates.”



A weak reading of the semantic syntaxic
constraint

Hale & Wright, European Journal of Philosophy, 10:1, 2002, pp. 101-
129. 102:

“Taken on its own, this suggests a very exacting reading of the semantic 
constraint, under which it can be satisfied only by an account of the truth-
conditions of (the math statement) which respects its surface syntax 
exactly as just described. 

It is doubtful that Benacerraf can have intended quite such a demanding 
interpretation. Certainly, so understood, it would go well beyond the 
somewhat vague demand that 'whatever semantical account we are 
inclined to give of … singular terms, predicates, and quantifiers in the 
mother tongue include those parts of [it] we classify as mathematese' 
[408]. That would seem to come to no more than the weaker 
requirement—which Benacerraf certainly does endorse—that an account 
of the truthconditions of mathematical statements should accord with a 
broadly referential (i.e. Tarskian) semantics for the language as a 
whole. 

This would leave room for accounts of mathematics which view the surface 
grammatical form of mathematical statements as more or less 
misleading as to their logical form, provided that their (alleged) logical
form involves only devices amenable to Tarskian treatment.”



A strong reading of the semantic syntaxic
constraint

Shapiro 2006:

A) “Before going further, I would like to acknowledge an orientation. As I see it, 
the goal of philosophy of mathematics is to interpret mathematics, and 
articulate its place in the overall intellectual enterprise. One desideratum is
to have an interpretation that takes as much as possible of what
mathematicians say about their subject as literally true, understood at or 
near face value. Call this the faithfulness constraint.”

B) “A second, and weaker, desideratum is to develop an interpretation that
does not go too much beyond what mathematicians say about their subject. 
(…) Presumably, philosophical questions about mathematics are not to be
answered solely in mathematical terms. The second desideratum is to not 
attribute mathematical properties to mathematical objects unless
those attributions are explicit or at least implicit in mathematics itself. 
Call this the minimalism constraint.”



A link with the multiple reductions challenge

Shapiro 2006:
Richard Dedekind’s philosophical methodology was to develop a system of 
objects, and then abstract the structure of the system (e.g., Dedekind 
[1872], [1888]). For example, he constructed the system of cuts in rationals, 
and then abstracted the real numbers from the cuts. According to Dedekind, 
the abstracted items— the real numbers— are not part of the system 
abstracted from, but are instead something “new” which the mind freely 
“creates” (see Shapiro [1997, Chapter 5, §4]). Dedekind’s friend Heinrich 
Weber suggested instead that real numbers be identified with cuts. 
Dedekind replied that there are many properties that cuts have which would 
sound very odd if applied to the corresponding real numbers (Dedekind 
[1932, Vol. 3, 489-490]). For example, cuts have members. Do real 
numbers have members? Dedekind’s Benacerraf-type point makes sense 
in the context of the minimalism constraint. 

Benacerraf 1965:
In ZF, 2 is defined as {{∅}}, while, in von Neumann’s approach, 2 is defined 
as {∅, {∅}}. Which is the genuine 2? Has 2 one or two elements? This is not 
a question mathematicians usually ask, and therefore a good philosophy of 
math should exclude the question from its agenda. 



The strong reading and the respect 

of the mathematical practices 

• Benacerraf and Shapiro develop a strong reading of the semantic 
syntaxic constraint, according to which the demand of taking the 
math statement as face value is presented as a direct 
consequence of the requirement that philosophers of math 
should respect what mathematicians say about their concepts 
(about natural numbers, about real numbers, etc.).

• More precisely, both Benacerraf and Shapiro select, for the 
concept they consider, a standard context of use (the ω-sequence 
for the natural numbers, the complete ordered field for the real
numbers), and sustain that, this context being granted, the 
philosophical accounts which have “less excess baggage than the 
others” (which do not introduce foreign considerations) are the 
best ones.

All this is related to the multiple reductions challenge.



Some doubts

• What mathematicians say about their concepts is rarely univocal.
Mathematicians use often different languages to speak about their 
concepts. In order to use their constraint, Benacerraf and Shapiro 
have then to make a choice between the various ways 
mathematicians express themselves. 

• Now, this choice of a language is often related to the choice of a 
standard context in which a given concept should be embedded. 
Now this question of delineating the a proper context for a given 
concept is itself a math question, which cannot be considered as
already solved by the philosopher. 

In other words, the problem of multiple reductions challenge is not a 
question which arises for the philosopher when philosopher does 
bad metaphysics and forgets the math material – it is a problem 
mathematicians themselves encounter, as soon as they face 
“architectonic” issues.



An example: Pieri’s definition of 

order on projective line

D belongs to the segment (ACB)



An example: Pieri’s definition of 

order on projective line

D belongs to the segment (ABC) iff there are two

points M, N on the line (AB) such that A, B and 

C, D both are harmonic conjugates with respect 

to M and N.

D∈(ABC) =Def ∃M∃N∈(AB), AHM,NB & CHM,ND.

The form on the left is not the same as the form on the 

right. 



An example: Pieri’s definition of 

order on projective line

A, B are harmonic conjuguate in respect with M, N, if there is a 

quadrilateral (CDFE) such that the two couples of opposing sides intersect

at A and B and such that the two diagonals CF and DE intersect the line 

(AB) in M and N.  



Pieri’s achievement

To summarize: in the standard presentation, projective geometry
arises from a combination of two different axiom groups, an 
incidence and an ordinal one. In Pieri’s approach, projective 
geometry is derived from only one indefinable relation, the incidence 
relation. This is truly beautiful: the projective order on a line is
derived from the way the lines intersect in the plane.

A very important mathematical advance: 

1) the fundamental theorem of projective geometry can be derived
without introducing ordinal considerations – contrary to what
pretended F. Klein.

2) the idea of deriving order from the distinction between square and 
not-square elements anticipated the construction of the purely
algebraic theory of the real field by Artin and Schreier (Sinaceur 
1991)



1) According to the semantic syntaxic constraint, 
projective geometry (in its standard 
formulation) speaks about order. But according 
to Pieri, projective geometry does not speak 
about order. Which is the right conception?

My point is that you cannot dismiss this 
question as a purely metaphysical one. 

I agree that the example of multiple reductions 
taken by Benacerraf in his paper is not an 
interesting one. But it is uninteresting, not 
because the issue is purely metaphysical – but 
because the example is badly chosen.

Back to the semantic syntaxic constraint



Back to the semantic syntaxic constraint

2) Pieri’s aim is to resume the work of Von Staudt, that
is, to purify projective geometry from any foreign
notions (for instance, metrical ones). There are thus
some architectonic considerations behind Pieri’s work: 
he wanted to guarantee the fact that projective 
geometry could be seen as a wholly independent
theory.

Taking the statement “D belongs to (ACB)” at face 
value is OK when projective geometry is considered 
as the context in which the sentence takes place; but 
when the issue is to question the place of projective 
geometry within the building of geometry as a whole, 
then the analysis of order in term of incidence relation 
is, according to Pieri, better.



A more positive suggestion
In order to reduce a given mathematical theory T to another theory T’ (for 

instance, in Pieri’s reduction, the ‘underlying’ theory T’ is incidence 
geometry; in logicism, logic is the ‘underlying’ logic), one has to define the 
underlying theory T’. But this is not enough. One has to determine as well 
which constraints one wants to put on the paraphrase function, which 
translate sentences of T in the language LT’ of the underlying theory.

Rayo 2005: a paraphrase function * is minimally adequate for a math 
language LT with an intended model M 

(i) if the restriction of * to LT is recursive (recursivity of the translation).
(ii) if there is a model S such that, for any sentence φ of LT, ⊨M φ if and only 
if ⊨S φ (preservation of truth).

I suggest to viewing Benacerraf’s and Shapiro’s semantic syntaxic constaint as 
a maximal condition put on the adequacy of the paraphrase function. For 
the two philosophers, an acceptable paraphrase would be one which does 
not change the syntaxic form of the sentences of the theory T. Only identity 
function would then satisfy this maximally adequate requirement.

My point here would be to suggest that, between these two extreme 
constraints, many other conditions could be defined. To bring out and to 
explore these numerous intermediate cases could lead to interesting 
philosophical insight.



A reactivation of certain traditions

1) In Russell, where the math statements are not taken at face value, some
stronger conditions are put on the paraphrase function – as for instance the 
Application Constraint (the paraphrase should explain the main applications 
of the theory). See Principia (1910-1913).

2) In the work of the Polish logician Lindenbaum, various criteria of 
simplicity are set forth and explored (reducing the number of indefinables, 
reducing the logical type of the notions paraphrased, reducing the number
of terms of the relational indefinables, etc.). See Sur la simplicité formelle 
des notions (1935).

Conclusion: a too strong reading of the semantic syntaxic constraint could be a 
conceptual barrier which forbids using logic to account for certain features
of math practices.



Lindenbaum 1936, p. 32:

According to a notorious metaphor from Vailati, nowadays, a democratic 

system prevails in the deductive theories: no terms own the right to rise 

above the others as the primitive term from which all the others ones 

depend. And so it is because the choice of the terms we acknowledge as 

primitives relating to a given theory is somewhat arbitrary (…). 

[This is akin to Benacerraf’s multiple reductions challenge]

I would say, however, that such a mechanical democratic standpoint has 

not aged well. The time has come for the terms which are best qualified 

for governing to take the power. One of the criteria (but not the only one) 

allowing us to choose among the terms is their intrinsic simplicities – or 

rather, the intrinsic simplicity of the system of terms, since usually it is a 

few independent terms which together do their job.

[Taking up the challenge opens some new possibilities to use logic 
in philo of math]
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