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— Il n’y a pas de hors-texte.

Jacques Derrida

Introduction

Neural networks learn patterns from data to solve complex problems. To understand
and infer meaning in language, neural models have to learn complicated nuances.
Discovering distinctive linguistic phenomena from data is not an easy task. For
instance, lexical ambiguity is a fundamental feature of language which is challenging
to learn (Small et al., 2013). Even more prominently, inferring the meaning of rare
and unseen lexical units is difficult with neural networks (Koehn and Knowles, 2017).
For instance, Rios et al. (2018) provide an example where an English-German trans-
lation model translates the sentence “[...] Hedge-Fund- Anlagen nicht zwangsliiufig
risikoreicher sind als traditionelle Anlagen” to “[. . .] hedge fund assets are not neces-
sarily more risky than traditional plants”. Here, the ambiguous word ‘Anlagen’ is first
translated correctly to ‘assets’, but then incorrectly to ‘plants’ in the second occurrence.

To understand many of these phenomena, a model has to learn from a few instances
and be able to generalize well to unseen cases. Natural language speakers typically
learn the meanings of words by the context in which they are used. Miller (1985) states
that:

“When subtle semantic distinctions are at issue, it is customary to remark
that a satisfactory language understanding system will have to know a
great deal more than the linguistic values of words.”

Sentence and document-level context provide the possibility to go beyond lexical
instances and study words in a broader context. Neural models use a sizable amount
of data that often consists of contextual instances to learn patterns. However, the
learning process is hindered when training data is scarce for a task (Kaiser et al., 2017,
Edunov et al., 2018). Even with sufficient data, learning patterns for the long tail of the
lexical distribution is challenging (Wang et al., 2017). To address these problems, one
approach is to augment the training data (Sennrich et al., 2016b). Many strategies for
data augmentation focus on increasing the amount of data to assist the learning process
of data-driven neural models. While simply increasing the size of data is helpful, it is
not entirely clear where the improvements come from and how neural models benefit
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from the additional context with augmentation.

Arguably, it is important to understand the impact of new contexts to design augmen-
tation models that exploit these contexts. This includes understanding what constitutes
a beneficial context, and how to enhance the use of context in neural models. In this
thesis, we focus on understanding certain potentials of contexts in a neural model, and
design augmentation models to benefit from them.

We focus on machine translation as a prominent instance of the more general
language understanding problems. In order to translate from a source language to
a target language, a neural model has to understand the meaning of constituents in
the provided context and generate constituents with the same meanings in the target
language. This task accentuates the value of capturing nuances of language and the
necessity of generalization from few observations (Li et al., 2020). Additionally, the
lack of large amounts of labeled data is even more pronounced in machine translation
in the form of bilingual corpora. This signifies the need for efficient and informed data
augmentation models.

The main problem we study in this thesis is what neural machine translation models
(NMT) learn from data, and how we can devise more focused contexts to enhance this
learning. We believe that looking more in-depth into the role of context and the impact
of data on learning models is essential to advance the Natural Language Processing
(NLP) field. Understanding the importance of data in the learning process and how
neural network models interact, utilize, and benefit from data can help develop more
accurate NLP systems. Moreover, it helps highlight vulnerabilities and volatilities of
current neural networks and provides insights into designing more robust models.

1.1 Research outline and questions

This thesis explores the role of context in language understanding and in particular,
machine translation using recent advances in deep learning. We develop novel models
and learning algorithms to examine the abilities of neural networks in learning from
data. Specifically, we are interested in the importance of contextual cues in translating
words and various ways we can use data to advance translation systems further.

Before investigating the role of context in the bilingual setting of machine translation,
we ask ourselves a more general question about the impact of context in monolingual
settings. As a preliminary investigation into this question, we look into ambiguous words
where, by definition, context is the prominent factor in understanding word meaning.
We study how document-level contexts as topics aid in distinguishing different meanings
of a word.

Next, in more detail, we focus on the influence of context in the bilingual setting
of machine translation. While recent advances in neural networks have been very
successful in translation, the significance of different aspects of data is still largely
unexplored. We investigate how the translation models exploit context to learn and

2
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transfer meaning and show that manipulating data improves translation quality. In
particular, our proposed models examine how different and diverse contexts resolve
various obstacles of translation.

Lastly, we address the shortfalls of relying only on the observed context to learn
word meaning and focus on particularly interesting cases. Neural networks optimize
the learning process on the available data. We examine under which conditions the
observed context in the training data is not enough for meaning inference and capturing
various linguistic phenomena. Moreover, we raise questions about the learning abilities
of current translation models and where they fail to capture the available information in
data. With contextual modifications, we identify an underlying generalization problem
in state-of-the-art translation models.

Concretely, we set out to answer the following research questions in this thesis:

Research Question 1: Can document-level topic distribution help infer the meaning
of a word?

In this research question, we investigate whether using document-level context, as
opposed to sentence-level only, has an impact on learning word representations. Word
representations are abstract feature vectors that capture word meanings. To produce
good representations, the learning model must capture various linguistic phenomena
such as the ambiguity of the language. Notably, we tackle the problem of representing
ambiguous words by defining multiple representations per word and using implicit
topics of documents to distinguish between different meanings of a word. We divide
this research question into three sub-questions and address them in Chapter 3:

RQ1.1 To what extent can distributions over word senses be approximated by distribu-
tions over topics of documents without assuming these concepts to be identical?

Modeling document topics is commonly used in different ways to address the
challenging task of word sense disambiguation (Boyd-Graber et al., 2007, Li et al.,
2010, Chaplot and Salakhutdinov, 2018). However, the topic of a document does
not directly correspond to the senses of the words in that document. We investigate
whether a document topic distribution is an informative signal to help distinguish
between different senses of a word and how we can leverage this information to
learn word representations. Next, we ask:

RQ1.2 How can we exploit document-level topics to distinguish between different
meanings of a word and learn the corresponding representations?

To answer this question, we estimate document-topic distributions using unsu-
pervised topic modeling techniques. We observe that the produced distribution
over topics is different for different senses of an ambiguous word. We propose
three variants of the Skipgram word embedding model (Mikolov et al., 2013a) to
integrate topic distributions and learn multiple representations per word.
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RQ1.3 What are the advantages of using document-level topics in learning multiple
representations per word?

To further evaluate our models, we analyze the linguistic phenomena captured by
topic-sensitive word representations. Namely, we show that different senses of a
word are separated into different representations. We observe that the additional
context of a document topic is most beneficial when the task is more complex. We
find that these representations achieve improvements over the baselines for word
similarity and lexical substitution tasks.

Having examined the effectiveness of learning word representations using auxiliary
contextual information, we then investigate how the diversity of the context affects
language understanding and transfer of meaning between two languages. Concretely
we ask:

Research Question 2: How is the translation quality of a word influenced by the
availability of diverse contexts?

In this research question, we choose machine translation as the task of interest. We
investigate this question by diversifying the local context for different words and propose
various data augmentation techniques with the new contexts. Additionally, we explore
the influence of these synthetic contexts on translation quality. We divide this research
question into four sub-questions and discuss them in Chapters 4 and 5 of this thesis.

RQ2.1 How can we successfully augment the training data with diverse contexts for
rare words?

In this question, we are interested in translation of rare words in low-resource
settings where the available data is scarce for one or both languages. The success
of neural networks is partly due to their ability to learn from vast amounts of
data efficiently. These models suffer significantly when sufficient data is not
available (Ngo et al., 2019). Subsequently, even with adequate data, neural machine
translation models have difficulty learning the meaning of rare words existing in
the source language (Koehn and Knowles, 2017). Additionally, they are also not
successful in generating rare words in the target language (Luong et al., 2015b).
To answer this question, in Chapter 4, we propose a data augmentation technique
that targets rare words and substitute them in new sentences with novel contexts.
Leveraging a monolingual corpus, which is available in much larger quantities in
comparison to a bilingual corpus, we create new contexts for rare words in the
training data. We investigate how additional data can improve the learning and the
generation of rare words. In Chapter 4, we show that by increasing the diversity of
the contexts of rare words, we can achieve significant improvements in translation
quality.
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RQ2.2 Do rare words benefit from augmentation via paraphrasing during test time?

Diversifying context is only valid when both source and target sentences are
modified, i.e., at training time when the model has access to the sentence pairs.
During inference, only the source sentence is available and we use the reference
sentence solely for evaluation. As a consequence, any changes to the source
sentence have to be meaning-preserving so that we do not modify the reference
translations. We propose a data augmentation technique at test time, focusing on
paraphrasing rare and unknown words in the source sentence. In contrast to our
previous approach where the goal was to diversify the context of rare words in
the training data, here we substitute rare words with more common synonyms.
In Chapter 4, we show that with paraphrasing rare words at test time, we gain
improvements in translation quality.

RQ2.3 Do signals from the NMT model help identify low-confidence words that could
benefit from additional context?

In the previous research questions, we identify rare words as words that can benefit
from additional contexts. While the translation quality of these words improves
with our proposed data augmentation technique, these are not the only words
that suffer due to inadequacies in the training data. In Chapter 5, we expand our
investigation in this direction. Rather than using features like frequency in the
training data, we look into the model itself and where it struggles. We detect the
words for which the model has low confidence during translation. We examine
various approaches to identify these low-confidence words as signaled by the
model and augment the training data accordingly. Hence, we ask:

RQ2.4 How can we successfully apply data selection of monolingual data to diversify
the contexts of low-confidence words?

To generate new contexts and augment the training data, we propose targeted back-
translation. Back-translation leverages monolingual data in the target language and
a trained translation model to translate randomly selected sentences into the source
language (Sennrich et al., 2016b). The automatically generated bilingual data,
although noisy, is added to the training data and the translation model is trained on
the augmented data. In Chapter 5, we identify words that can benefit from diverse
context. We show that by back-translating sentences containing low-confidence
words, we achieve improvements over the baselines.

Having demonstrated the advantages of using contextual cues in various forms to
improve word representation learning and translation modeling, we come to the final
research question of this thesis. Here, we investigate the shortcomings of relying on the
observed context. Concretely we ask:
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Research Question 3: 7o what extent are neural translation models vulnerable as a
result of relying on the observed context in the training data to infer meaning?

While the success of neural networks in NLP is indisputable, it is well worth to ask
whether neural networks have hidden vulnerabilities. In this research question, we also
choose machine translation as the task of interest. We are interested in vulnerabilities of
the translation models that can be exposed by looking into the data. In particular, we
divide this research question into four sub-questions and discuss them in Chapters 6
and 7 of this thesis:

RQ3.1 What are the challenges of idiom translation with neural models?

Neural translation models struggle in handling idiosyncratic linguistic patterns.
One of these patterns are idioms, which are semantic lexical units whose meaning
is not merely a function of the meaning of its constituent parts. In Chapter 6,
we look into idiomatic expressions in particular and why the translation of such
phrases is a challenge. Furthermore, we automatically label parallel training and
test data for idiomatic expressions using a bilingual dictionary of idioms. We
assess whether the sentential context is enough for inferring idiomatic meanings
and show that it is indeed not the case.

Next, we ask:

RQ3.2 How is the translation quality of NMT influenced by idiomatic expressions?

There is no explicit indicator in the data to signal whether a phrase should be
translated literally or idiomatically in any given context. Researchers have shown
that neural models can benefit from side constraints in data in various cases.
For instance, Sennrich et al. (2016a) note that adding side constraints as unique
tokens at the end of the source text help the model translate to the desired level of
politeness. In Chapter 6, we investigate whether a similar technique is useful for
the translation of sentences containing idiomatic expressions.

Finally, we look into other vulnerabilities of neural models which can be high-
lighted by contextual cues. Our next research question focuses on other cases
where NMT models fail to generate a correct translation. To investigate this ques-
tion, we first examined how to expose this shortcoming in translation models by
asking:

RQ3.3 How can contextual modifications during testing reveal a lack of robustness of
translation models and affect the translation quality?

In Chapter 7, we ask how receptive the translation models are to manipulations of
data. While previous works have investigated the performance of neural models
when encountering noise in the form of adversarial instances (Goodfellow et al.,
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2015, Michel and Neubig, 2018, Belinkov and Bisk, 2018), we are interested in
unexpected performance when the data is not noisy.

Next, we investigate the robustness of neural translation models by asking:

RQ3.4 To what extent is a lack of robustness an indicator of a generalization problem
in neural machine translation models?

We propose an approach to generate contextual modifications in the test data,
yielding semantically and syntactically correct sentences. Our new test data
sheds light on volatile behaviour in current state-of-the-art translation models.
In Chapter 7, we show that identifying this volatility is already achievable with
extremely minor modifications. Our findings highlight unexpected but recurring
patterns of errors and possible problems of generalization in neural translation
models.

1.2 Main contributions

Here we summarize the main algorithmic and empirical contributions of this thesis to
the field of natural language processing and in particular machine translation, as well as
the constructed resources.

1.2.1 Algorithmic contributions

We develop novel learning algorithms and neural network models for investigating the
influence of context in learning capacities of models.

1. We present a framework for learning multiple embeddings per word using topical
context. With three variants of our model, we employ topical context in various
ways and learn distinctions between different senses of the words (Chapter 3).

2. We introduce a data augmentation technique for generating new contexts for rare
words in machine translation. Leveraging monolingual data, we propose a neural
language model that given a sentence, suggests rare words to substitute into the
given context. This new method can be applied to any low-resource language pair
as long as there are monolingual data available in both languages (Chapter 4).

3. We introduce a novel method to identify difficult words, where the neural transla-
tion model has low prediction confidence. Leveraging this information, we im-
prove upon an existing augmentation technique by replacing its random selection
with targeted selection and specifically provide new contexts for low-confidence
words (Chapter 5).

4. We propose a procedure to (i) automatically detect idiomatic expressions in sen-
tences using a dictionary of idioms, and (ii) automatically annotate the bilingual
data with the corresponding idioms (Chapter 6).
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5. We introduce an effective technique to shed light on the lack of robustness of

neural translation models. Our approach generates variants of the same sentences
that differ slightly and are semantically and syntactically correct. We investigate
the behaviour of the neural model in translating these variants by proposing
metrics to identify volatile performance (Chapter 7).

1.2.2 Empirical contributions

We evaluate our proposed models on large scale data sets as well as controled exper-
iments to validate our hypotheses. We provide empirical results for each research
question asked in this thesis. More specifically:

1.

We compare how different approaches of incorporating topical context affect the
resulting representations. We assess the topic-sensitive word representations on
word similarity and lexical substitution tasks and perform a qualitative analysis
between different representations of a word (Chapter 3).

. We evaluate the effectiveness of our first data augmentation approach in machine

translation for two language directions: English—German and German—English.
We simulate a low-resource setting by only using a subset of the available training
data, while simultaneously being able to compute the upper bound of performance
in case more data is available. Our approach successfully mitigates the problem of
rare word translation, where sufficient bilingual training data is not available. We
perform an analysis of the confidence of the translation model for both generating
and translating rare words (Chapter 4).

. We evaluate our second proposed data augmentation approach in machine trans-

lation for two language directions: English—German and German— English. We
study the effects of previous data augmentation techniques on confidence and
the learning capacity of the translation model. We compare various ways of
identifying low-confidence words and show that targeted data augmentation using
these words improves translation quality. We demonstrate that with diversifying
contexts of difficult words, the confidence of the model in predicting these words
and consequently the translation quality improve (Chapter 5).

. We conduct an empirical evaluation of translation models facing sentences that

include an idiomatic expression. Using annotated training and test data, we
demonstrate how the current neural translation models struggle with translating
idioms. We show that even when we annotate them in the training data, translating
these expressions is a challenge and the translation models require much broader
knowledge to learn them (Chapter 6).

. We show that fluctuations in translations of extremely similar sentences are more

prominent than expected. These findings can be used to develop more robust
models (Chapter 7).
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1.2.3 Resource contributions

We release the resources of the proposed models in this thesis including source codes
and annotated data. More specifically:

1. Chapter 3: We released the code for the proposed models where we use document
topics to learn word representations.

2. Chapter 4: We released the code for targeted data augmentation of parallel corpora
using language models.

3. Chapter 6: We released the annotations of idiomatic phrases in training, de-
velopment, and test data. The bilingual corpora can be used for translation of
English—German and German—English.

4. Chapter 7: We released a data set which contains multiple variants for each
sentence pair in the standard WMT English<German test data. We annotate the
translations of these variants and label different types of errors. Additionally, we
release the code for generating sentence variations of bilingual corpora for a more
in-depth evaluation of translation quality.

1.3 Thesis overview

After this introductory chapter, the remainder of this thesis consists of a background
chapter (Chapter 2), five research chapters (Chapters 3-7), and a concluding chapter
(Chapter 8). Below we present a high-level overview of the main content of each of
these chapters.

Chapter 2: Background provides an introduction to the neural machine translation
(NMT) paradigm used in this thesis. We briefly review the core models, the training
and test data required, and the learning and optimization strategies we employ. We
also discuss different representation learning approaches. Additionally, we describe
the basic experimental settings for our systems. Finally, we provide an overview of
evaluation metrics used in this thesis.

Chapter 3: Representation learning using documental context introduces the con-
cept of learning multiple representations per word to capture lexical ambiguity in a
language. We first investigate the influence of document topics on distinguishing differ-
ent meanings of a word, then propose various models to integrate topical information
in representation learning, and finally analyze the performance of these contextual
representations and compare them to single representations. Our findings in in this
chapter provide answers to RQ1.
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Chapter 4: Data augmentation for rare words focuses on the impact of additional
context in influencing translation quality of rare words. Notably, we use language models
to substitute rare words in existing bilingual contexts. We augment the translation model
with the newly generated data and as a result, improve both the generation frequency
and the translation quality of rare words. Our results in this chapter provide answers to
RQ2.1 and RQ2.2.

Chapter 5: Data augmentation based on model failure examines the influence of
augmenting data with diverse context for difficult words on translation models. We
first inspect the learning process of state-of-the-art translation models and identify
where they are not confident in their predictions. After further analyzing the words that
translation models have difficulties in learning, we introduce an augmentation approach
to target these words. We improve upon an existing data augmentation approach by
devising new contexts for low-confidence words. Our results in this chapter provide an
answer to RQ2.3 and RQ2.4 .

Chapter 6: Analyzing idiomatic expressions investigates translation errors preva-
lent in current models. First, we identify multiword expressions that are syntactically or
semantically idiosyncratic and challenging to translate. Next, we create a parallel corpus
consisting of sentence pairs with idiomatic expressions. For this study, we introduce
new error analysis measures to evaluate the translation quality of these expressions
individually. We provide empirical answers to RQ3.1 and RQ3.2 in this chapter.

Chapter 7: Analyzing volatility investigates the robustness of state-of-the-art trans-
lation models to variants in source sentences. We propose an effective technique to
generate modifications in test sentences while avoiding the introduction of semantic or
syntactic noise. Investigating the translation outputs of different models on the modified
test corpus reveals the extent of volatility that exists in translation models. We perform
an analysis of robustness of our models to answer RQ3.3 and RQ3.4 .

Chapter 8: Conclusion concludes this thesis by revisiting the research questions and
their corresponding answers. We also reflect on future research directions and on what
the community can learn from the findings in this thesis.

1.4 Origins

The research presented in Chapters 3-7 of this thesis is based on a number of peer-
reviewed publications. Below, we indicate the origins of each chapter.

Chapter 3 is based on Marzieh Fadaee and Arianna Bisazza and Christof Monz,
“Learning Topic-Sensitive Word Representations”, In Proceedings of the 55th Annual
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Meeting of the Association for Computational Linguistics (ACL), (Fadaee et al., 2017b).
Fadaee designed and carried out the experiments. All authors contributed to the discus-
sion and text.

Chapter 4 is based on Marzieh Fadaee and Arianna Bisazza and Christof Monz,
“Data Augmentation for Low-Resource Neural Machine Translation”, In Proceedings
of the 55th Annual Meeting of the Association for Computational Linguistics (ACL),
(Fadaee et al., 2017a). Fadaee designed the methods, performed the experiments and
wrote most of the text. Bisazza and Monz contributed to the discussion and editing.

Chapter 5 is based on Marzieh Fadaee and Christof Monz, “Back-Translation Sam-
pling by Targeting Difficult Words in Neural Machine Translation”, In Proceedings of
the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP),
(Fadaee and Monz, 2018). Fadaee designed the methods, performed the experiments
and wrote most of the text. Monz contributed to the discussion and editing.

Chapter 6 is based on Marzieh Fadaee and Arianna Bisazza and Christof Monz,
“Examining the Tip of the Iceberg: A Data Set for Idiom Translation”, In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC),
(Fadaee et al., 2018). Fadaee designed the methods, performed the experiments, and
wrote the text. Bisazza and Monz contributed to the discussion and editing.

Chapter 7 is based on Marzieh Fadaee and Christof Monz, “The Unreasonable
Volatility of Neural Machine Translation”, In Proceedings of the 4th Workshop on Neural
Generation and Translation (WNGT), (Fadaee and Monz, 2020). Fadaee designed the
methods, performed the experiments, and wrote the text. Monz contributed to the
discussion and editing.
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Background

Neural machine translation (NMT) is an end-to-end learning approach to machine
translation that is based on neural networks. In contrast to traditional translation systems
such as phrase-based machine translation (PBMT) (Koehn et al., 2003), all components
of the neural translation model are trained jointly to maximize translation performance.
In this chapter, we discuss the NMT paradigm and the properties of building a translation
model.

The training data, in the format of parallel data, is a fundamental part of build-
ing NMT models. We first explain the training data used in the NMT paradigm in
Section 2.1, followed by an overview of data preparation and building the translation
vocabulary in Section 2.2. Next, we discuss different word representation models in
Section 2.3. In the following sections, we review the two main NMT frameworks used
in this thesis: recurrent neural networks (Section 2.4) and the transformer model (Sec-
tion 2.5). Both models are classes of artificial neural networks and use large amounts
of parallel data to learn a translation model. Finally, in Section 2.6, we describe the
evaluation approaches used in the later chapters of this thesis.

2.1 Parallel and monolingual corpora

Neural models, and specifically neural translation models, rely heavily on training
data. The primary training data for learning translation models are parallel corpora,
which are aligned texts in two or more languages. These corpora are often paired at the
sentence-level, ideally providing an exact translation of every sentence in the source
and target language.

The quality of the translation system depends on the quality and the size of the
training data. Acquiring good-quality parallel corpora requires manual translation by
professional translators and as a result is expensive. Examples of available parallel
corpora gathered by experts in the domain include Europarl (Koehn, 2005), which is
the proceedings of the European Parliament published on the web, and JRC-Acquis
(Steinberger et al., 2006), which is the total body of the European Union law applicable
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in the EU Member States. Callison-Burch et al. (2007) gathered News Commentary
corpora which consist of political and economic commentary crawled from the web site
Project Syndicate. This data is extracted every year for the translation task of the WMT
conference (Barrault et al., 2019).

Monolingual data, in comparison, are available in abundance for many languages.
Phrase-based machine translation models use monolingual corpora in the target language
(Koehn et al., 2003, Brants et al., 2007, Koehn et al., 2007) to improve the fluency of
the generated translation (Lembersky et al., 2011). Monolingual parallel corpora of
aligned complex-simple sentences are also used with pharse-based (Wubben et al., 2012,
Kajiwara and Komachi, 2016) and neural (Zhang and Lapata, 2017) models to learn
to simplify text. The monolingual News Crawl corpus from WMT and many available
corpora in the Linguistic Data Consortium (LDC)! are examples of commonly utilized
data in machine translation.

Vanilla NMT models typically do not use any monolingual data in their training.
In Chapters 4 and 5 of this thesis, we address this matter by focusing on the use
of monolingual data for NMT. Recently there have been studies that propose various
approaches for incorporating information from monolingual data in the models (Domhan
and Hieber, 2017, Burlot and Yvon, 2018, Currey and Heafield, 2019). Currey et al.
(2017) created a parallel corpus from monolingual data in the target language by copying
it so that each source sentence is identical to its corresponding target sentence. With
this simple technique, they observe improvements on relatively low-resource language
pairs. Another category of approaches is to translate sentences from monolingual data
and augment the bitext with the resulting pseudo parallel corpora. This category of
approaches is discussed in the following section.

2.1.1 Back-Translation in machine translation

In this section, we introduce the conventional method of generating synthetic data,
namely back-translation and its effectiveness in PBMT and NMT. Back-translation uses
an intermediate MT model, trained on parallel data, to translate target monolingual data
into the source language. The result of back-translation is a parallel corpus where the
source side is synthetic MT output while the target is actual text written by humans.
This technique is not bounded to neural networks, and prior to NMT models, it
has been used in combination with PBMT. Schwenk (2008) proposes to translate large
amounts of monolingual data with a PBMT system and use those as additional training
data. They observe that this lightly-supervised training achieves improvements in
translation quality. Rapp (2009) introduces the back-translation score as an alternative
mean for the evaluation of PBMT models. He trains a translation model in both
directions and evaluates the quality of the model by translating the target sentences
back to the source language. The score is therefore computed by comparing the
back-translated sentence to the original source sentence. As part of their experiments,

https://www.ldc.upenn.edu/
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Tiedemann et al. (2016) note that back-translating sentences from monolingual news
data and augmenting the parallel training data improves the translation quality of a
PBMT system. In these experiments, the models have to be re-tuned from scratch with
the additional synthetic data.

In the framework of NMT, Sennrich et al. (2016b) show that back-translating
sentences from monolingual data improves the performance of NMT models. This
approach of augmenting the training data has since become common practice in training
NMT models. Pham et al. (2017) experimented with using domain adaptation methods
to select monolingual data for back-translation based on the cross-entropy between
monolingual data and the in-domain corpus (Axelrod et al., 2015), but did not find any
improvements over random sampling as initially proposed by Sennrich et al. (2016b).

Edunov et al. (2018) investigate back-translation in NMT at a large scale by adding
hundreds of millions of back-translated sentences to the bitext. They study different
methods for generating synthetic sentences and show that synthetic data based on
sampling and noised beam search provides a stronger training signal than using pure
beam. They observe that the generated corpora tend to stray away from the distribution
of natural data. Brants et al. (2007) suggest a distributed language model infrastructure,
which allows direct integration into the hypothesis-search algorithm. They observe that
translation quality continues to improve with increasing language model size. Ueffing
et al. (2007) use an iterative procedure that translates the monolingual source language
data in each iteration and then re-trains the phrased-based translation model. They
conclude that when bilingual training data are scarce, a PBMT system could be trained
on a small amount of data and then iteratively improved by adding reliable translations
of monolingual data to the training data.

He et al. (2016a) observe that any machine translation task has a dual task, for
instance, English—French translation (primal) versus French—English translation
(dual). They propose an approach based on reinforcement learning, where two agents,
representing the primal and dual task, teach each other. The agents leverage monolingual
data by translating it forward to the other language and then translate backward to the
original language. Gulcehre et al. (2017) propose two methods, shallow and deep
fusion, for integrating a neural language model into an NMT system. They observe
improvements by combining the scores of a neural language model trained on target
monolingual data with an NMT system.

2.2 Translation vocabulary

In translation models, the vocabulary of the source and target language is defined as what
the model is exposed to during training. Word-level translation models are unable to
translate or generate unseen words at inference. The number of words in the vocabulary
can be remarkably large and training models on large vocabularies is computationally
expensive.

15



2. Background

An early practice was to limit the vocabulary to the & most frequent words, where
K is often in the range of 30k (Bahdanau et al., 2015) to 80k (Sutskever et al., 2014).
The tail of the vocabulary not included in this shortlist is mapped to a special token
[unk] representing an unknown or out-of-vocabulary word. This method results
in neural models that can be trained and tested within a reasonable amount of time,
however, as a consequence of this simplification, the translation quality of the model
suffers. Specifically, the performance decreases significantly when the translation of a
source sentence requires many unknown words (Cho et al., 2014).

To address this issue, Jean et al. (2015) proposed an approximate training algorithm
that can use a very large target vocabulary (vocabularies of 500,000 source and target
words). They show that decoding the target sentence by sampling only a small subset of
the whole vocabulary achieves competitive results without sacrificing too much speed.
Luong et al. (2015b) proposed a copy mechanism that aligns the OOV words on both the
source and the target side by learning to copy indices. Sennrich et al. (2016¢) analyzed
NMT models that work with subword units and observed that the majority of tokens are
potentially translatable through smaller units. They modify Byte Pair Encoding (BPE)
(Gage, 1994) to segment words into subword units, where each of which should be
frequently observed in the corpus. While some segmentations correspond to correct
morphemes, for many words that is not the case. For instance, the word ‘quixotism’
would be segmented into ‘quixot + -ism’ and the word ‘sceptical’ would be segmented
into ‘scep + -tic + -al’. This approach is very effective in generalization and is able to
generate words not seen during training using these subword units.

In this thesis, we segment words during preprocessing using the BPE technique
in all translation experiments unless stated otherwise. We refer to the subword units
throughout the chapters as tokens.

2.3 Word representations

The first step in using neural models for text is to map the words in the vocabulary to
dense vectors of real numbers. These vectors are somewhat similar to sparse vectors
used in distributional semantics, where they represent meaning by capturing similarities
between lexical units based on their distributional properties (Baroni et al., 2014, Baroni
and Lenci, 2010). The context of the lexical unit is commonly used for the computation
of dense and sparse embeddings. The intuition is that since similar words appear in
similar contexts, they end up with similar embeddings (Firth, 1957). Computation of
dense vectors is often a by-product of solving a natural language processing task such
as language modeling or translation.

Word representations can be categorized into two groups (Wang et al., 2019b):
static embeddings where a fixed vector is learned for each word in the vocabulary, and
dynamic embeddings where vectors are dynamically calculated for each sentence. In
the next sections, we discuss different approaches in each category.
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The road ever on goes
(a» @ a» @o)
/o C—=2
P e o e
goes The road ever on
(a) Skipgram model (b) CBOW model

Figure 2.1: Representation learning architectures proposed by Mikolov et al. (2013a).
The CBOW model predicts the current word given the context, and the Skipgram model
predicts the surrounding words given the current word

2.3.1 Static embeddings

Traditional word embedding techniques learn a global and static word embedding for
every word in the vocabulary. Mikolov et al. (2013a) proposed two models for learning
word representations: continuous Skipgram and continuous bag-of-words (CBOW).
Both models use a feed-forward neural network architecture with the objective of
modeling language, illustrated in Figure 2.1. This architecture does not include any
non-linearity. The CBOW model has a projection layer which is shared between all
words. This layer averages the input vectors. Next, using a classifier, the model
predicts the word w; given the context of words surrounding w; in a fixed sized window:
[Wi—c, ..., wire]- The objective of the CBOW model is to maximize the following
average log probability:

1

T
T Z log p(wy | We—cy ooy W1, Wig1,. . Wite) (2.1

t=1

where T is the length of the sequence of training words and c is the context window
size. The Skipgram model is similar to CBOW, but instead of predicting w;, the model
predicts the words within a fixed range surrounding w;. The objective of the Skipgram
model is to maximize the following average log probability:

1 T
T2 2 logp(weys [w) (22)
t=1—c<j<c
J#0

where 7' is the length of the sequence of training words. Note that in both CBOW and
Skipgram models, the context window includes both the past and the future.
Pennington et al. (2014) combined count-based matrix factorization and context-
based Skipgram model together. The intuition is that meaning of words can be captured
by the ratios of co-occurrence probabilities. They proposed a weighted least squares
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model that trains on global word co-occurrence counts. They showed that the vec-
tor space learned from this model captures meaningful vector space substructures.
While some syntactic and semantic features in language are captured by these word
embeddings (Mikolov et al., 2013c), the dimensions are often not interpretable.

These models utilize surrounding words as context. However, word representations
can capture different phenomena if the definition of context is different. Levy and Gold-
berg (2014) proposed to use dependency-based contexts, extracted from dependency
parse-trees. They observed that these embeddings are less topical and exhibit more
functional similarity than the original Skipgram embeddings.

Static embeddings for the most part learn a static matrix of embeddings for each
word type and ignore capturing some nuances of language such as ambiguity. In
Chapter 3, we address this issue by exploring document topics and learning multiple
embeddings per word type to capture polysemy.

2.3.2 Dynamic embeddings

Static models generate out-of-context embeddings for word types and are simple and
efficient to train and use. However, learning meaningful word representations has
recently been elevated beyond this paradigm. Rather than learning static representations
for word types, these models learn dynamic vectors for word instances in context using
language modeling objectives. We denote this kind of embeddings as dynamic because
instead of a static matrix of embeddings, they are obtained through the hidden states of
a language model given the context.

Peters et al. (2018) proposed to use a bidirectional recurrent neural network to
extract context-dependent representations. The learning objective is to predict the
next word in a sequence, given the previous context words. Devlin et al. (2019) use a
transformer architecture and define two new objectives for training: masked language
modeling, and next sentence prediction. During masked language modeling, they mask
a randomly selected word in a sentence, and the model has to predict that word given
the context. The second objective gets two input sentences and predicts whether the
second sentence is indeed the next sentence. The contextualized word embeddings are
successful at downstream NLP tasks such as question answering and textual entailment
(Zhang et al., 2019, Garg et al., 2020, Lan et al., 2020, Joshi et al., 2020).

While word vectors in neural translation models can be initialized with these static or
dynamic word representations, they are often initialized randomly (Wu et al., 2016). One
reason can be that with large-scale parallel data, these initial word representations will
be forgotten during the training of the NMT model. Qi et al. (2018) showed that for low-
resource language pairs and when languages are more similar, pre-trained embeddings
can be effective. Lewis et al. (2020) recently proposed a denoising autoencoder model
named BART for pretraining sequence-to-sequence models. They corrupt text with an
arbitrary noising function and learn a model to reconstruct the original text. BART is
effective when fine-tuned for text generation and translation but also works well for
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comprehension tasks. The research presented in this thesis mostly predates the work
mentioned in this section. We use static embeddings in Chapter 3 where we investigate
the effect of having more than one representation per word type. As for the chapters
on machine translation, we consider the most widespread setup where embeddings are
initialized randomly before training on the parallel data.

2.4 Recurrent translation models

In this section, we discuss a category of neural models that are effective in modeling
languages. Earlier developments of neural models addressing language modeling tasks
incorporated the temporal structure of the language in the structure of the network
(Jacquemin, 1994, Schmidhuber, 1993). A recurrent neural network (RNN) is an
example of these sequential models (Rumelhart et al., 1988). RNNs are powerful models
that achieve state-of-the-art results in a variety of tasks such as question answering (Garg
et al., 2020), reading comprehension (Zhang et al., 2020), image semantic segmentation
(Yuan et al., 2019), and speech recognition (Xiong et al., 2017).

RNN models are capable of modeling sequences of text with various length, while
selectively passing on information between different time steps in the sequence. A
long short-term memory (LSTM) network (Hochreiter and Schmidhuber, 1997) is an
RNN structure that uses special LSTM units in addition to standard ones. These special
units include a memory cell that can maintain information for long sequences. LSTM
models address the vanishing gradient problem in the earlier RNN architecture where
the weights and biases of the hidden layers are not updated effectively because the
gradient decreases exponentially (Hochreiter, 1998).

</s>
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Figure 2.2: An illustration of an RNN encoder-decoder with attention.

Sutskever et al. (2014) and Cho et al. (2014) were among the firsts to employ RNNs
to build an end-to-end machine translation model. Bahdanau et al. (2015) and Luong
et al. (2015a) introduced an attention mechanism that achieved performance on par
with traditional statistical models. In the following sections, we describe the RNN
architecture with attention used in the NMT experiments in this thesis.
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2.4.1 Model architecture

Neural machine translation models fall under a sequence-to-sequence framework where
an encoder builds up a representation of the source sentence and a decoder generates
the target translation. Both the encoder and the decoder can be recurrent neural models.
Figure 2.2 illustrates this architecture which we will discuss in detail in this section.
In order to train an NMT system, two sequences of tokens, X = [ml, o ,x”] and
Y = [yl, e ,ym], are given in the source and target language, respectively. As
discussed in Section 2.3, the input tokens are mapped to an embedding space. As a
result, the source sequence is the input to the encoder as vectors: [xl, e ,xn].

The encoder then encodes the input sequence into hidden states, where at time step
t the hidden state is a function of the current input vector and the previous hidden state:

ht = f(Xt, ht—l) (23)

Function f adds non-linearities to the transformation of the input sequence to the
output of the encoder. With a bidirectional architecture, two RNNs are run on the input
sequence: one in forward and one in backward direction. The hidden state at time ¢
is created by concatenating the forward and backward hidden states at each point in
time, the input has access to the information on both sides. Note that the forward and
backward hidden states are concatenated to create the top hidden states of the encoder,
h; as follows:

hy = [h 50T t=1,...,n (2.4)

The decoder then generates the target translation one word at a time starting with the
last hidden state of the encoder and the representation for the start-of-sentence symbol
<s>. Each decoder hidden state s; is computed as:

st = g(St—1,¥4_1,Ct) (2.5)

where ¢ is a transformation function that outputs a vocabulary-sized vector and y,_ is
the representation of the previously predicted token. c; is the context vector for output
at position ¢ and is defined as:

ci = ). ajjh; (2.6)
j=1

This context vector is recomputed at each time step. «;; is the attention weight
and it is computed for all source words at each time step . We will discuss different
approaches to computing attention weights in Section 2.4.3.

Next, the decoder predicts each target token g, by computing the conditional proba-
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bility:
(Yt | y<t, X) = softmax (s;) 2.7)

This conditional probability is computed over the vocabulary of the target language
which is fixed during training and testing. For token y;, the conditional probability
(Yt | Y<t, X) during training quantifies the difficulty of predicting that token in the
context y~;. The prediction loss of token y; is the negative log-likelihood of this
probability. During training on a parallel corpus I, the cross-entropy objective function
is defined as:

L= Y Y “logp(yi | yei, X) 2.8)

(X,Y)ebi=1

The objective of this function is to improve the model’s estimation of predicting
target words given the source sentence and the target context. The model is trained end-
to-end by minimizing the negative log-likelihood of the target words using stochastic
gradient descent.

NMT systems often benefit from multiple layers of stacked RNNs during training
(Wu et al., 2016). By increasing the number of parameters, the learning capability of the
model also increases (Britz et al., 2017). Belinkov et al. (2017) show that different layers
in the encoder capture different linguistic features, namely that higher layers capture
semantics while lower layers tend to capture syntax. Encoding the input sequence in
both directions also provides advantages (Luong et al., 2015a, Bahdanau et al., 2015).
The backward layer in a recurrent model learns more about the semantics of words,
whereas the forward layer encodes more of the local context (Ghader and Monz, 2019).

2.4.2 Inference

During inference, a trained model is given a source sentence and it generates the target
translation word by word using a left-to-right beam search technique (Jelinek, 1998)
This procedure was already adopted by pre-neural translation methods such as phrase-
based translation models (Koehn et al., 2003). Generation of target words stops when a
special end-of-sentence symbol < /s> is generated. At each step, the model computes
a probability distribution over all words in the target language and chooses the most
likely word:

Y =argmax p(Y | X) (2.9)
Y

Sutskever et al. (2014) showed that increasing the beam size beyond 2 does not
improve the predictions significantly and even with a beam size of 1, the model performs
well. With a large enough beam size, the best translation performance can be reached
with the drawback of efficiency (Freitag and Al-Onaizan, 2017). It is common practice
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Name Proposed by Alignment score
Additive Bahdanau et al. (2015)  score(s;, hy) = v] tanh(W,[s;, h:])
Location-base Luong et al. (2015a) Qin,t = softmax (Ws;)
General Luong et al. (2015a) score(s;, hy) = sTW hy
Dot-product Luong et al. (2015a) score(s;, hy) = sThy

s;.rht

Scaled dot-product ~ Vaswani et al. (2017) score(si, hy) = v

Table 2.1: Different alignment scores in the literature used for creating the context
vector.

to set beam size to around 5 to 10 (Wu et al., 2016, Edunov et al., 2018). Beam
search decoding, even though effective, still suffers from exposure bias. Exposure bias
results from the mismatch between how the models are trained and how they are used
at inference (Wiseman and Rush, 2016, Ranzato et al., 2016). During training, the
model is guided by the ground-truth target translation. However, at inference, target
translations are not available and the model has to rely on its own predictions which can
be wrong. Collobert et al. (2019) proposed a fully differentiable beam search decoder
that can be used during training and eliminates this bias.

2.4.3 Attention mechanism

One of the shortcomings of the discussed models is that the translation quality decreases
considerably as sentences become longer (Koehn and Knowles, 2017). One reason
is that the source sentence is encoded into one fixed length vector and this vector is
expected to be a complete and static representation of the source sentence. To address
this problem, several works focus on learning a context vector with connections to the
source sentence (Graves et al., 2014, Bahdanau et al., 2015, Luong et al., 2015a). This
context vector regulates the alignment between the source and the target sentences and
is a sum of the hidden states of the input, weighted by alignment scores. At each time
step ¢, the model computes a variable-length alignment weight vector based on the
current target state and all source inputs. Table 2.1 summarizes different approaches for
computing alignment scores.

It is worth noting that while attention matches traditional word alignment at times,
it often captures relations beyond that between the source and target sentence (Ghader
and Monz, 2017, Koehn and Knowles, 2017).

2.5 Fully attention-based translation models

In the previous section, we discussed attention mechanisms where the model selec-
tively attends to the source sequence to make predictions. Self-attention is a type of
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Figure 2.3: An illustration of a Transformer model introduced in Vaswani et al. (2017).

attention mechanism that connects different positions within a sequence to compute a
representation. The Transformer model proposed by Vaswani et al. (2017) is a sequence-
to-sequence model that relies solely on attention to encode the input and generate the
output sequence. One of the main advantages of this architecture is that it can be trained
with massive parallelization because it bypasses the recurrent dependency that exists in
RNN models. The transformer model has been shown to perform quite well in bilingual
and multilingual settings (Lakew et al., 2018) and has become the most common choice
to implement NMT models (Edunov et al., 2018, Aharoni et al., 2019). In this section,
we describe this architecture in more detail.

2.5.1 Model architecture

The transformer model is an encoder-decoder architecture without a sequential structure.

The encoder is given an input sequence of tokens X = [:rl, e ,:cn], and encodes
it as a continuous representation X = [xl7 ... ,xn] based on the attention. The
decoder then generates the output sequence ¥ = [yl, ey ym] token by token, given

the representation X and the previously generated token. Figure 2.3 illustrates this
architecture which we will discuss in detail below.

For every token z; in the input sequence, we first create a query q,, a key k;, and
a value v; vector. Self-attention then uses scaled dot product attention (last row in
Table 2.1) to compute the attention score of token x; against other words in the input
sequence. This attention has a scaling factor where n is the dimension of the source
hidden states. To calculate representation x;, a softmax layer is then used to normalize
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Figure 2.4: An illustration of self-attention in the Transformer model based on Vaswani
etal. (2017).

the self-attention scores and multiplies it with v;. In practice, the attention is computed
on matrices of inputs (Q, K, V) as follows:
K'Q

Attention(Q, K, V) = softmax(ﬁ)V (2.10)
k

where dj; is the embedding dimension of the key vectors which scales the dot product.
The encoder is a stacking of identical layers each consisting of a multi-head self-
attention layer and a point-wise fully connected feed-forward network. Q, K, and
V matrices are split up into multiple heads and the multi-head attention mechanism
computes the attention in parallel. Each token in the sequence goes through the encoder
independently. During encoding, there are dependencies between the paths of different
tokens in the self-attention layer, but the feed-forward layer of each token does not have
any dependencies. As a result words in the sequence can be processed in parallel. The
independent attention outputs are then concatenated and linearly projected as follows:

Multi-Head Attention(Q, K, V) = concat(heads, . . . head;, ) W? (2.11)
where

head; = Attention(QWY KWX vWw)) (2.12)
where W?, Wf< , WY are weight matrices that map the input representations to the
query, key, and value matrices. W is the linear transformation that generates the output.
All weight matrices are learned during training of the model. Figure 2.4 illustrates this
component. Similarly to the encoder, the decoder consists of a stack of identical layers,
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2.5. Fully attention-based translation models

as well as a third sub-layer, which computes multi-head attention over the output of the
encoder stack. The self-attention layers in the decoder work slightly differently from
the ones in the encoder. The computation of attention is masked before the softmax step
to prevent looking to the future of the sequence during training.

Finally, there is a fully connected neural network that transforms the output of the
stack of decoders into the target vocabulary vector. The softmax function turns the
scores into probabilities and the word with the highest probability is generated (greedy
decoding). Alternatively, decoding can be done using the beam search technique similar
to the RNN models discussed in Section 2.4.2.

2.5.2 Residual connections

Another effective detail of the transformer architecture is the inclusion of residual
connections (He et al., 2016b) to facilitate optimization. Residual connections connect
the output of one layer with the input of an earlier layer. Every self-attention and feed-
forward neural network in the encoder and the decoder stack has a residual connection
around it and a normalization layer (Ba et al., 2016). This shortcut connection is
particularly effective in training very deep architectures and mitigates the vanishing
gradient problem.

2.5.3 Positional Encoding

As discussed earlier, the transformer model does not have a recurrent structure and can
be trained with a high degree of parallelization. However, languages are structured
sequentially and it is necessary to encode some form of word order in the sequence
(Tran et al., 2018). To address this shortcoming, the transformer adds a positional
encoding vector to every word in the input sequence. These embeddings model the
position of each word, or the relative distance between different words in the input.

Vaswani et al. (2017) proposed sine and cosine functions of different frequencies to
compute positional encodings:

positional encoding; 5 = (2.13)
COS(W) if § = 26/ +1
where i is the position and § = 1, ..., d is the dimension. They also experimented with

learned positional embeddings similar to Gehring et al. (2017), by assigning each input
token with a learned vector that encodes its absolute position, and observed similar
results to the sinusoidal version.
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2.6 Translation evaluation

We evaluate all translation experiments in this thesis using the BiLingual Evaluation
Understudy metric, better known as BLEU (Papineni et al., 2002). This metric assesses
the closeness of the generated translation to a human reference translation. It includes
a brevity penalty (BP) to avoid preferring shorter translations. The BLEU score for
n-grams up to length N is defined as:

N
BLEU,, = BP .exp ( > wy log pn) (2.14)

n=1

where wy, is a weight assigned to the size of n-gram (often set uniformly to 1/N). p,, is
computed as:

>, countyp(n-gram)
ce{candidates} n-gramec
Pn = (2.15)
> count(n-gram’)
c’e{candidates} n-gram’ec’

where:
count ¢, () = min(count(x), max_ref_count)(x)) (2.16)

Here, candidates are translation candidates, and max_ref_count is the largest count
observed in the reference for that word. Scores are calculated over sentence pairs in the
test set and the average BLEU is reported for the entire test set. Unless stated otherwise,
in this thesis we compute case-sensitive BLEU up to and including n-grams of length 4.

We also use other evaluation metrics, namely METEOR and Translation Error Rate
(TER), in some chapters of this thesis. METEOR is another metric to automatically
evaluate translation quality (Banerjee and Lavie, 2005, Denkowski and Lavie, 2011,
2014). Similar to BLEU, this metric compares the translation output with a reference
translation, however, it addresses some of the deficiencies of the BLEU metric. This
is done by aligning the two sentences not only based on the exact match, but also
on matching synonyms and paraphrases. METEOR has to be fine-tuned to achieve
maximum correlation with human judgments (Agarwal and Lavie, 2008). TER is an
easy-to-explain metric to compare translation output and manually created reference
translation (Snover et al., 2006). It measures the number of edits required to change a
translation output into one of the references. A higher score of TER is a sign of more
post-editing effort and it may not always correlate with translation quality.

While all these metrics attempt to measure translation quality, they assume inexact
models of permissible variations in translation and may not capture the precise quality
of a system (Callison-Burch et al., 2006). However, they allow for systematic evaluation
of incremental changes to a single system and are very inexpensive to perform. We
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specifically choose BLEU because it is the most common metric and it makes it possible
to compare various systems. In Chapters 6 and 7 of this thesis, we explore cases where
the translation quality of NMT models are affected, but individual automatic metrics do
not reflect this change in quality.
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Topic-Sensitive Word Representations

3.1 Introduction and research questions

Word representations in the form of dense vectors, or word embeddings, capture seman-
tic and syntactic information (Mikolov et al., 2013a, Pennington et al., 2014) and are
widely used in many NLP tasks such as sentiment analysis (Tang et al., 2014, Yu et al.,
2017), identifying multiword expressions (Salehi et al., 2015, Gharbieh et al., 2016),
and translation (Zou et al., 2013, Artetxe et al., 2018a). These representation models
are based on the assumption that the meaning of a word can be inferred from its textual
context (Firth, 1957).

Currently, there are two categories of approaches to learning word representations
(discussed in Section 2.3): static embeddings where a fixed vector is learned for each
word in the vocabulary, and dynamic embeddings where vectors are dynamically calcu-
lated for each sentence. Dynamic embeddings such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019) store the learned weights of the network, and use that to
get word representations by computing them on the fly for a given context. As a result,
these models can capture context-dependent characteristics of the language such as
polysemy: in natural language, words usually have more than one meaning (or sense).

Like dynamic embeddings, the research presented in this chapter aims at overcoming
the inability of static embeddings to capture polysemy. However, it predates dynamic
embeddings. Before the advent of contextualized embedding approaches, most static
representation models learned one fixed-length representation per word. However, this
approach and how it is evaluated has some shortcomings.

Firstly, many tasks can benefit from using multiple representations per word to
capture polysemy (Bengio et al., 2003, Reisinger and Mooney, 2010). Many intricate
distinctions of word senses are lost when we use one embedding vector to capture
multiple meanings. Additionally, this simplification of natural language unintentionally
leads to more simplistic evaluation tasks. Most studies on static word embeddings used
word similarity task to assess the accuracy of the static word representations where word
pairs are ranked based on how similar or related they are. However, most of the word
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similarity benchmarks present words out of context. The word pair ‘bank’ and ‘reef” can
have very different similarity scores depending on the context of the word bank. Finally,
there is no clear and quantifiable definition of similarity and relatedness when comparing
two words, and as a result, different benchmarks have different interpretations (Faruqui
et al., 2016).

In this chapter, we seek to address these shortcomings and propose an approach for
learning multiple static word representations per word. We aim to understand the role of
a particular kind of context, namely document topics, for learning these representations.
We analyze to what extent learning multiple topic-sensitive embeddings per word
captures polysemy, which we believe is a necessary step towards further understanding
the impact of context. Concretely, we ask:

Research Question 1:  Can document-level topic distribution help infer the meaning
of a word?

We first look at the importance of document-level context and how it can help to separate
different meanings of the word. We study the integration of this topical information
in learning word representation and evaluate the embeddings on a contextual task.
Concretely, we ask:

RQ1.1 To what extent can distributions over word senses be approximated by distri-
butions over topics of documents without assuming these concepts to be identical?

We introduce a model that uses a nonparametric Bayesian model, namely Hierar-
chical Dirichlet Process (HDP), to learn multiple topic-sensitive representations per
word. Yao and Van Durme (2011) showed that HDP is effective in learning topics
yielding state-of-the-art performance for sense induction. This approach learns
the granularity of senses from the data and does not require heuristic parameter
setting. The authors assumed that topics and senses are entirely interchangeable,
and so they trained individual models per word. However, this assumption makes
it difficult to scale to large data. In our approach, we do not hold the same as-
sumption, which enables us to use HDP to model topics effectively using large
unannotated training data. We aim to approximate the word senses with topics and
further use this additional signal for training the embeddings of each topic-word
pair separately.

RQ1.2 How can we exploit document-level topics to distinguish between different
meanings of a word and learn the corresponding representations?

We propose three unsupervised, language-independent approaches to approximate
senses with topics and learn multiple topic-sensitive embeddings per word. Our
first model uses a hard topic labeling approach to learn representations. The second
model jointly learns topic-labeled and generic representations for each word in
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order to share statistical information between different meanings of a particular
word. The third model uses topic distributions for each word following the notion
that meanings of words are not mutually exclusive in a given context. We show
that in the lexical substitution ranking task (McCarthy and Navigli, 2007) our
models outperform two competitive baselines and perform comparably to the best-
performing methods despite the fact that—unlike those methods—our approach
does not use any syntactic information.

RQ1.3 What are the advantages of using document-level topics in learning multiple
representations per word?

The process of learning topics and topic-sensitive representations is applied to the
same corpus ensuring compatibility between the granularity of topics and diversity
of meanings of word embeddings. By learning the granularity of topics from the
corpus we do not use any external knowledge sources. As a result, this approach
can be used for low-resource languages with no manually curated knowledge
sources. Additionally, this approach broadens the contextual signals for learning
more accurate representations when sentence-level context is not sufficient. We
evaluate our representations on the contextual word similarity task and the lexical
substitution task, both of which showcase the importance of learning multiple
embeddings per word.

Organization. This chapter is organized as follows: In Section 3.2, we provide an
overview of existing work on word sense disambiguation and static sense represen-
tations literature. Next, in Section 3.3, we introduce our representation models. We
present experimental details and study different tasks to evaluate the representations
in Section 3.4. In Section 3.5, we present a more in-depth analysis of the resulting
representations. Finally, we discuss the conclusions and implications of this work in
Section 3.6.

3.2 Related work

In this section, we discuss previous works that focus on learning multiple static word
embeddings per word to capture polysemy, as well as related work in the area of word
sense disambiguation.

3.2.1  Word sense disambiguation

Word sense disambiguation is the problem of determining which sense of a word is
activated by the use of the word in a particular context (Ide and Véronis, 1998).

There have been several attempts to build repositories for word senses (Miller, 1995,
Navigli and Ponzetto, 2010), but this is laborious and therefore limited to few languages.
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Moreover, defining a universal set of word senses is challenging as polysemous words
can exist at many levels of granularity (Kilgarriff, 1997, Navigli, 2012). For this reason,
earlier work focuses on unsupervised sense induction, often following a Bayesian
framework (Brody and Lapata, 2009, Lau et al., 2014).

Yao and Van Durme (2011) show that a nonparametric Bayesian model, such as
the Hierarchical Dirichlet Process (HDP), is effective in learning topics and can yield
state-of-the-art results in sense induction. The advantage of nonparametric methods
is that they learn the granularity of topics from the data and do not require to fix the
number of senses per word a priori. By using HDP for sense induction, they assume
that topics and senses are interchangeable and train a topic model for each target word
with a sampled number of context instances. However, inference with HDP does not
scale to large corpus sizes due to the complexities of the model (Jordan, 2011, Paisley
et al., 2015).

3.2.2 Static sense representations

We discussed in Section 2.3.1 that the most commonly used approaches learn exactly
one embedding per word (Mikolov et al., 2013a, Pennington et al., 2014). However,
even before the advent of dynamic embeddings, several studies have focused on learning
multiple embeddings per word due to the ambiguous nature of language (Qiu et al.,
2016). Huang et al. (2012) cluster word contexts and use the average embedding of each
cluster as word sense embeddings, which yields improvements on a word similarity
task. Neelakantan et al. (2014) propose two approaches, both based on clustering word
contexts: In the first, they fix the number of senses manually, and in the second, they
use an ad-hoc greedy procedure that allocates a new representation to a word if existing
representations explain the context below a certain threshold.

Li and Jurafsky (2015) used a Chinese Restaurant Process (CRP) model to distin-
guish between senses of words and train vectors for senses, where the number of senses
is not fixed. They change the Skipgram model (Mikolov et al., 2013a) to perform sense
induction and sense embedding updates simultaneously. They use two heuristic ap-
proaches for assigning senses in a context: ‘greedy’ which assigns the locally optimum
sense label to each word, and ‘expectation” which computes the expected value for a
word in a given context with probabilities for each possible sense.

3.3 Topic-Sensitive representations

In this section, we introduce our approach to learn topic-sensitive word representations
based on the Skipgram model proposed by Mikolov et al. (2013a). We previously
mentioned that inference with HDP does not scale to large corpus sizes (Jordan, 2011,
Paisley et al., 2015). Here, we describe our proposed models to learn topics from a
corpus using HDP (Teh et al., 2006, Lau et al., 2014) in a way that is applicable to large
corpora.
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P h I Flight has enabled bats to become one of the
P most widely distributed groups of mammals.
1 IR j
P E I A baseball player may apply pine tar on the
P T gripping end of the bat in order to improve grip.

Figure 3.1: An example of sentences including the word ‘bat’ from two documents
with different topic distribution.

The main advantage of this model compared to non-hierarchical methods like the
Chinese Restaurant Process (CRP) is that each document in the corpus is modeled using
a mixture model with topics shared between all documents (Teh et al., 2005, Brody and
Lapata, 2009). HDP yields two sets of distributions that we use in our methods: (i)
distributions over topics for words in the vocabulary, and (ii) distributions over topics
for documents in the corpus.

Similarly to Neelakantan et al. (2014), we use neighboring words to detect the
meaning of the context, however, we also use the two HDP distributions. By doing so,
we take advantage of the topic of the document beyond the scope of the neighboring
words, which is helpful when the immediate context of the target word is not sufficiently
informative. We modify the Skipgram model (Mikolov et al., 2013a) to obtain multiple
topic-sensitive representations per word type using topic distributions.

Additionally, the context vectors of a word type with multiple topics are shared in
our model. This is especially beneficial for infrequent words, where a rare sense of
the word can use the contextual information of other senses of the word. We assume
that meanings of words can be determined by their contextual information and use
the distribution over topics to differentiate between occurrences of a word in different
contexts, i.e., documents with different topics (see example in Figure 3.1). We propose
three different approaches illustrated in Figures 3.2 and 3.3: two methods with hard
topic labeling of words and one with soft labeling. In the following sections, we discuss
each of these model variants in detail.

3.3.1 Hard topic-labeled representations

In the hard-labeling approach, we assign exactly one topic to each word based on
sampling from the topic distribution. We use the trained HDP model to label every word
in the training data with the chosen topic ID.

Our first model variant (Figure 3.2 (a)) considers each word-topic pair as a separate
vocabulary entry. To reduce sparsity on the context side and share the word-level infor-
mation between similar contexts, we use topic-sensitive representations for target words
(input to the Skipgram network) and standard, i.e., unlabeled, word representations for
context words (output to the Skipgram network). Note that this results in different input

33



3. Topic-Sensitive Word Representations
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Figure 3.2: Illustrations of two proposed models with hard-labeling topics in this
chapter.

and output vocabularies. The training objective is then to maximize the log-likelihood
of context words w;; given the target word-topic pair wy; :

I
1
Lharar-se =7 2, Y, logp(wir; |w]) 3.1)

i=1—c<j<c
§#0
where [ is the number of words in the training corpus, c is the context size and 7 is the
topic assigned to w; by HDP sampling. o, ; is the context (i.e., output) representation
for the word w;. Note that w; is an occurrence of word w in context [i — ¢, + ¢].
The embedding of a word in context h(w;) is obtained by simply extracting the row
of the input lookup table (r) corresponding to the HDP-labeled word-topic pair:

hyrie(w;) = r(w]) 3.2)

A possible shortcoming of the HTLE model is that the representations are trained
separately and information is not shared between different topic-sensitive representations
of the same word. To address this issue, we introduce a model variant that learns multiple
topic-sensitive word representations and generic word representations simultaneously
(Figure 3.2 (b)). In this variant (HTLEadd), the target word embedding is obtained
by adding the word-topic pair representation (r’) to the generic representation of the
corresponding word (rg):

hyrgada(w;) = ' (w]) + ro(w;) (3.3)

This representation captures both the generic and the contextual meaning of the
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word.

Figure 3.3: Illustration of our soft topic-labeled representation model (STLE).

3.3.2 Soft topic-labeled representations

The model variants above rely on the hard labels resulting from HDP sampling. As a
soft alternative to this, we can directly include the topic distributions estimated by HDP
for each document, see Figure 3.3. Since the topics are not clearly separated, every
identified topic of a word can contribute to the learning process proportional to its value.
Specifically, for each update, we use the topic distribution to compute a weighted sum
over the word-topic representations (r”):

hgrie(w;) p(7 | di) " (w]*) 3.4)

HMH

where T is the total number of topics, d; the document containing w;, and p(7x, | d;)
the probability assigned to topic 75 by HDP in document d;. The training objective for
this model is:

I
1
LsoftT-sG = 7 Z Z log p(wi; | ws, T) (3.5)
=1 i Jj<c

where 7 is the topic of document d; learned by HDP. The STLE model has the advantage
of directly applying the distribution over topics in the Skipgram model. Also, for each
instance, we update all topic representations of a given word with non-zero probabilities,
which has the potential to reduce the sparsity problem.

3.3.3 Embeddings for polysemous words

The representations obtained from our models are expected to capture the meaning of a
word in different topics. We now examine whether these representations can distinguish
between different word senses. Table 3.1 provides examples of nearest neighbors. For
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Table 3.1: Nearest neighbors of three examples in different representation spaces using
cosine similarity. word2vec and GloVe are pre-trained embeddings from (Mikolov et al.,
2013a) and (Pennington et al., 2014), respectively. SGE is the Skipgram baseline and
HTLE is our topic-sensitive Skipgram (cf. Equation (3.2)), both trained on Wikipedia.
Tk, stands for HDP-inferred topic k.

Pre-trained Trained on Wikipedia
word2vec Glove SGE HTLE: m; HTLE:
bats bats uroderma ball vespertilionidae
batting batting magnirostrum | pitchout heran
Pinch_hitter_Bray. .. Bat sorenseni batter hipposideros
batsman catcher miniopterus toss-for sorenseni

= batted fielder promops umpire luctus

< | Hawaiian_hoary hitter luctus batting coxi
Lelands.com. .. outfield micronycteris | bowes kerivoula
yelled_Cheater hitting hipposideros | straightened natterer
wicketkeeper_Andr. .. | batted chaerephon fielder nyctophilus
lefthanded_batter catchers pteronotus flies artibeus
jaguars jaguars electramotive | ford wiedii
Macho_B xk8 vk66de bmw puma
panther Xj6 viper chevrolet margay
lynx Xjs id66 honda tapirus

§ rhino panther Xj666 porsche jaguarundi

.%: lizard xkr roadster multimatic ~ yagouaroundi
tapir Xj8 saleen monza vison
tiger mercedes | siata nissan concolor
leopard Jaguar enetered Xj tajacu
Florida_panther porsche chevrolet dodge tayassu
appeals appeals court court sfa
appealing appealed | appeals case steadfast
appealed appealing | appealed appeals lackadaisical
Appeal Appeal carmody appealed assertions

E rehearing court upheld decision lack

% apeal decision | verdict proceedings symbolize
Appealing conviction| jaruvan disapproves fans
ceasing_hostilities... | plea affirmed ruling attempt
ruling sought appealable upholding  unenthusiastic
Appeals dismiss battin carmody cancellation
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Table 3.2: Statistics of the degree of polysemy in Wordnet and HTLE.

Wordnet HTLE

Degree of polysemy 2.08 4.79
Single [sense/representation] words 26,755 21,490

comparison, we include our own baseline, i.e., embeddings learned with Skipgram
on our corpus, as well as Word2Vec (Mikolov et al., 2013b) and GloVe embeddings
(Pennington et al., 2014) pre-trained on large data.

In the first example, the word bat has two different meanings: animal or sport
device. We can see that the nearest neighbors of the baseline and pre-trained word
representations either center around one primary, i.e., most frequent, meaning of the
word, or looks like a mixture of different meanings. The topic-sensitive representations,
on the other hand, correctly distinguish between the two different meanings. A similar
pattern is observed for the word jaguar and its two meanings: car or animal. The last
example, appeal, illustrates a case where topic-sensitive embeddings are not clearly
detecting different meanings of the word, despite having some correct words in the lists.
Here, the meaning attract does not seem to be captured by any embedding set.

These observations suggest that topic-sensitive representations capture different
word senses to some extent. To quantify the degree of polysemy in our embeddings, we
compare it to Wordnet (Miller, 1995). Wordnet is a manually curated lexical database
of English that interlinks different senses of the words through conceptual-semantic and
lexical relations. As a result, words that are found near one another in the network are
semantically disambiguated. Table 3.2 shows statistics for Wordnet and our proposed
embedding method. We observe that the degree of polysemy of our embeddings is
more than double that of Wordnet. Note that while in our models we do not explicitly
specify the desired number of senses per word type, the hyperparameters have an impact
on it: v manages the variability of the global sense distribution and o manages the
variability of each word type’s selection of senses. These hyperparameters are discussed
in Section 3.4.1.

Moreover, we observe that not every topic-sensitive word representation corresponds
to a distinct and unique sense. In our experiments, we see that at times, multiple
embeddings capture the same sense of the word. However, they are also in close
proximity in the embedding space and end up being very similar. To provide a systematic
validation of our approach, we now investigate whether topic-sensitive representations
can improve tasks where polysemy is a known issue.
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3.4 Evaluation

In this section, we present the setup for our experiments and empirically evaluate our
approach on the context-aware word similarity and lexical substitution tasks.

3.4.1 Experimental setup

All word representations are learned on the English Wikipedia corpus containing 4.8M
documents (approximately 1 billion tokens). Preprocessing of the training data in-
cludes lowercasing, removing stop words, and removing words occurring less than
100 times. The topics are learned on a 100K-document subset of this corpus using the
HDP implementation of Teh et al. (2006). HDP has two hyperparameters, v and «,
which control the variability of the global topic distribution and each word’s choice
of topics, respectively. We do not tune these parameters and following the literature,
we put gamma priors Gamma(1, 1) and Gamma(1, 0.1) on hyperparameters ~ and «
respectively. These parameters encourage skewed topic distributions which are typically
observed in natural languages (Gale et al., 1992). Once the topics have been learned,
we run HDP on the whole corpus to obtain the word-topic labeling (Section 3.3.1) and
the document-level topic distributions (Section 3.3.2). We train each model variant
with window size ¢ = 10 and different embedding sizes (100, 300, 600) with random
initialization. All model variants in this chapter are trained on the same training data
with the same settings, following suggestions by Mikolov et al. (2013a) and Levy et al.
(2015).

Table 3.3: Word similarity benchmarks for intrinsic evaluation of word representations.

Data set Word pairs Reference

RG 65 Rubenstein and Goodenough (1965)
WS353 353 Finkelstein et al. (2001)

MTurk287 287 Radinsky et al. (2011)

MEN 3000 Bruni et al. (2012)

RW 2034 Luong et al. (2013)

SimLex 999 Hill et al. (2015)

3.4.2 Word similarity task

The most popular intrinsic evaluation of static word representations is the word similarity
task. In this task, a list of pairs of words with their similarity scores judged by human
annotators is provided. The goal is to measure how well the word vector representations
capture the notion of word similarity by ranking the word pairs according to their
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similarity scores. Table 3.3 provides a list of benchmarks with the number of word pairs
in each data set that we use for evaluation.

Similar to most previous approaches (Radinsky et al., 2011, Hassan and Mihalcea,
2011, Yih and Qazvinian, 2012), we use Spearman’s p (rank correlation coefficient) to
assess the monotonic relationship between the model’s ranking of word pairs and the
gold standard’s ranking.

Our models learn multiple embeddings per word, but these benchmarks do not
include any context to help distinguish between the vectors. Therefore we employ
several techniques for selecting and combining the representation vectors:

* Max: computes the pairwise similarity between the nearest topic-sensitive em-
beddings of the word pair.

* Mean: computes the pairwise similarity between the means of all topic-sensitive
embeddings of each word.

* wMean: computes the pairwise similarity between the weighted means of all
topic-sensitive embeddings of each word. The weights are defined according to
the frequency of each topic.

Table 3.4 provides the results for the word similarity experiments. We observe
slight improvements in different settings, but there is no clear indication that one model
performs best across all data sets. It is also clear that each data set has a different level of
difficulty, and because of the differences in quality of the word pairs and the definition
of similarity for the annotators, they are not analogous.

Table 3.4: Spearman’s rank correlation performance on word similarity tasks. All
vectors are 100-dimensional.

RG WS353-rel WS353-sim MTurk287 MEN RW SimLex

SGE 0.77 0.44 0.69 0.66 071 038 0.29
i Max 0.68 0.20 0.46 0.42 051 0.15 020
ﬁ Mean  0.65 0.29 0.61 0.62 057 035 022
a wMean 0.48 0.32 0.40 0.55 0.50 0.08 0.10
% Max 0.81 0.30 0.57 0.56 063 024 022
E Mean 0.77 0.42 0.67 0.68 0.69 036 028
E wMean 0.60 0.36 0.48 0.63 057 013 0.14
- Max 0.74 0.43 0.69 0.67 069 020 030
ﬁ Mean 0.71 0.45 0.69 0.67 0.67 023 0.30
? WMean 0.65 0.43 0.64 0.65 068 0.16 024

One of the main concerns of using these benchmarks, in general, is that the notion
of word similarity is subjective and there is no clear division between similarity and
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relatedness (Faruqui et al., 2016, Torabi Asr et al., 2018). As a result, some data
sets penalize representation models that consider two related words as ‘not similar’,
while others do not. For instance, in MEN (Bruni et al., 2012), the guidelines did not
distinguish between similarity and relatedness and gave examples of both similarity
(e.g., “car-automobile”), and relatedness (e.g., “wheels-car”) as valid options to the
annotators. The instructions for the SimLex data set (Hill et al., 2015), however, included
guidelines for the annotators with examples of related pairs (e.g., “car-tyre”) that are
not to be labeled similar.

Faruqui et al. (2016) evaluated several issues of the word similarity task. These
include low correlation with extrinsic evaluation, no consideration of polysemy, absence
of statistical significance, and semantic versus task-specific embeddings. To specifically
address the lack of context to identify polysemous words, Huang et al. (2012) proposed
the Stanford contextual word similarity data set (SCWS). In the following subsection,
we evaluate our embeddings using this data set.

3.4.3 Context-Aware word similarity task

As mentioned before, there are multiple test sets available for intrinsic evaluation of
embeddings, but in almost all of them word pairs are considered out of context. To eval-
uate our static embeddings intrinsically, we use the SCWS data set (Huang et al., 2012).
To the best of our knowledge, this was the only word similarity data set considering
word context at the time our models were developed. Note that more recently, instead
of intrinsic evaluations, the performance of dynamic contextual embeddings is typically
evaluated on downstream NLP tasks (Peters et al., 2018, Devlin et al., 2019).

The SCWS data set contains word pairs and their respective contexts with average
human ratings indicating the similarity of the target words. Table 3.5 presents examples
of word pairs and their contexts in SCWS. To evaluate our models on SCWS, we run
HDP on the data treating each word’s context as a separate document. We compute the
similarity of each word pair as follows:

Sim (w1, we) = cos(h(wi), h(ws)) (3.6)

where h(w;) refers to any of the topic-sensitive representations defined in Section 3.3.
Note that w; and ws can refer to the same word.

We compare our models to various baselines: The Skipgram model (SGE), the
context-aware Skipgram model (SGE + context), and the best-performing multi-sense
embeddings model per word type (MSSG) (Neelakantan et al., 2014). The context-aware
Skipgram baseline (SGE + context) computes the average pairwise cosine similarity
between a target word in each context with every word in the opposing context.

For MSSG we use the best performing similarity measure (avgSimC) as proposed
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Table 3.5: Examples from SCWS data set. Each example includes the word pair
(identical or non-identical), their corresponding contexts, and the average human score
between 0 and 10 to indicate the similarity.

Word pair  bitter, bitter
context; It has an aromatic, warm and slightly bitter taste.

contexts AK - a very common beer name in the 1800s - was often referred to as a “mild
bitter beer” interpreting “mild” as “unaged”.

Human score 6.0

Word pair  bitter, resentful

context; Named for the tattoos they decorated themselves with and bitter enemies of en-
croaching Roman legions, the Picts fired Howard’s imagination and crystallized
in him a love for barbarians and outsiders from civilization who lived lives of
great hardship and struggle but also great freedom and verve.

contexty Legge-Bourke had been hired by Prince Charles as a young companion for
his sons while they were in his care, and Diana was extremely resentful of
Legge-Bourke and her relationship with the young princes.

Human score 9.0

Word pair  bitter, taste
context; This practice began during the Prohibition as a means of covering the bitter taste.
contexty Once it has decayed, it leaves no taste or odor in drinking water.

Human score 7.0

by Neelakantan et al. (2014):
K K
avgSimC(w, we) = Z Z (w1, e1,1) P(wa, ¢z, j)d(v(wr, i), v(ws, j)) (3.7)

where P(w, ¢, k) is the probability that w takes the k-th sense given context c. v(w, k)
is the embedding for word w with assigned sense k. d(v(w1,i),v(ws,j’)) is the
similarity measure between the given embeddings v(w1,’) and v(ws, j'). avgSimC
measures the similarity between each pair of senses by how well each sense fits the
context at hand.

Table 3.6 provides the Spearman’s correlation scores for different models against
the human ranking. We see that with dimensions 100 and 300, two of our proposed
models obtain slight improvements over the baseline. However, for higher dimensions
(embedding size 600), the MSSG model is the best performing system.

The main advantage of having multiple embeddings per word for different meanings
is in comparing pairs of identical word with ambiguous meanings. With multiple
representations per word, we can have a better estimation of similarities for identical
words, given that we detect different senses correctly. Spearman’s rank correlation
between the two systems is based on the average differences between the two ranks of
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Table 3.6: Spearman’s rank correlation performance for the Word Similarity task on
SCWS (Huang et al., 2012).

Dimension

Model 100 300 600

SGE + context (Mikolov et al., 2013a) 0.59 0.59 0.62

MSSG (Neelakantan et al., 2014) 0.60 0.61 0.64
HTLE 0.63 0.56 0.55
HTLEadd 0.61 0.61 0.58
STLE 0.59 0.58 0.55

each observation. To further understand the performance of our models, we look into the
rank differences for the two types of word pairs in SCWS (identical and non-identical)
and the two types of embeddings (assigning the same topic or not). The former explicitly
evaluates the performance of our models on identical words, and the latter evaluates the
impact of the topic-labeling step. This results in four categories for comparison.

1200 @ cold
2 SGE
1000 == HTLE

800

600

Average ranks

400

200

IWIT IWDT DWIT DWDT

Figure 3.4: Average absolute rank of the baseline embeddings and the HTLE embed-
dings in four categories, where being closer to the gold rankings is better. The categories
are marked with a combination of these labels: I: identical, D: different. W: word, T:
topic. For instance IWDT is the category of word pairs where identical words have
different topics. Examples of the categories are presented in Table 3.5.

Since the difficulty of each category is different, we expect different performances
from the models. Figure 3.4 shows the average absolute rank of the baseline embeddings
and the HTLE embeddings with 300 dimensions in these four categories. The gold rank,
which is the ranking of all word pairs in the data set according to human judgments, is
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also shown for each category. The best-performing model is the one that is the closest to
the gold ranking. Note that the gold rank naturally increases when words are different
in comparison to when they are the same.

One can see that for identical words, labeled with different topics, IWDT, the rank
assigned by topic-sensitive embeddings is much closer to the gold ranking than the one
produced by the baseline. The average rank is also still higher when considering both
categories of identical words: IWDT and IWIT. This indicates that the estimation of
the similarity scores of identical words is notably more accurate in our model. However,
for non-identical word pairs (DWIT and DWDT), the rank difference is higher for topic-
sensitive embeddings and since the evaluation set consists of mostly non-identical word
pairs, the correlation with gold ranking decreases in total in comparison with baseline
word embeddings.

3.4.4 Lexical substitution task

Continuing our evaluation of word representations, in this section, we explore the lexical
substitution task. This task requires one to identify the best replacements for a word in
a sentential context. The replacements should be both semantically compatible with the
word, and syntactically correct in the context. For example:

sentence substitutions
The sun was bright. luminous, colorful
He was bright and independent. intelligent, clever, smart

The presence of many polysemous target words makes this task more suitable for
evaluating sense embeddings. Following Melamud et al. (2015), we pool substitution
candidates from different instances and rank them by the number of annotators that
selected them for a given context. We use two evaluation sets: LS-SE07 (McCarthy and
Navigli, 2007), and LS-CIC (Kremer et al., 2014). The Concept-in-Context (LS-CIC)
set for the lexical substitution task is a large-scale corpus constructed by crowdsourcing
(Kremer et al., 2014) and contains a more extensive set of words. The main difference
between LS-CIC and LS-SEQ7 is that the former was constructed as a large-scale
“all-words” corpus, while LS-SE07 mostly includes ambiguous words.

Unlike previous work (Szarvas et al., 2013, Kremer et al., 2014, Melamud et al.,
2015), we do not use any syntactic information in our models, motivated by the fact that
high-quality parsers are not available for most languages. The evaluation is performed
by computing the Generalized Average Precision (GAP) score (Kishida, 2005). Given a
gold standard of size R of ranked candidates, the GAP score is defined as:

Doy I(zi)pi - _
GAP = 1T R =) I(y:)y; (3.8)
1=1

where z; is a binary variable symbolizing whether the i-th candidate as ranked by the
model is in the gold standard and n is the number of candidates to be ranked. I(z;) is
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one if x; is larger than zero, and otherwise, it is zero. ¥; is the average weight of the
ideal ranked list in the gold standard.

In order to rank substitution candidates, we compute the similarity between the
target word and each candidate similar to Melamud et al. (2015) but adapt it to include
topic distributions as well as context words for word embeddings. We run HDP on the
evaluation set and compute the similarity between target word w; and each substitution
w, using two different inference methods in line with how we incorporate topics during
training. We define the first method, Sampled (Smp), as:

"Ny o 2e cos(h(wy), o(we))

cos((w), h(wy)) + ‘ : (39
and define the second method, Expected (Exp), as:
, - - - . cos(h(wg),o(w.)) p(T
3} 9() p(s") o) i )) + Zre SN

7,7/

where p(7) and p(7’) are the topic probabilities, h(w?) and h(w]") are the representa-
tions for substitution word s with topic 7 and target word ¢ with topic 7’ respectively
(see Section 3.3), w, are context words of w; taken from a sliding window of the same
size as the embeddings, o(w,) is the context (i.e., output) representation of w,, and
C' is the total number of context words. Note that these two methods are consistent
with how we train HTLE and STLE. The Smp method, similar to HTLE, uses the HDP

Table 3.7: GAP scores on LS-SE07 and LS-CIC sets. For SGE + CONTEXT we use
the context embeddings to disambiguate the substitutions. Improvements over the best
baseline (MSSG) are marked 4 at p < .01 and  at p < .05.

LS-SE07 LS-CIC

Dimension Dimension
Model Infer. 100 300 600 100 300 600
SGE 36.2 40.5 41.1 30.4 32.1 32.3
SGE + context n/a 36.6 40.9 41.6 32.8 36.1 36.8
MSSG 37.8 41.1 42.9 339 37.8 39.1
HTLE 39.84 42.54 43,04 32.1 32.7 33.0
HTLEadd Smp 39.4%4 41.34 41.8 30.4 31.5 31.7
STLE 352 36.7 39.0 329 32.3 339
HTLE 40.34 42.8% 43.4* 36.6% 40.9* 41.34
HTLEadd Exp 39.94 41.84 42.2 35.5% 37.94 38.6
STLE 38.7% 41.0 41.0 36.84 36.8 37.1

model to assign topics to word occurrences during testing. The Exp method, similar
to STLE, uses the HDP model to learn the probability distribution of topics of the
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context sentence and uses the entire distribution to compute the similarity. Both of these
inference methods can be used with either model.

For the context-aware Skipgram baseline (SGE + context), we compute the similarity
as follows:

> cos(h(ws), o(we))
C

Sim(ws, wy) = cos(h(ws), h(wy)) + (3.11)
This computation uses the similarity between the candidate word and all words in the
context, as well as the similarity between target and candidate words. We also report
results for the baseline Skipgram model (SGE) without using the provided context as
well as the MSSG model. The MSSG baseline uses the best performing similarity
measure (Equation 3.7) as proposed by Neelakantan et al. (2014) for a context-aware
comparison.

Table 3.7 shows the GAP scores of our models and the baselines. We use the
nonparametric rank-based Mann-Whitney-Wilcoxon test (Sprent and Smeeton, 2016)
to check for statistically significant differences between runs. We observe that all
models using multiple embeddings per word perform better than SGE. Our proposed
models outperform both SGE and MSSG in both evaluation sets, with more pronounced
improvements in the LS-CIC data set. Note that we do not require any syntactic
information and only focus on the semantic aspect of the task. We further observe that
our Exp method is more robust and performs better for all embedding sizes. Moreover,
we can see a decrease in GAP for the model variant HTLEadd compared to HTLE.
By including a generic representation for each word, different topic representations
drift close to each other and obtain a more general meaning of the word as well as the
topic-specific meaning. Such representations are not beneficial for this task.

Table 3.8 shows the GAP scores broken down by the main word classes: noun,
verb, adjective, and adverb. With 100 dimensions, our best model (HTLE) yields
improvements across all POS tags, with the largest improvements for adverbs and
smallest improvements for adjectives.

When increasing the dimension size of embeddings, the improvements hold up for
all POS tags apart from adverbs. It can be inferred that larger dimension sizes capture
semantic similarities for adverbs and context words better than other parts-of-speech
categories. Additionally, we observe for both evaluation sets that the improvements
are preserved when increasing the embedding size. It should also be noted that the
distribution of POS tags in the test set is approximately uniform except for adverbs of
which there are fewer instances.

Our findings confirm Li and Jurafsky (2015)’s observations to some extent: Higher
dimension embeddings capture part of the information on semantic relations that mod-
els with multiple embeddings per word capture. In our experiments, SGE with 600
dimensions performs better than HTLE with 100 dimensions. Given a relevant semantic
task, this advantage of having multiple embeddings per word can be observed more
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Table 3.8: GAP scores on the candidate ranking task on LS-SE07 for different part-of-
speech categories.

Model Noun Verb Adjective Adverb
- | SGE 331 292 31.7 38.2
% SGE + context | 372 31.6 37.1 422
,g HTLE 424 339 38.1 49.7
STLE 20 331 38.1 472
- | SGE 39.0 338 36.4 50.1
% SGE + context | 39.2  35.0 39.0 55.4
,g HTLE 449 37.0 41.0 50.9
STLE 427 370 39.9 50.2
- | SGE 39.1 343 36.9 52.8
% SGE + context | 39.7  35.7 39.9 56.2
.»Qi HTLE 452 372 42.1 51.9
STLE 440 371 415 51.0

appropriately regardless of dimension.

3.5 Qualitative analysis

In this section, we discuss some properties of our representations and provide an
analysis of the semantic information captured by topic-sensitive embeddings in the
lexical substitution evaluation. Table 3.9 illustrates the performance of different models
by providing examples from the lexical substitution task LS-SE07. In Table 3.9 (a), for
the word ‘bright’, we observe that our model captures the meaning of the word in the
context ( ‘talented’) and provides a sensible substitution ranking, but the GAP scores are
low. This is due to the gold substitution list being incomplete and the highest-ranking
words of our model, despite matching the context, are not in the gold ranking. SGE and
MSSG however, rank the candidates belonging to a different sense (‘shiny’) higher.
Additionally, Table 3.9 provides an example of two different contexts for the same
word ‘rich’. In Table 3.9 (b.1), the topic of the sentence for the word ‘rich’ was learned
correctly, but it is misleading for the substitution because the meaning of the word
changes in the local context and SGE and MSSG perform better than our model and
rank the correct substitution ‘wealthy’ higher. However, for the same word (‘rich’) in
a different context, Table 3.9 (b.2), the topic-sensitive model obtains a more accurate
substitution ranking and SGE fails to identify the meaning of the word (‘wealthy’) in
the context. Example (c) in Table 3.9 provides an instance for substituting the word
‘fixing’ in which we achieve a higher GAP score by using SGE. Here, both MSSG
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Table 3.9: Examples of word substitution rankings and respective GAP scores. The
gold rank includes substitution words and annotators’ votes. The models are word
embeddings with context (SGE), MSSG (Neelakantan et al., 2014), and our topic-
sensitive model (HTLE). Target words in the contexts and correct words in the rankings

are bold.
Substitution instance GAP
(a) During the siege, George Robertson had appointed Shuja-ul-Mulk, who was
a bright boy only 12 years old and the youngest surviving son of Aman-ul-
Mulk , as the ruler of chitral.
Gold intelligent (3), clever (3), smart (1)
SGE shining, luminous, vibrant, brilliant, vivid, colourful, gleam, light, sharp, 12.02
smart, ...
MSSG vivid, shining, luminous, brilliant, colourful, vibrant, gleam, sharp, light, 10.34
talented, . ..
HTLE  brilliant, gifted, talented, capable, sharp, intelligent, clear, vivid, colourful, 16.00
shining, ...
(b.1) Trees on Anmyeondo used to be thick and lush to the extent of prompting
a saying, “you can become rich with an axe”, but now only few trees are
left due to reckless deforestation since the time of Korea’s liberation from
Japanese colonial rule.
Gold  wealthy (5)
SGE wealthy, abundant, vibrant, lush, abounding, lavish, ample, valuable, ... 100
MSSG  lush, abundant, wealthy, vibrant, abounding, valuable, lavish, ample, ... 33.33
HTLE abundant, valuable, lush, abounding, vibrant, ample, high, significant, ... 7.69
(b.2)  Africas central problems in the WTO revolve around the imbalances and
biases created by rich countries in the Uruguay round agreement (URA) .
Gold  wealthy (5)
SGE abundant, lush, wealthy, abounding, vibrant, valuable, ample, lavish, ... 33.33
MSSG  abundant, wealthy, vibrant, lush, abounding, lavish, ample, valuable, . .. 50
HTLE  wealthy, abundant, valuable, vibrant, significant, abounding, ample, . .. 100
(c) I feel I can get a lot more done as a selectman by being innovative and fixing
the problems we have with cash flows, because they occur every year.
Gold  resolve (2), solve (1), mend (1), repair (1)
SGE  resolve, mend, repair, heal, cure, improve, correct, stick, do, patch, ... 79.45
MSSG  do, mend, heal, cure, resolve, repair, correct, improve, stick, patch, ... 29.04
HTLE do, improve, heal, repair, cure, resolve, mend, determine, stick, . .. 21.72
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Figure 3.5: Visualizing a subset of word-topic pairs using t-SNE to showcase topic
assignment separations. Colors distinguish topics. We observe that words that are
labeled the same topics end up in the same clusters.
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and our model detect an inaccurate sense for the context (‘heal’) and rank the words
accordingly.

These examples show that when we learn multiple embeddings per word, we can
disambiguate words in context to a greater degree. Comparing the MSSG and the HTLE
model, we see a slight difference in results. One distinction between the MSSG model
and the HTLE model is their definition of context. The former uses a context window
of length 10 (Neelakantan et al., 2014) and the latter uses a context window of length 10
as well as the document-level (in this case the complete sentence) topical information.
While both models perform similarly, HTLE can be more effective when requiring
larger contexts for disambiguation.

Figure 3.5 uses t-SNE (van der Maaten and Hinton, 2008) to visualize the em-
beddings of a subset of word-topic pairs in the vocabulary with colors distinguishing
between topics. This figure gives us a basic understanding of the vector space and
the distribution of topics. We observe that in general, words are closer (more similar)
to other words from the same topic, rather than the same words in different topics.
Additionally, we observe that in some cases, the same word with different topic labels
ends up with almost overlapping embeddings. This indicates that while we assign
different topic labels to a word in different documents, as long as the sense of the word
is the same, the embeddings we learn turn out very similar.

3.6 Conclusion

Studying word embeddings is a good medium for getting an understanding of the
impact of context in preserving word meaning. In this chapter, we have explored how
document-level context can be useful to learn a more informed word representation. We
asked:

RQ1.1 7o what extent can distributions over word senses be approximated by distri-
butions over topics of documents without assuming these concepts to be identical?

We introduced a model that uses a hierarchical Dirichlet process to learn topic
distributions over documents. We observed that these distributions distinguish
between senses of words. This method exploits the document-level context of
words and does not require annotated data or linguistic resources. Using this
information, we asked:

RQ1.2 How can we exploit document-level topics to distinguish between different
meanings of a word and learn the corresponding representations?

We approximated the word senses with topics and further used this additional
signal for training the embeddings of each topic-word pair separately. Our first
model hard-labeled words with topics to learn representations. The second model
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jointly learned topic-labeled and generic representations for each word in order
to share statistical information between different meanings of a particular word.
The third model used topic distributions for each word following the notion that
meanings of words are not mutually exclusive in a given context.

Lastly, we investigated the effectiveness of these embeddings by asking:

RQ1.3 What are the advantages of using document-level topics in learning multiple
representations per word?

When the evaluation tasks require less contextual information, the performance
of our model was similar to the baselines. We evaluated word embeddings on the
word similarity task and observed slight improvements under different settings.
However, there was no clear indication that one model performs best across all
data sets. Next, we evaluated the embeddings in a more context-aware setting.
Using the SCWS data set, where context is available for word pairs, we saw
that two of our models obtained improvements over the baseline. However, with
higher dimensions, the MSSG model (Neelakantan et al., 2014) was the best
performing system. Finally, we showed that in the lexical substitution ranking task
(McCarthy and Navigli, 2007) our models outperformed two competitive baselines
and performed comparably to the best-performing methods even though —unlike
those methods—our approach did not use any syntactic information.

Taken together, these questions answered:

Research Question 1:  Can document-level topic distribution help infer the meaning
of a word?

Our experiments showed that we can use topic distribution over documents to improve
the learning of word representations. With our proposed approach, we obtained im-
provements in the lexical substitution task without using any syntactic information.
Our HTLE model which learns representations by hard-labeling topics to target words
and learning individual embeddings achieved the best performance. We observed that
topic-sensitive representations capture different senses of the words to some extent and
work best when context is available.

It is worth mentioning that the methods proposed in this chapter predate more powerful
neural models, such as transformers as well as complex language modeling objectives to
learn dynamic contextual embeddings (Peters et al., 2018, Radford et al., 2019, Devlin
et al., 2019). These models incorporate sentence-level context (and at times multiple
sentences) in the computation of each word representation and have been shown to be
very effective at capturing different meanings of words.

In this chapter, we studied how static embeddings can benefit from larger contextual
cues, namely the topic of the document. As a byproduct of our models, we also learned
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representations for topics and our visualization of these embeddings suggested that
words belonging to the same topic are indeed clustered together. Embeddings that
integrate informative priors such as topics are more interpretable (Kog et al., 2018)
and can be used to advance our understanding of what word embeddings capture and
represent (Hurtado Bodell et al., 2019).
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Data Augmentation for Rare Words

4.1 Introduction and research questions

In the previous chapter, we observed the impact of context on learning word representa-
tions, in particular, modeling polysemy which is a challenging phenomenon in language.
In the following chapters of this thesis, we investigate other challenges in learning word
meaning. One medium to evaluate language understanding is machine translation. A
machine translation system needs to understand the meaning in the source language and
transfer it into the target language.

The quality of a neural machine translation system depends substantially on the
availability of sizable parallel corpora. To train NMT models with reliable parameter
estimations, these networks require numerous instances of sentence translation pairs with
words occurring in diverse contexts, which is typically not available for low-resource
language pairs. As a result, NMT falls short of producing good-quality translations for
these language pairs (Zoph et al., 2016, Koehn and Knowles, 2017, Gu et al., 2018b,
Ngo et al., 2019). The solution is to either revise the learning models (Ostling and
Tiedemann, 2017), or to provide more training data by manual annotation (Melamed,
1998) or to perform automatic data augmentation (Sennrich et al., 2016b, Wang et al.,
2018). Since manual annotation of data is time-consuming, data augmentation for
low-resource language pairs is a more viable approach.

In computer vision, data augmentation techniques are widely used to increase ro-
bustness and improve the learning of objects with a limited number of training examples.
In image processing, the training data is augmented by, for instance, horizontally flip-
ping, random cropping, tilting, and altering the RGB channels of the original images
(Krizhevsky et al., 2012, Chatfield et al., 2014). Since the content of the new image is
still the same, the label of the original image is preserved (see Figure 4.1: top). While
data augmentation has become a standard technique to train deep networks for image
processing, it is not common practice for training networks for NLP applications such
as machine translation.

In this chapter, we address the challenge of translation of low-resource language
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computer vision

- —
¢ 5 augmentation
A boy is holding a bat.
A boy is holding a bat. translation A boy is holding a backpack. |

Ein Junge hilt einen Schldger.  qugmentation Ein Junge halt einen Rucksack.

Figure 4.1: Top: flip and crop, two label-preserving data augmentation techniques in
computer vision. Bottom: Altering one sentence in a parallel corpus requires changing
its translation.

pairs where the primary obstacle is the lack of sufficient training data. Motivated by the
success of data augmentation in computer vision, we investigate in this chapter whether
NMT can benefit from data augmentation as well. Concretely, we ask:

Research Question 2: How is the translation quality of a word influenced by the
availability of diverse contexts?

Research has shown that there is a strong correlation between the size of the training
data and the quality of neural models (Halevy et al., 2009). To investigate this relation in
machine translation, we compare how the translation and generation of a word changes
by adding diverse contexts to the training data. In this chapter, we focus on low-resource
language pairs, simulating a low-resource setting as done in the literature (Marton et al.,
2009, Duong et al., 2015), to examine the effects of the lack of data on translation
quality. In particular, we look into the translation and generation of rare words, thus
asking:

RQ2.1 How can we successfully augment the training data with diverse contexts for
rare words?

The impact of training data scarcity on translation quality is especially noticeable
for rare words (Sennrich et al., 2016c). We demonstrate that parameter estimation
of rare words is challenging in NMT, and it is further exacerbated in a low-resource
setting. We investigate the effects of additional context, generated automatically, on
both translating and generating rare words. We achieve this by proposing a simple
yet effective approach that augments the training data by altering existing sentences
in the parallel corpus, similar in spirit to the data augmentation approaches in
computer vision (see Figure 4.1). First, we propose a weaker notion of label
preservation that allows altering both source and target sentences at the same time
as long as they remain translations of each other.
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Next, we examine augmentation during test time by exploring a stronger notion of
label preservation, and we ask:

RQ2.2 Do rare words benefit from augmentation via paraphrasing during test time?

For the augmentation process in this scenario to be possible, any change to a
sentence in one language must preserve the meaning of the sentence. It is essential
because we aim for not altering reference translations during evaluation. We
hypothesize that it should be useful to alter the source sentence containing a rare or
out-of-vocabulary word by paraphrasing it with a more common word. In addition,
we also investigate the performance of different paraphrasing resources.

Organization. This chapter is organized as follows: After reviewing the previous
work (Section 4.2), we present our main data augmentation model in Section 4.3.
In Section 4.4, we introduce the general experimental setup, followed by a detailed
description of the results of the translation experiments in Section 4.5. We analyze
the effectiveness of the model further in Section 4.6. Next, we discuss augmentation
at inference and propose a meaning-preserving method in Section 4.7. Finally, we
conclude in Section 4.8 with an outlook of future work.

4.2 Previous work

Relevant previous work for the work described in this chapter involves two research
topics: First, we briefly review the literature on image data augmentation. Second, we
discuss researches studying challenges in translation of low-resource language pairs.

4.2.1 Data augmentation in computer vision

Neural models learn best when massive data is available (Halevy et al., 2009). As a
result, data augmentation has become one of the staple preprocessing steps in image
classification (Krizhevsky et al., 2012, Huang et al., 2019, Cubuk et al., 2019), im-
age generation (Kynk&anniemi et al., 2019, Karras et al., 2019), and object detection
(Singh et al., 2018, Liu et al., 2016). Data augmentation approaches address the over-
fitting problem in neural models from the perspective of the training data. Extensive
research in computer vision has been done over the years on different techniques of data
manipulation. There are various techniques to manipulate image data. For instance:

* Geometric transformations: These changes are simple alterations that are ap-
plied to the images in the training data—for instance, flipping, rotation, and

cropping.

* Mixing images: These transformations are done by combining multiple images
either from the same class or sampled from the entire training data—for instance,
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averaging pixel values of multiple images or randomly cropping and patching
images. Inoue (2018) show that by overlaying images and augmenting data, they
achieve significant improvements in classification accuracy on CIFAR-100 data
set.

Note that the augmentation techniques in computer vision have hardly any concerns
about whether the image still remains an equivalent image after the alteration. That is
not the case for augmentation of sentences, where any alteration should be mindful of
generating semantically and syntactically correct sentences.

4.2.2 Low-Resource translation

Parallel data, which is the primary source of learning for machine translation models,
is constructed manually and is not available in abundance for every language pair (see
Section 2.1). Neural translation models especially suffer from the lack of sufficient
parallel data for training. Koehn and Knowles (2017) experiment with different corpora
sizes and show that their NMT system only outperforms their phrase-based machine
translation system when more than 100 million words of parallel data are available.
However, Sennrich and Zhang (2019) show that NMT models are highly sensitive to
hyperparameters such as BPE vocabulary size. They observe strong improvements by
adapting system parameters to low-resource settings.

Additionally, in a low-resource setting, the problem of translating rare words is
more pronounced. Both Sutskever et al. (2014) and Bahdanau et al. (2015) observe
that NMT models tend to translate sentences with many rare words more poorly than
sentences containing mostly frequent words. Several recent approaches have targeted
the low-resource obstacle in machine translation in different ways. Based on their
approach and viewpoint on addressing this problem, current research can be categorized
into four main groups:

Leveraging monolingual data We discussed several approaches to leverage mono-
lingual data in translation in Section 2.1.1. These approaches address the problem by
leveraging data resources other than the limited parallel corpora. Sennrich et al. (2016b)
propose a method to back-translate sentences from monolingual data and augment the
bitext with the resulting pseudo-parallel corpora. While this approach is successful in
improving the translation quality, it is not effective in very low-resource settings where
the back-translation model cannot be trained to a sufficient level of quality (Abdulmu-
min et al., 2020). This approach is further discussed in Chapter 5. Currey et al. (2017)
create a parallel corpus from monolingual data in the target language by copying it so
that each source sentence is identical to its corresponding target sentence. With this
simple technique, they observe improvements on relatively low-resource language pairs
such as English<>Turkish and English<>Romanian.
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Re-designing the model These approaches target the model itself and propose changes
to the standard neural translation models (Costa-jussa and Fonollosa, 2016, Sennrich
et al., 2016¢). Ostling and Tiedemann (2017) propose to learn sentence reordering
during translation of low-resource language pairs by introducing more local dependen-
cies. They use word alignments to provide supervision to the reordering model. Lee
et al. (2017) introduce a fully character-level translation model that maps a character
sequence in a source language to a character sequence in a target language. They
observed significant improvements in the translation of morphologically rich languages
where the word-level NMT models fail to translate rare and out-of-vocabulary words.
Previous approaches which propose different segmentations of the input sequence are
effective; however, they present a different set of challenges: With longer sequences,
the model requires information to be retained over longer temporal spans. Moreover,
since the meaning of a word is not a compositional function of its characters, the model
must learn to memorize many character sequences as higher-level linguistic abstractions.
(Cherry et al., 2018).

Cross-lingual transfer learning These strategies use models trained on high-resource
language pairs to transfer various parameters and components to the low-resource lan-
guage pair. Zoph et al. (2016) propose to train a high-resource language pair first
and then transfer some of the learned parameters to the low-resource pair to initialize
and constrain training. Gu et al. (2018a) show that sharing lexical and sentence-level
representations across multiple source languages aid in the translation of low-resource
languages. They also use monolingual embeddings along with seed parallel data from all
languages to build a universal representation. Cross-lingual approaches are particularly
valuable for multilingual translation learning, where a single NMT model learns to
translate between multiple languages (Firat et al., 2016, Johnson et al., 2017, Black-
wood et al., 2018, Aharoni et al., 2019). While these approaches are very impressive
in translating between language pairs not seen during training, this paradigm cannot
outperform the individual models trained on bilingual corpus in many cases (Johnson
etal., 2017).

Unsupervised learning These studies focus on zero-resource learning, where there
are no parallel corpora available for a language pair (Yang et al., 2018, Artetxe et al.,
2018a,b, 2019). Lample et al. (2018a) propose a model that takes sentences from
monolingual data in two different languages and maps them into the same latent space.
The model learns to translate without using any parallel data by reconstructing both
languages from the shared feature space. Lample et al. (2018b) address the challenge of
only having access to monolingual corpora in each language. They use a smoothed n-
gram language model (phrase-based model) as a data-driven prior to denoising sentences
and automatically generate the parallel data by iterative back-translation (neural model).
These approaches are effective; however, the pseudo sentences used for training are
usually of low quality as translation mistakes accumulate during training. Additionally,
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while they perform well between languages that are from the same branch, they perform
poorly between distant languages (Sun et al., 2020).

4.3 Data augmentation for rare words

In this section, we propose a novel approach for data augmentation of parallel corpora.
Specifically, we use a Bidirectional RNN model trained on monolingual data to introduce
completely new contexts for rare words in the bitext. In our approach we use sentences
from the training data as starting points and use the probability distribution of the output
layer of an RNN to insert words into new contexts: Given a source and target sentence
pair (S,T'), we want to alter it in a way that we obtain new contexts for these words
while diversifying as much as possible the training examples. A number of ways to do
this can be envisaged, as for example paraphrasing (parts of) S or 7', or altering both
and preserve the semantic equivalence between S and 7". We explore both approaches
in this chapter.

We choose to focus on a subset of the vocabulary that we know to be poorly modeled
by our baseline NMT system, namely words that occur rarely in the parallel corpus.
Thus, the goal of our data augmentation technique is to provide novel contexts for rare
words. To achieve this we search for contexts where a common word can be replaced
by a rare word and consequently replace its corresponding word in the other language
by that rare word’s translation:

original pair augmented pair
/ /
S 81,y SiyeneySn S S,y Shy ey Sn
! !
T:tl,...,t]',...,tm T:tl,...,t]-,...,tm

where t; is a translation of s; and word-aligned to s;, and t; is the translation of s/.
Plausible substitutions are those that result in a fluent and grammatical sentence but do
not necessarily maintain its semantic content. As an example, the rare word motorbike
can be substituted in different contexts:

Sentence [original \substituted] Plausible

My sister drives a [car \motorbike] yes
My uncle sold his [house \motorbike] | yes

Alice waters the [plant \motorbike] no (semantics)

John bought two [shirts \motorbike] no (syntax)

Implausible substitutions need to be ruled out during data augmentation. To this end,
rather than relying on linguistic resources which are not available for many languages,
we rely on LSTM language models (LM) trained on large amounts of monolingual data
in both forward and backward directions.

Our data augmentation method involves the following steps:

58



4.3. Data augmentation for rare words

Targeted words selection: Following common practice, our NMT system limits its
vocabulary V' to the v most common words observed in the training corpus. We select
the words in V' that have fewer than R occurrences and use this as our targeted rare
word list Vg.

Rare word substitution: If the LM suggests a rare substitution in a particular context,
we replace that word and add the new sentence to the training data. Formally, given a
sentence pair (S, 7") and a position 4 in S, we compute the probability distribution over
V by the forward and backward LMs and select rare word substitutions C as follows:

7 = {5; € VR : tOpI< PForwardLMs (5;, ‘ Sli_l)} (41)
(5 = {3; € VR . tOPK PBackwardLMs (S{L ‘ Si;rl)} (42)
C:{s;\s;eﬁ/\sgeﬁ} 4.3)

where s{ are context words from position ¢ to j and topK returns the K words with
highest conditional probability according to the context. The selected substitutions s/,
are used to replace the original word and generate a new sentence.

Translation selection: Using automatic word alignments' trained over the bitext, we
replace the translation of word s; in T by the translation of its substitution s}. Following
a common practice in statistical MT (Koehn et al., 2007), the optimal translation t; is
chosen by multiplying direct and inverse lexical translation probabilities with the LM
probabilities of the translation in context:

ti = argmax P(s] | t)P(t | 57) Prorwardrm (t | ) Poactwaraumy (E | £271) (4.4)

tetrans(s’;)

If no translation candidate is found because the word is unaligned or because the
language model probability is less than a certain threshold, the augmented sentence is
discarded. This reduces the risk of generating sentence pairs that are semantically or
syntactically incorrect.

We use the described steps of targeting and substituting words in source and target
sentences to augment the training data:

Sampling: We loop over the original parallel corpus multiple times, sampling substi-
tution positions ¢ in each sentence and making sure that each rare word gets augmented
at most NV times so that a large number of rare words can be affected. We stop when no
new sentences are generated in one pass over the training data.

'We use fast-align (Dyer et al., 2013) to extract word alignments and a bilingual lexicon with lexical
translation probabilities from the low-resource bitext.
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Augmentation: Assuming the original parallel data is D, our data augmentation
process can be represented by the following mapping:

6:D— A 4.5)

where A is the modified set with new contexts for rare words built from sentence pairs
in D. Note that some sentences in D may not be augmented because of the randomness
of the sampling step and shortage of substitution suggestions from the language model.
As the final step, the training data is expanded as the union of the original data and the
augmented data:

D'=DuA (4.6)

Our proposed method is demonstrated in Figure 4.2 with an example: Given the
English sentence ‘I had been told that you would not be speaking today.”, we randomly
sample the position of the word ‘nor’ and explore the suggestions of the language
model that fit the context. We select the word ‘voluntarily’ because it is a rare word
in the low-resource setting of our experiments and the English language model has
high confidence in substituting it in the sentence. Correspondingly, we explore the
translation candidates of the word ‘voluntarily’ to make comparable changes to the
German sentence. From the translation candidates, we choose the word that yields the

- ungefragt
LM probability [ | — - ffeIWI//Ig
threshold
® Ve H t70/ﬂé(é )

“voluntarlly”

Oo-o-0—-4O 4000 ] O
(I e W e I o—O-0-0—0—480-0

id been told that you would not be speaking today
mir wurde signalisiert , sie wirden heute nicht sprechen

D{ {] ]
1 L

|
oo | (H HT

“freiwillig”

Figure 4.2: A visual representation of our proposed mechanism for generating new
sentence pairs.
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most fluent sentence according to the German language model. Therefore the word
‘freiwillig’ is selected to substitute ‘nicht’ in the German sentence. The newly generated
sentence pairs are then added to the training data.

Table 4.1 provides several examples resulting from our augmentation procedure.
While using a large LM to substitute words with rare words mostly results in grammatical
sentences, this does not mean that the meaning of the original sentence is always
preserved. Note that meaning preservation is not an objective of the proposed approach
in this section and we will explore this further in Section 4.7.

Table 4.1: Examples of augmented data with highlighted Original words and substi-
tuted words.

Original sentence pair

Synthetic sentence pair

(a) SRC: I had been told that you would not ~ SRC: I had been told that you would vol-
be speaking today. untarily be speaking today.

TGT: mir wurde signalisiert, sie wiirden ~ TGT: mir wurde signalisiert, sie wiirden
heute nicht sprechen. heute freiwillig sprechen.

(b)  SRC: the present situation is indefensible =~ SRC: the present situation is confusing
and completely unacceptable to the com-  and completely unacceptable to the com-
mission. mission.

TGT: die situation sei unhaltbar und fiir =~ TGT: die situation sei verwirrend und fiir
die kommission ginzlich unannehmbar. die kommission génzlich unannehmbar.

(c)  SRC: ...agree wholeheartedly with the  SRC: ...agree wholeheartedly with the
institution of an ad hoc delegation of par-  institution of an ad hoc delegation of par-
liament on the turkish prison system. liament on the turkish missile system.
TGT: ...ad-hoc delegation des parla- TGT: ...ad-hoc delegation des parla-
ments fiir das regime in den tiirkischen = ments fiir das regime in den tiirkischen
gefidngnissen voll und ganz zustimmen. flugwaffen voll und ganz zustimmen.

(d)  SRC: cancellation fees are not subjectto ~ SRC: cancellation fees are generally sub-

judiciary mitigation.
TGT: stornogebiihren unterliegen nicht
dem richterlichen méBigungsrecht.

ject to western mitigation.

TGT: stornogebiihren unterliegen allge-
mein dem westlichen méBigungsrecht.

In our experiments, two translation data augmentation (TDA) setups are considered:
only one word per sentence can be replaced (TDA,_;) or multiple words per sentence
can be replaced, with the condition that any two replaced words are at least five positions
apart (TDA,>1). The latter incurs a higher risk of introducing noisy sentences but has
the potential to positively affect more rare words within the same amount of augmented
data. We evaluate both setups in the following section.
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4.4 Data and experimental setup

In this section, we describe the experimental settings. To simulate a low-resource setting
we randomly sample 10% of the English—German WMT15 training data and report
results on newstest 2014, 2015, and 2016 (Bojar et al., 2016). For reference, we also
provide the result of our baseline system on the full data.

As NMT system, we use a 4-layer attention-based encoder-decoder model as de-
scribed in Section 2.4 trained with hidden dimension 1000, and batch size 80 for 20
epochs. NMT models often limit their vocabularies to be the top K most frequent words
in each language because of the computationally intensive nature of the softmax. In
all experiments, the NMT vocabulary is limited to the 30K most common words in
both languages. Note that our proposed data augmentation method does not introduce
new words to the vocabulary. In all experiments, we preprocess source and target
language data with Byte Pair Encoding (BPE) (Sennrich et al., 2016¢) using 30K merge
operations. In the non-label-preserving augmentation experiments, BPE is performed
after data augmentation.

For the LMs needed for data augmentation, we train 2-layer LSTM networks in
forward and backward directions on the monolingual data provided for the same task
(3.5B and 0.9B tokens in English and German, respectively) with embedding size 64
and hidden size 128. We set the rare word threshold R to 100, and top K words to 1000.
These values are determined heuristically from the training data. Another question we
want to investigate is whether rare word substitution is more effective in the source
or the target language. Therefore in the experiments, we augment the source side in
English—German, and target side in German— English translation. In all experiments,
we use the English LM for the rare word substitutions. Since our first approach is not
label-preserving, we only perform augmentation during training and do not alter source
sentences during testing. In Section 4.7, we also alter source sentences during testing
while preserving labels.

We also compare our approach to Sennrich et al. (2016b) by back-translating
monolingual data and adding it to the parallel training data. Specifically, we back-
translate sentences from the target side that are not included in our low-resource baseline
with two settings: keeping a one-to-one ratio of back-translated versus original data
(1 : 1) following the authors’ suggestion, or using three times more back-translated
data (1 : 3). We measure translation quality by single-reference case-insensitive BLEU
(Papineni et al., 2002) computed with the multi-bleu.perl script from Moses.

45 Results

In this section, we discuss the results on the translation task and evaluate the effec-
tiveness of our approach in a simulated low-resource NMT scenario. We repeat the
sampling and substitution step iteratively until we reach the desired corpus size for each
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Table 4.2: Translation performance (BLEU) on German-English WMT test sets (2014,
2015, and 2016) in a simulated low-resource setting. Back-translation refers to the work
of Sennrich et al. (2016b). Statistically significant improvements are marked * at the
p < .01 and * at the p < .05 level, with the first superscript referring to baseline and
the second to back-translation..

De-En
Model Data WMT14 WMTI15 WMT16
Full data (ceiling) 3.9M 21.1 22.0 26.9
Baseline 371K 10.6 11.3 13.1

Back-translation;.; 731K 11.4 (+0.8)* 122 (+0.9)* 14.6 (+1.5*
Back-translation;.3 1.5M 11.2 (+0.6) 112 (-0.1) 13.3 (+0.2)

TDA,—1 45M 119 (+1.3)*" 134 *2.D)%* 152 +2.D)**
TDA,>1 6M  12.6 (+2.00** 13.7 (+2.4)** 154 (+2.3)*
Oversampling 6M 119 +1.3)* 129 (*1.6)° 150 (+1.9*"

Table 4.3: Translation performance (BLEU) on English-German WMT test sets (2014,
2015, and 2016) in a simulated low-resource setting. Back-translation refers to the work
of Sennrich et al. (2016b). Statistically significant improvements are marked * at the
p < .01 and © at the p < .05 level, with the first superscript referring to baseline and
the second to back-translation;.;.

En-De
Model Data WMT14 WMT15 WMT16
Full data (ceiling) 3.9M 17.0 18.5 21.7
Baseline 371K 8.2 9.2 11.0

Back-translation;.; 731K 9.0  (+0.8)* 104 (+1.2)* 120 (+1.0)*
Back-translationy.3 1.5M 7.8  (-0.4) 94 (+0.2) 10.7 (-0.3)

TDA, -1 45M 104 +#2.2)%* 112 (+2.00%* 13.5 (+2.5%*
TDA,>1 6M 107 (+2.5** 115 (+2.3)* 139 2.9**
Oversampling 6M 9.7 (+1.5%* 10.7 (+1.5* 12.6 (+1.6)*"
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experiment. In our various experiments, we successfully augment between 72% to 81%
of targeted rare words. All translation results are displayed in Table 4.2 and Table 4.3
for German— English and English—German experiments, respectively.

First, we observe that the low-resource baseline performs much worse than the full
data system, re-iterating the importance of sizable training data for NMT. Next, we
observe that both back-translation and our proposed TDA method significantly improve
translation quality. However, TDA obtains the best results overall and significantly
outperforms back-translation for all test sets. This is an important finding considering
that our method involves only minor modifications to the original training sentences and
does not involve any costly translation process, while the back-translation approach aug-
ments with novel target sentences. Improvements are consistent across both translation
directions, regardless of whether rare word substitutions are applied to the source or
to the target side. We also observe that altering multiple words in a sentence performs
slightly better than altering only one word. This indicates that addressing more rare
words is preferable even though the augmented sentences are more likely to be noisy.

To verify that the gains are actually due to the rare word substitutions and not
just to the repetition of part of the training data, we perform a final experiment where
each sentence pair selected for augmentation is added to the training data unchanged
(Oversampling row in Tables 4.2 and 4.3). Surprisingly, we find that this simple form
of sampled data replication outperforms both baseline and back-translation systems,>
while TDA _ | remains the best performing system overall.

Table 4.4: Average length of German—English translation systems, along with the
average length of human reference translations (bottom line). Predominantly, we favour
longer translations that are close to human reference translations, i.e., models with
higher % Ref ratio.

De-En
WMT14 WMT15 WMT16 %Ref

Baseline 19.9 19.2 19.9 0.88
TDA, -1 21.4 20.4 21.2 0.94
TDA,>1 21.0 20.0 20.8 0.92
Reference 23.0 22.2 21.9 1.00

We also observe that the system trained on our augmented data tends to generate
longer translations, which is favoured. Tables 4.4 and 4.5 provide the average length
of the translation outputs of different systems, along with the average length of human
reference translations. Averaging over all test sets and language pairs, the length of
translations generated by the baseline is 0.89 of the average reference length, while for
TDA,_, and TDA _, itis 0.94 and 0.93, respectively. We attribute this effect to the

r=1

2Note that this effect cannot be achieved by simply continuing the baseline training for up to 50 epochs.
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Table 4.5: Average length of English—German translation systems, along with the
average length of human reference translations (bottom line). Predominantly, we favour
longer translations that are close to human reference translations, i.e., models with
higher % Ref ratio.

En-De
WMT14 WMT15 WMT16 %Ref

Baseline 19.8 19.4 18.9 0.91
TDA, - 20.5 20.2 19.9 0.95
TDA,>1 20.7 20.0 19.8 0.95

Reference 21.4 20.8 21.6 1.00

ability of the TDA-trained system to generate translations for rare words that were left
untranslated by the baseline system.

4.6 Further analysis

In this section, we further analyze our findings and discuss the results of our proposed
models. Our goal is to understand the impact of the introduced diverse contexts on the
learning capabilities of the neural translation model.

4.6.1 Target words

A desired effect of our method is to increase the number of correct rare words generated
by the NMT system at test time. To illustrate the impact of augmenting the training data
by creating contexts for rare words on the rarget side, Table 4.6 provides an example
for German— English translation.

We see that the baseline model is not able to generate the rare word ‘centimetres’ as
a correct translation of the German word ‘zentimeter’. However, this word is not rare in
the training data of the TDA _, model after our augmentation and is generated during
translation. Table 4.6 also provides several instances of augmented training sentences
targeting the word ‘centimetres’. Note that even though some augmented sentences are
rather unusual (e.g., ‘the speed limit is five centimetres per hour’), the NMT system still
benefits from the new context for the rare word and is able to generate it during testing.

Figure 4.3 demonstrates that this is indeed the case for many words: the number of
rare words occurring in the reference translation (Vg N V;.c¢) is three times larger in the
TDA system output than in the baseline output. One can also see that this increase is a
direct effect of TDA as most of the rare words are not ‘rare’ anymore in the augmented
data, i.e., they were augmented sufficiently often to occur more than 100 times (see
the hatched pattern in Figure 4.3). Note that in our experiments, we did not use any
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4.6. Further analysis

baseline s
TDA g
baseline b
TDA g
baseline °
TDA g

1,000 2,000 3,000

& Words in Vg n V.. generated during translation
B Words in Vg N V,..¢ not generated during translation

Words in Vg n Vs affected by augmentation

Figure 4.3: Effect of TDA on the number of unique rare words generated during
De—En translation. Vg is the set of rare words targeted by TDA _, and Vs the
reference translation vocabulary.

r=1

information from the evaluation sets.

4.6.2 Source words

To gauge the impact of augmenting the contexts for rare words on the source side, we
examine normalized attention scores of these words before and after augmentation.
When translating English—German with our TDA model, the attention scores for rare
words on the source side are on average 8.8% higher than when translating with the
baseline model. This suggests that having more accurate representations of rare words
increases the model’s confidence to attend to these words when encountered during test
time.

4.6.3 Negative examples

Table 4.7 provides examples of cases where augmentation results in incorrect sentences.
In the first example, the sentence is ungrammatical after substitution (‘of / yearly’),
which can be the result of choosing substitutions with low probabilities from the English
LM topK suggestions.

Errors can also occur during translation selection, as in the second example where
‘betraut’ is an acceptable translation of ‘entrusted’ but would require a rephrasing of the
German sentence to be grammatically correct. Problems of this kind can be attributed
to the German LM, but also to the lack of a more suitable translation in the lexicon
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4.7. Meaning-Preserving augmentation

extracted from the bitext. Interestingly, this noise seems to affect NMT only to a limited
extent.

4.6.4 Word segmentation

BPE (Sennrich et al., 2016c¢) is an essential preprocessing step in NMT to address the
problem of rare and unknown words in the training data and we use it in all experiments.
Although crucial, it is not very effective in a low-resource setting (Ngo et al., 2019). We
suspect that this is caused by the scarcity of data, which results in inaccurate word splits
with possibly rare subword units. This can be observed in the example in Table 4.6. In
the experiments, the English and German words ‘centi|metres’ and ‘zenti|meter’ are
both split into two subword units. Still, the baseline model fails to translate it correctly.
This further stresses the importance of data augmentation with diverse contexts. Even
though BPE segmentation is successful in rare word translations, our proposed approach
yields additional improvements.

4.7 Meaning-Preserving augmentation

In the previous section, we proposed a model with a weak notion of label preservation
that allows modifying both source and target sentences at the same time as long as they
remain translations of each other. As a result, we alter and augment the training data,
and the test data remains unchanged. This approach improves translation quality by
better translating rare words because of the additional contexts during training. However,
it does not address the problem of translating out-of-vocabulary (OOV) words during
testing. To specifically target OOV words at test time, we propose a stronger notion of
label preservation to only alter source sentences with paraphrases. Note that at test time,
we only have access to source sentences and keep the reference sentences unchanged.
In this section, we investigate how we can benefit from external lexical resources
to address the problem of translating unknown words. We define OOV as words not
listed in the 30k most common words in source and target vocabulary. While BPE is
an effective approach in addressing the OOV translation problem, we do not use it in
these experiments. To benefit from external knowledge resources, we substitute OOVs
with synonym words obtained from these resources that exist in our vocabulary. We
experiment with three different resources to alter source sentences with paraphrases:

PPDB proposed by Ganitkevitch et al. (2013). This Paraphrase Database is an au-
tomatically extracted database from parallel corpora containing millions of paraphrases
in multiple languages.

Wordnet proposed by Miller (1995). WordNet is a manually created large lexical
database of English and includes relations between words and groups of cognitive
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synonyms. We use GermaNet (Hamp and Feldweg, 1997, Henrich and Hinrichs, 2010)
which is a lexical-semantic resource similar to Wordnet for the German language.

CBOW embeddings proposed by Mikolov et al. (2013b). We use the Continuous
Bag of Words (CBOW) model to identify the words most similar to each OOV word
and interpret that as the synonym.

HTLE embeddings proposed in Chapter 3. We use the multiple topic-sensitive
representations per word to identify synonyms according to the context of the word. In
contrast to the previous resources, this method provides context-sensitive synonyms
which means the same word in different contexts has different synonym substitutions.

We substitute the OOV words in source sentences with synonyms that already exist
in the NMT vocabulary. An example of the substitution is shown in Table 4.8 where
the original word ‘fateful’ is OOV and is replaced by the unk symbol in the original
training data. Each paraphrase resource suggests a substitution for the target word in
the sentence. We also experiment with targeting low-frequency words in the test data.
Similar to OOVs, we substitute words that are rare in our training data (frequencies less
than 100) with synonyms during test time.

original src  He said Lamb made the fateful 911 call sometime after that.
NMT input  He said Lamb made the [unk] 911 call sometime after that.

+PPDB He said Lamb made the disastrous 911 call sometime after that.
+Wordnet He said Lamb made the fatal 911 call sometime after that.
+CBOW He said Lamb made the tragic 911 call sometime after that.
+HTLE He said Lamb made the critical 911 call sometime after that.

Table 4.8: Examples of paraphrase modification. The out-of-vocabulary word fateful
in the source sentence is substituted with synonyms obtained from different lexicon
resources.

Tables 4.9 and 4.10 provide the results for the translation of German— English
and English—German, respectively. Note that the HTLE embeddings are available
only in English and so we only use this approach in the English—German translation
experiments to augment English sentences on the source side. Overall the results show
improvements over the baseline. BLEU scores using PPDB and Wordnet are very
similar for all experiments. Improvements using CBOW and HTLE are also similar,
however, HTLE is the most effective method out of the four approaches. This indicates,
to a certain degree, the importance of context-aware substitutions in data augmentation.

Finally, we look into the rate a neural model generates the unk symbol before and
after augmentation. When a source sentence contains several rare and OOV words,
the translation model tends to use the unk symbol to represent these words. As a
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Table 4.9: Translation performance (BLEU) on German-English WMT news test sets
(2014, 2015, and 2016). OOV signifies out-of-vocabulary words. rare words are
selected with the frequency threshold of 100.

De-En
Model +lexical DB  Target WMT14 WMT15 WMT16
Baseline 19.3 20.1 24.9
PPDB ooV 21.2 22.2 26.9
Subs GermaNet ooV 20.3 21.9 25.2
CBOW ooV 21.2 22.4 27.0
PPDB OOV + rare 21.3 22.3 26.9
Subs GermaNet OOV + rare 20.5 22.0 254
CBOW OOV + rare 21.4 22.5 27.2

Table 4.10: Translation performance (BLEU) on English-German WMT news test
sets (2014, 2015, and 2016). OOV signifies out-of-vocabulary words. rare words are
selected with the frequency threshold of 100.

En-De
Model  +lexical DB Target WMT14 WMT15 WMTI16
Baseline 15.9 17.6 20.0
PPDB ooV 17.2 18.5 21.8
Subs Wordnet ooV 17.2 18.5 21.7
CBOW ooV 17.3 18.6 22.0
HTLE ooV 17.5 18.6 22.2
PPDB OOV + rare 17.2 18.7 21.9
Subs Wordnet OO0V + rare 17.1 18.5 21.8
CBOW OOV + rare 17.4 18.7 22.2
HTLE OOV + rare 17.9 19.1 22.5

result, the model performs poorly and produces several unk symbols in the translation
output. We investigate the fluency of the translation outputs by observing the rate of the
generation of the unk symbol. We observe that in our experiments the number of unk
symbols generated in the translation output drops. Table 4.11 provides statistics on the
generation of unk token. Surprisingly, the significant differences in the number of unk
symbols in the translation outputs are not entirely reflected in the BLEU scores.
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Table 4.11: The impact of paraphrase augmentation on the generation of unk tokens in
the translation output. Reductions are computed in comparison with the baseline model.
Lower number of unks is better.

‘Baseline ‘ PPDB Wordnet CBOW HTLE

Number of unks 4931 4851 4857 3018 3003
Reduction in number of unks - 1.62% 1.5% 38.8% 39.1%

4.8 Conclusion

In this chapter, we investigated the impact of diverse contexts on the translation of
rare words. The quality of an NMT system depends substantially on the availability
of sizable parallel corpora, which is only available for a limited number of languages
and domains. The translation is particularly erroneous for low-frequency words; with
only a few instances in the training data, the model has difficulties learning to translate
these words. While the challenges of translating low-resource language pairs have
been studied extensively, the impact of artificially generated contexts on the translation
quality of words has hardly been studied. We addressed this issue in this chapter and
investigated the effect of additional context in learning word translations, by asking:

RQ2.1 How can we successfully augment the training data with diverse contexts for
rare words?

Our experiments showed that by providing more diverse contexts for rare words,
we improve the estimation of the model and subsequently increase the number
of times the model generates these words correctly. We have proposed an ef-
fective approach to augment the training data of neural machine translation for
low-resource language pairs. We generated new sentence pairs containing rare
words in new contexts by leveraging language models trained on large amounts of
monolingual data. Our approach augments the data by diversifying the sentences
of the parallel corpora, changing both source and target sentences. We showed that
this approach leads to generating rare words more often during translation and thus
improves translation quality. We observed substantial improvements in simulated
low-resource English—German and German—English settings.

Having observed the impact of additional training data on the translation of rare
words, we looked into how we can perform augmentation during testing and asked:

RQ2.2 Do rare words benefit from augmentation via paraphrasing during test time?

To answer this question, we first explained why our previously proposed method is
not viable at test time. We do not have access to the reference translations during
inference and as a result we only accept alterations to the source sentence that
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keep the meaning of the sentence unchanged. We introduced a substitution method
to replace both rare and out-of-vocabulary words in the source sentences with
their paraphrases, using several knowledge resources. We gained improvements
in BLEU scores over the baselines. However more interestingly, we significantly
reduced the number of unk in the target output.

In summary, our extensive studies of the rare word translation challenge partially
answered the following question:

Research Question 2: How is the translation quality of a word influenced by the
availability of diverse contexts?

To answer this question, we examined the effect of the availability of data, and rare
words in particular, on translation quality. We found that translating and generating rare
words is a challenging task for NMT models. With the proposed data augmentation
approach, we diversified and increased the contexts of rare words. We improved the
translation quality by augmenting the data with these new sentence pairs.

In this chapter, we looked into the long tail of words where statistical models have
difficulties learning. We continue our investigation into this question in the next chapter
by examining whether the trained model itself can identify words that will benefit from
the addition of diverse contexts.
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Data Augmentation Based on Model
Failure

5.1 Introduction and research questions

In the previous chapter, we have observed that the availability of large-scale training data
is essential for sequence-to-sequence neural models to achieve good translation quality.
We have shown that neural machine translation models benefit from data augmentation
for rare words. By using a combination of parallel and synthetic data, neural models
learn to translate more effectively. In this chapter, we study a more general approach to
augmentation by identifying and targeting words that are most difficult to learn by the
model.

Previous approaches have focused on leveraging monolingual data, which is avail-
able in much larger quantities than parallel data (Lambert et al., 2011). Sennrich et al.
(2016b) proposed back-translation of monolingual target sentences to the source lan-
guage and adding the synthetic sentences to the parallel data (discussed in Section 2.1.1).
In this approach, a reverse model trained on parallel data is used to translate sentences
randomly sampled from target-side monolingual data into the source language. This
synthetic parallel data is then used in combination with the actual parallel data to re-train
the model. This approach yields state-of-the-art results even when large amounts of
parallel data are already available and has become common practice in NMT (Sennrich
et al., 2017, Garcia-Martinez et al., 2017, Ha et al., 2017). Generally speaking, back-
translation mitigates the problem of overfitting and fluency by exploiting additional data
in the target language (Sennrich et al., 2016b).

An important question for this technique is how to select the monolingual data in
the target language that is to be back-translated into the source language in order to
obtain the best possible translation quality. Earlier studies have explored to what extent
data selection of parallel corpora can benefit translation quality (Axelrod et al., 2011,
van der Wees et al., 2017), but such selection techniques have not been investigated in
the specific context of back-translation.
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Motivated by the success of back-translation in NMT, we investigate in this chapter
whether back-translation can benefit from a more insightful data selection approach, i.e.,
targeted sampling. In particular, we explore what words benefit from the generation
of additional context and how this information can help us develop more creative data
selection methods and improve translation quality. To this end, we ask:

Research Question 2: How is the translation quality of a word influenced by the
availability of diverse contexts?

We partially examined this research question in the previous chapter. In this chapter,
we investigate whether model failures are good indicators for choosing new contexts.
Methods similar to back-translation have a trained model at their disposal and use it
to generate new contexts. We conduct a series of analyses on the learning process of
neural translation models with synthetic data. Signals from a pre-trained model can
show us where the model is struggling, which can be beneficial in selecting data for
augmentation. So we ask:

RQ2.3 Do signals from the NMT model help identify low-confidence words that could
benefit from additional context?

We review the influence of additional contexts generated by the back-translation
approach on the learning process of NMT. Observing the loss function of the
model during training, we study the changes in the prediction of every word in
the vocabulary. Our findings show that it is mostly words that are difficult to
predict in the target language that benefit from additional back-translated data.
These low-confidence words have high prediction loss during training when the
translation model converges. Leveraging this information, we explore alternatives
to random sampling to specifically target these words, thus asking:

RQ2.4 How can we successfully apply data selection of monolingual data to diversify
the contexts of low-confidence words?

We propose alternatives to the random sampling approach with a focus on in-
creasing occurrences of low-confidence words in the training data. Our proposed
approach is twofold: (i) identifying difficult words and sampling to increase oc-
currences of these words, and (ii) identifying contexts in which these words are
difficult to predict and sample sentences similar to the difficult contexts. We then
analyze various ways of identifying difficult words and augmenting the training
data. Our investigations show that targeted sampling of monolingual data improves
the translation quality of NMT models compared to standard back-translation.

Organization. This chapter is organized as follows: In Section 5.2, we provide an
overview of existing work on data selection for machine translation. Next, in Section 5.3,
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we describe our data and experimental setup. We study different aspects of the back-
translation method in Section 5.4. In Section 5.5, we present a more in-depth analysis
of the impact of the new contexts generated by back-translation on the prediction power
of our NMT model. Next in Section 5.6, we propose a targeted sampling approach
for selecting new contexts for the training data. We also provide experimental results
and analyze the impact of different sampling methods. In Section 5.7, we propose an
alternative data selection approach with context-aware sampling and provide qualitative
results in Section 5.8. Finally, we discuss the conclusions and implications of this work
in Section 5.9.

5.2 Related work

In this section, we provide an overview of work related to this chapter on data selection
methods in MT.

5.2.1 Data selection in machine translation

Before the emergence of neural models, several previous studies in PBMT have focused
on choosing which portion of the parallel corpora to use for training (Moore and Lewis,
2010, Wang et al., 2013). For instance, Axelrod et al. (2011) computed cross-entropy
scores for sentence pairs using a 4-gram language model trained on a pseudo in-domain
corpus. They sorted the sentence pairs based on this criterion and augmented the training
data with the topK sentence pairs that are most relevant to the target domain.

With the development of neural models in machine translation, most works greedily
use all available training data for a given language pair. However, it is unlikely that
all data is equally useful for creating the best-performing system. Additionally, when
the domain of the training and testing data is different, it is essential to carefully select
the portion of the data that is most helpful for training. Various data selection methods
have been proposed to address the problem of domain adaptation in MT (Silva et al.,
2018, Wang et al., 2019a). These methods aim to reduce the model size and result
in shorter training times by using a subset of the available data while maintaining
high performance. For instance, van der Wees et al. (2017) introduced dynamic data
selection, where they vary the selected data subsets during each training epoch. The
ranking criteria are based on bilingual cross-entropy differences similar to Axelrod et al.
(2011). They significantly reduce the training data size by only using parts of the data
which are most relevant to the translation task at hand.

Poncelas et al. (2019a) use two transductive data selection methods, infrequent
n-gram recovery and feature decay algorithms, to select a subset of sentence pairs from
synthetic training data. This approach ensures that the selected sentence pairs share
n-grams with the test set. Poncelas et al. (2019b) investigate whether combining the two
paradigms of NMT and PBMT in generating synthetic data contributes to translation
quality. In their proposed approach, they randomly select source sentences from the

77



5. Data Augmentation Based on Model Failure

PBMT synthetic data and the NMT synthetic data with a one-to-one ratio. They show
that mixing PBMT and NMT back-translated data further improves over using each
type of data alone.

5.3 Data and experimental setup

In this chapter, we conduct several experiments to evaluate the impact of synthetic con-
text on translation quality. For the translation experiments, we use the English«<>German
WMT17 training data and report results on WMT news test sets 2014, 2015, 2016, and
2017 (Bojar et al., 2017). As NMT system, we use a 2-layer attention-based encoder-
decoder LSTM model described in Section 2.4 implemented in OpenNMT (Klein et al.,
2017). We train this model with embedding size 512, hidden dimension size 1024,
and batch size of 64 sentences. We preprocess the training data with joint Byte Pair
Encoding (BPE) using 32K merge operations (Sennrich et al., 2016c¢).

We compare the results to Sennrich et al. (2016b) by back-translating random
sentences from the monolingual data and combine them with the parallel training data.
To lessen the arbitrary effect of random sampling, we perform random selection and
re-training three times and report the averaged outcomes for the three models. In all
experiments, the sentence pairs are shuffled before each epoch. We measure translation
quality by single-reference case-sensitive BLEU (Papineni et al., 2002) computed with
themulti-bleu.perl script from Moses.

Impact of Size Impact of Direction Impact of Quality

(1:1) (1:2)

synthetic src synthetic tgt synthetic src ground truth
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Figure 5.1: Illustration of three set of experiments analyzing different impacts of
synthetic data as additional training data: size (left), direction (middle), and quality
(right).

5.4 Analyzing back-translation with random sampling

In this section, we investigate different aspects and modeling challenges of integrating
the back-translation method into the NMT pipeline. We are interested in investigating
the impact of synthetic data on translation quality with random sampling augmentation
(see Figure 5.1).
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5.4.1 Impact of synthetic data size

One selection criterion for using back-translation is the ratio of real to synthetic data.
Sennrich et al. (2016b) showed that higher ratios of synthetic data lead to decreases in
translation performance. In order to investigate whether improvements in translation
quality increase with higher ratios of synthetic data, we perform three experiments with
different sizes of synthetic data (see Figure 5.1: left). Figure 5.2 shows the perplexity as
a function of training time for different sizes of synthetic data.

—=— Synthetic data ratio (1:1)
—— Synthetic data ratio (1:4)

103 : : .
—e— Synthetic data ratio (1:10)

Perplexity
=
o
N

10!

0 200K 400K 600K 800K 1M 1.2M 1.4M
Training time (minibatches)

Figure 5.2: Training plots for systems with different ratios of (real : syn) training data,
showing perplexity on development set.

We find that all systems perform similarly in the beginning and converge after
observing increasingly more training instances. However, the model with the ratio
of (1:10) synthetic data becomes increasingly biased towards the noisy data after 1M
instances. Decreases in performance with more synthetic than real data is also in line
with findings of Poncelas et al. (2018). Comparing the systems using ratios of 1:1 and
1:4, we see that the latter achieves lower perplexity during training. Table 5.1 shows the
performance of these systems on the German—English translation task. The BLEU
scores show that the translation quality does not improve linearly with the size of the
synthetic data. The model trained on 1:4 real to synthetic ratio of training data achieves
the best results, however, the performance is close to the model trained on a ratio of 1:1.

Similar to the study in this section, Edunov et al. (2018) showed that it is possible
to achieve the best results with a large-scale model trained on a 1:50 ratio of real to

79



5. Data Augmentation Based on Model Failure

Table 5.1: German—English translation quality (BLEU) of systems with different
ratios of real:syn data.

Size WMT14 WMT15S WMT16 WMT17

Baseline 45M  26.7 27.6 32.5 28.1
+ synthetic (1:1) oM 28.7 29.7 36.3 30.8
+ synthetic (1:4)  23M 29.1 30.0 36.9 31.1

+ synthetic (1:10) 50M 22.8 23.6 29.2 23.9

synthetic data. However, it is crucial to upsample the real data during training so that
training batches contain on average an equal amount of real and synthetic data.

5.4.2 Impact of translation direction

Adding monolingual data in the target language to the training data has the potential
benefit of introducing new contexts and improving the fluency of the translation model.
The automatically generated translations in the source language introduce new contexts
for the source words and, despite not being perfect, improve the quality of the final
re-trained model.

Monolingual data is available in large quantities for many languages. The decision
of the direction of back-translation is subsequently not based on the monolingual data
available, but on the advantage of having more fluent source or target sentences.

Table 5.2: English—German translation quality (BLEU) of systems using forward and
reverse models for generating synthetic data.

Size  WMT14 WMT15 WMT16 WMT17

Baseline 45M 212 233 28.0 224
+ synthetic tgt  9M 224 253 29.8 23.7
+ synthetic scc  9IM 24.0 26.0 30.7 24.8

Lambert et al. (2011) showed that adding synthetic source and real target data
achieves improvements in traditional phrase-based machine translation. Similarly, in
previous works in NMT, back-translation is applied to monolingual data in the target
language. Zhang and Zong (2016) proposed a self-learning algorithm to generate
synthetic data from monolingual source sentences. During re-training, they distinguish
between real and synthetic data by freezing the parameters of the decoder for the
synthetic data.
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We perform a small experiment to compare the impact of translation direction and
where to incorporate monolingual data (see Figure 5.1: middle). Table 5.2 shows that in
both directions, the performance of the translation system improves over the baseline.
This is in contrast to the findings of Lambert et al. (2011) for PBMT systems where
they show that using synthetic target data does not lead to improvements in translation
quality.

Still, when back-translating target monolingual data, BLEU scores in the target
language are higher than when translating monolingual data in the source language.
This indicates the importance of having fluent sentences in the target language.

5.4.3 Impact of quality of the synthetic data

One selection criterion for back-translation is the quality of the synthetic data. Khayral-
lah and Koehn (2018) studied the effects of noise in the training data on a translation
model and discovered that NMT models are less robust to many types of noise than
PBMT models. In order for the NMT model to learn from the parallel data, the data
should be fluent and close to the manually generated translations. However, auto-
matically generating sentences using back-translation is not as accurate as manual
translations.

To investigate the oracle gap between the performance of manually created and
back-translated sentences, we perform a simple experiment using the existing parallel
training data (see Figure 5.1: right). In this experiment, we divide the parallel data into
two parts, train the reverse model on the first half of the data, and use this model to
back-translate the second half. The manually translated sentences of the second half are
considered as ground truth for the synthetic data.

Table 5.3 shows the BLEU scores of the experiments. As to be expected, re-training
with additional parallel data yields higher performance than re-training with additional
synthetic data. However, the differences between the BLEU scores of these two models
are surprisingly small. This indicates that performing back-translation with a reasonably

Table 5.3: German— English translation quality (BLEU) of systems using synthetic
source and human generated source data.

Size WMT14 WMT15 WMT16 WMT17

Baseline 225M 243 24.9 29.5 25.6
+ synthetic src  4.5M 26.0 26.9 32.2 27.5
+ ground truth  4.5M 26.7 27.6 325 28.1

good reverse model already achieves results that are close to a system that uses additional
manually translated data. This is in line with findings of Sennrich et al. (2016b) who
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observed that the same monolingual data translated with three translation systems of
different quality and used in re-training the translation model yields similar results.

5.5 Back-Translation and token prediction loss

In the previous section, we observed that using back-translated data yields almost the
same improvements as gold parallel data with the same target side. However, there is a
limit in learning from synthetic data, and with higher ratios of synthetic data the model
biases too much towards the synthetic data.

In this section, we investigate the influence of the sampled sentences on the model. In
Chapter 4, we showed that targeting specific words during data augmentation improves
the generation of these words in the right context. Specifically, adding synthetic
sentences containing those words to the training data has an impact on the prediction
probabilities of individual words. In this chapter, we further examine the effects of the
back-translated synthetic data on the prediction of target tokens.

As mentioned in Section 2, the objective function of training an NMT system is to
minimize £ by minimizing the prediction loss, —logp(y; | ¥ -4, Sn), for each target
token in the training data, where:

p(Yt | y<t,Sn) = softmax (Woﬁt) 5.1

Here, I~1t is the top hidden layer of the decoder and W, is the output weight matrix.
The addition of monolingual data in the target language improves the estimation of the
probability p(Y) and consequently, the model generates more fluent sentences.

Sennrich et al. (2016b) show that by using back-translation, the system with target-
side monolingual data reaches a lower perplexity on the development set. This is
expected since the domain of the monolingual data is news and therefore similar to the
domain of the development set. To investigate the model’s accuracy independently from
the domains of the data, we collect statistics of the target token prediction loss during
training.

Figure 5.3 shows the changes of token prediction loss when training is close to
converging and the weights are verging on being stable. The values are sorted in
decreasing order by the tokens’ mean prediction losses of the system trained on real
parallel data (before augmentation). We observe an effect similar to distributional
smoothing (Chen and Goodman, 1996): First, we observe that the prediction loss
increases slightly for most tokens (red). Next, we spot an irregular pattern in decrease of
prediction loss (blue). The largest decrease in loss occurs for tokens with high prediction
loss values when trained on the parallel data only. This indicates that by randomly
sampling sentences for back-translation, the model improves its estimation of tokens
that were originally more difficult to predict, i.e., tokens that had a high prediction loss.

Note that we compute the token prediction loss, without updating the weights, in

82



5.6. Targeted sampling based on model failure

w
o

N
o

10

Mean prediction loss

o

o

2.5K 5K 7.5K 10K 125K 15K 17.5K 20K

10M

=
o
o
~

Frequency
=
~

10

0 2.5K 5K 7.5K 10K 125K 15K 17.5K 20K
Token types (tgt) sorted in descending order by baseline prediction loss

Figure 5.3: Top: Changes in mean prediction loss after re-training with synthetic data
sorted by mean prediction loss of the baseline system (x-axis). Decreases and increases
in values are marked blue and red, respectively. Bottom: Frequencies (log) of target
tokens in the baseline training data. Note that data points in both plots (x-axis) represent
token types in the vocabulary.

just one pass over the training corpus with the final model and as a result, the loss is not
biased towards the order of presentation of the training sentences.

This finding motivates us to further explore sampling criteria for back-translation that
contribute considerably to the parameter estimation of the translation model. We propose
that by oversampling sentences containing difficult-to-predict tokens, we can maximize
the impact of using the monolingual data. After translating sentences containing such
tokens and including them in the training data, the model becomes more robust in
predicting these tokens. In the next two sections, we propose several methods of
using the target token prediction loss to identify the most beneficial sentences for
back-translation and re-training the translation model.

5.6 Targeted sampling based on model failure

One of the main benefits of using synthetic data is getting a better estimation of words
that were originally difficult to predict as measured by their high prediction losses during
training. In this section, we propose four variations of how to identify these words
and perform sampling to target these words. The first three variations are described
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5. Data Augmentation Based on Model Failure

in Algorithm 1 where the list of difficult tokens is defined in two different ways. The
third variation is described in Algorithm 2. The following subsections provide details of
these model variants.

Algorithm 1 Sampling for difficult words

Input: Difficult tokens ® = {y;}2,, monolingual corpus M, number
of required samples N

Output: Sampled sentences S = {S;}¥.; where each sentence S, is
sampled from M

1: procedure DIFFSAMPLING (D, M, N):

2 Initialize S = {}

3 repeat

4 Sample S, from M

5: for all tokens y in S. do if ye®
6 Add S.to S

7 until | S| = N

8 return S

5.6.1 Token frequency as a feature of difficulty

Figure 5.3 shows that the majority of tokens with high mean prediction losses have low
frequencies in the training data. Additionally, the majority of decreases in prediction
loss after adding synthetic sentence pairs to the training data occurs with less frequent
tokens. Note that these tokens are not necessarily rare and some of them may have
up to 1000 different occurrences in the training data. We observe in Figure 5.3 that
approximately half of the tokens in the target vocabulary benefit from back-translated
data.

We propose a sampling criterion based on token frequencies. Sampling new contexts
from monolingual data provides context diversity proportional to the token frequencies
and less frequent tokens benefit most from new contexts. Algorithm 1 presents this
approach where the list of difficult tokens is defined as:

D = {Vyi € Vi: freqys) < n} (5.2)

where V; is the target vocabulary and 7 is the frequency threshold for deciding on the
difficulty of the token.
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5.6. Targeted sampling based on model failure

5.6.2 Tokens with high mean prediction losses

In this approach, we use the mean losses to identify difficult-to-predict tokens. The
mean prediction loss ¢(y) of token y during training is defined as follows:

1 N YT
7722 log p(yy' [ yZ¢,8n)8 (vt y) (5.3)

where n, is the number of times token y is observed during training, i.e., the token
frequency of y, N is the number of sentences in the training data, |'Y™| is the length of
target sentence n, and d(y}", y) is the Kronecker delta function, which is 1 if 4] = y and
0 otherwise. By specifically providing more sentences for difficult words, we improve
the model’s estimation and decrease its prediction uncertainty.

Algorithm 1 presents this approach where the list of difficult tokens is defined as:
D = {Vyi € Vi: Ulys) > u} (5:4)

where V; is the vocabulary of the target language and  is the threshold for the difficulty
of the token.

5.6.3 Tokens with skewed prediction losses

By using the mean loss for target tokens as defined above, we do not discriminate
between differences in prediction loss for occurrences in different contexts. This lack of
discrimination can be problematic for tokens with high loss variations. For instance,
there can be a token with ten occurrences, out of which two have high and eight have
low prediction loss values.

We hypothesize that if a particular token is easier to predict in some contexts and
harder in others, the sampling strategy should be context-sensitive, allowing to target
specific contexts in which a token has a high prediction loss. In order to distinguish be-
tween tokens with a skewed and tokens with a more uniform prediction loss distribution,
we use both the mean and standard deviation of the token prediction losses to identify
difficult tokens. Hence, we target tokens that have both high mean prediction loss and
high amount of variation in different contexts. Algorithm 1 formalizes this approach
where the list of the difficult tokens is defined as:

D = {¥yi € Vi: L(yi) > p A o (Lys)) > p} (5.5)

where £(y;) is the mean and o ((y;)) is the standard deviation of prediction loss of
token y;, V; is the vocabulary list of the target language, and p and p are the thresholds
for deciding the difficulty of the token.
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5.6.4 Preserving sampling ratio of difficult occurrences

Above, we examined the mean of prediction loss for each token over all occurrences,
in order to identify difficult-to-predict tokens. However, the uncertainty of the model
in predicting a difficult token varies for different occurrences of the token: one token
can be easy to predict in one context, and hard in another. While the sampling step in
the previous approaches targets these tokens, it does not ensure that the distribution
of sampled sentences is similar to the distribution of problematic tokens in difficult
contexts.

Algorithm 2 Sampling with ratio preservation
Input: Difficult tokens and the corresponding sentences in the bitext
9 ={y;, Yy, =[v1,---,Yt,--.,Ym]}, monolingual corpus M,
number of required samples N
Output: Sampled sentences S = {S;}¥.; where each sentence S, is
sampled from M

procedure PREDLOSSRATIOSAMPLING(®, M, N):

Initialize S = {}
_ Nx|(e)em]
H(y) = =70, ey

1:

2

3

4 repeat

5: Sample S, from M
6 for all tokens y in S, do if |y e S| < H(y)
7 Add S.to S

8 until [S| = N

9 return S

To address this issue, we propose an approach where we consider the number of
times a token occurs in difficult-to-predict contexts and sample sentences accordingly,
thereby ensuring the same ratio as the distribution of difficult contexts. If token y; is
difficult to predict in two contexts and token ys is difficult to predict in four contexts, the
number of sampled sentences containing y- is double the number of sampled sentences
containing y;. Algorithm 2 formalizes this approach.

5.6.5 Results

We measure the translation quality of various models for German—English and English
— German translation tasks. As baseline we compare our approach to Sennrich et al.
(2016b). For all experiments we sample and back-translate sentences from WMT
monolingual data, keeping a one-to-one ratio of back-translated versus original data
(1:1). We set the hyperparameters u, p, and 1 to 5, 10, and 5000, respectively. The
values of the hyperparameters are chosen on a small sample of the parallel data based
on the token loss distribution.
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Figure 5.4: Examples of changes in average prediction loss after augmentation. Lower
is better. The sizes of dots are proportional to the increase in the number of contexts for
each word in the training data. Subword unit boundaries are marked with ‘@ @’.

Our proposed augmentation method increases instances of targeted words in the
training data which leads to an overall decrease in average prediction loss per token.
Figure 5.4 provides examples of tokens in the training data and their changes after data
augmentation. The results of the translation experiments are presented in Tables 5.4 and
5.5.

As expected using random sampling for back-translation improves the translation
quality over the baseline. However, each of the proposed targeted sampling tech-
niques outperforms random sampling. Specifically, the best performing model for
German—English uses the mean of prediction loss (MPL) for the target vocabulary to
frequently sample sentences including these tokens.

For the English—German experiments we obtain the best translation performance
when we preserve the prediction loss ratio during sampling. We also observe that
even though the model targeting tokens with skewed prediction loss distributions
(MPL + sPL) improves over random selection of sentences, it does not outperform
the model using only mean prediction losses. Note that frequency-based sampling, the
simplest method proposed in this chapter, is very effective. We observe that the gains of
other proposed approaches over frequency-based sampling are quite small. Therefore
using frequency-based sampling remains a good strategy to improve translation quality
over random sampling.
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Table 5.4: English—German translation quality (BLEU). Experiments marked T are
averaged over 3 runs. RANDOM is the standard back-translation approach with random
sampling. MPL and FREQ are difficulty criteria based on mean prediction loss and
token frequency, respectively. MPL + SPL is experiments with upsampling tokens
with skewed prediction losses. PPLR preserves the ratio of the distribution of difficult
contexts.

En-De

System WMT14 WMT15 WMT16 WMT17
BASELINET 21.2 23.3 28.0 224
RanDOMT 24.0 26.0 30.7 24.8
Difficulty criterion

FREQ 24.2 27.0 31.7 25.2
MPLT 24.7 26.8 31.5 25.5
MPL + sPL 24.1 26.9 31.0 25.3
PPLR 24.5 27.2 31.8 25.5

Table 5.5: German—English translation quality (BLEU). Experiments marked ' are
averaged over 3 runs. RANDOM is the standard back-translation approach with random
sampling. MPL and FREQ are difficulty criteria based on mean prediction loss and
token frequency, respectively. MPL + SPL is experiments with upsampling tokens
with skewed prediction losses. PPLR preserves the ratio of the distribution of difficult
contexts.

De-En

System WMT14 WMT15 WMT16 WMT17
BASELINE' 26.7 27.6 32.5 28.1
RANDOM' 28.7 29.7 36.3 30.8
Difficulty criterion

FREQ 29.7 30.5 37.5 31.4
MPLT 29.9 30.9 37.8 32.1
MPL + sPL 30.0 30.9 37.7 31.9
PPLR 29.8 30.9 37.4 31.6
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5.7. Context-Aware targeted sampling

5.7 Context-Aware targeted sampling

In the previous section, we proposed methods for identifying difficult-to-predict tokens
and performed targeted sampling from monolingual data. While the objective was to
increase the occurrences of difficult tokens, we ignored the context of these tokens in
the sampled sentences.

Arguably, if a word is difficult to predict in a given context, providing more examples
of the same or similar context can aid the learning process. In this section, we focus on
the context of difficult-to-predict words and aim to sample sentences that are similar
to the corresponding difficult context. We first identify difficult-to-predict words and
the local context where the prediction loss is high. Next, we sample sentences from the
monolingual data that contain a difficult-to-predict word. We then compare the context
of the difficult word in the sampled sentence and the initial difficult context and select
the sampled sentence if the contexts are similar. Finally, we back-translate the selected
sentences and augment the training data.

Algorithm 3 Sampling with context
Input: Difficult tokens and the corresponding sentences in the bitext
D ={y,Y,, =[v1,---,Ys,---,Ym]}, monolingual corpus M,
context function context, number of required samples N, similarity
threshold s
Output: Sampled sentences S = {S,}¥.; where each sentence S; is
sampled from M
1: procedure CONTEXTSAMPLING(®, M, context, N, s):
2 Initialize S = {}
3 repeat
4 Sample S, from M
5: for all tokens y; in S, do if y; € D
6
7
8
9

Cyn < context(S., index_of(S., y;))
for allY,, do

C), «— context(Yy,, index_of(Yy,,y.))
: if Sim(Cy,,C,) > s: Add S.to S
10: until |[S| = N
11: return S

The general algorithm is described in Algorithm 3. In the following sections, we
discuss different definitions of the local context (context function in line 6 and line 8)
and similarity measures (Sim function in line 9) in this algorithm and report the results.
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5. Data Augmentation Based on Model Failure

5.7.1 Definition of local context

Prediction loss is a function of the source sentence and the target context. We hypothe-
size that one of the reasons that a token has a high prediction loss in only some contexts
is because of the complexity of those contexts. This complexity can be caused by an
infrequent event such as a rare sense of the word, a domain that is different from other
occurrences of the word, or an idiomatic expression.

We identify pairs of tokens and sentences from parallel data where in each pair, the
NMT model suffers a high prediction loss for the token in the given context. Note that a
token can occur several times in this list since it can be considered as difficult-to-predict
in different sentences.

We propose two approaches to define the local context of a difficult token:

Neighboring tokens A straightforward way is to use positional context: tokens that
precede and follow the target token, typically in a window of w tokens to each side. For
sentence S containing a difficult token at index ¢, the context function in Algorithm 3 is:

context(S,i) = [S*v,..., 8" gt gt (5.6)

where S is the token at index j in sentence S. Note that in this approach, we look at
a window of fixed size and as a result, not all subwords from the same word may end
up in this context window. For instance for the sentence ‘a professor and a colleague
at Stan|ford’, with target word ‘colleague’, and w = 2, the context is [ ‘and’, ‘a’, ‘at’,
‘Stan’]. Here, the subword ‘ford’ as part of the word ‘Stanford’ is not included in the
context window. The symbol ‘|’ signifies subword unit boundary.

Sibling tokens In our analysis of prediction loss during training, we observe that
several tokens that are difficult to predict are indeed subword units. Current state-
of-the-art NMT systems apply BPE to the training data to address large vocabulary
challenges (Sennrich et al., 2016c). By using BPE, the model generalizes common
subword units towards what is more frequent in the training data. This is inherently
useful since it allows for better learning of less frequent words. However, a side effect
of this approach is that at times the model generates subword units that are not linked to
any words in the source sentence. As an example, in Table 5.6, the German source and
the English reference translation highlight this problem. The word ‘B|ahr’ consisting
of two subword units is incorrectly translated into ‘B|risk’ because of an unintended
side-effect of both sharing the subword unit ‘B’.

We address the insufficiency of the context for subword units with high prediction
losses by targeting these tokens in sentence sampling. Algorithm 3 formalizes this
approach in sampling sentences from the monolingual data. For a sentence .S containing
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a difficult subword at index 7, the context function is defined as:
context(S,i) = [S™,..., 8", S 8™ (5.7)

where every token S7 in the local context is a subword unit and part of the same word
as S°. Table 5.7 presents examples of sampled sentences for the difficult subword unit
‘Stan’. In this case, the difficult context for this token is ‘Stan|ford” and we use it for
computation of similarity. This suggests that the subword unit ‘Stan’ is difficult to
predict when the context is for the word ‘Stan|ford’. This excludes other contexts where
the subword unit ‘Stan’ is part of another word, such as ‘Stan|dard’.

Table 5.6: An example from the synthetic data where the word B|ahr is incorrectly
translated to B|risk. Subword unit boundaries are marked with ‘|’

source wer glaube, dass das Ende, sobald sie in Deutsch-
land ank|d|men, ir|re, erzihlt B|ahr.

reference if you think that this stops as soon as they arrive in
Germany, you’d be wrong, says B|ahr.

NMT output who believe that the end, as soon as they go to
Germany, tells B|risk.

Table 5.7: Results of context-aware targeted sampling with sibling tokens for the
difficult subword unit ‘Stan’. In this example, the difficult context in which the subword
‘Stan’ has a high prediction loss is the complete word ‘Stanford’ and we sample sentences
containing this word.

Sentence from bitext containing difficult token ‘Stan’

He attended Stan|ford University, where he double maj|ored in Spanish
and History.

Sampled sentences from monolingual data

The group is headed by Aar|on K|ush|ner, a Stan|ford University
gradu|ate who formerly headed a gre|eting card company.

Ford just opened a new R&D center near Stan|ford University, a hot|bed
of such technological research.

Joe Grund|fest, a professor and a colleague at Stan|ford Law School,
outlines four reasons why the path to the IP|O has become so steep for
asp|iring companies.
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5.7.2 Similarity of the local contexts

In context-aware targeted sampling, we compare the context of a sentence candidate
and the difficult context in the parallel data and select the sentence if they are similar.
In the following, we propose two approaches for measuring the similarities.

Matching the local context (Exct) In this approach, we aim to sample sentences
containing the difficult token matching the exact context to the problematic context. By
sampling sentences that match in a local window with the problematic context and differ
in the rest of the sentence, we have more instances of the difficult token for training.
Algorithm 3 formalizes this approach where the similarity function is defined as:

Sim(C,, C,) Z s(C (5.8)

Cp, and C), are the contexts of the sentences from monolingual and parallel data,
respectively, and ¢ is the number of tokens in the contexts. The § function returns 1
when C! and C; are the same token, and 0 otherwise.

Word representations (Sem) Another approach to sampling sentences that are simi-
lar to the problematic context is to weaken the matching assumption. Allowing sentences
that are similar in subject and not match the exact context words allows for lexical
diversity in the training data. We use embeddings obtained by training the Skipgram
model (Mikolov et al., 2013a) on monolingual data to calculate the similarity of the two
contexts. For this approach we define the similarity function in Algorithm 3 as:

Sim(Cyy,, Cp) = cos(v(Cp,), v(Cp)) (5.9)

where v(C},) and v(C)) are the averaged embeddings of the tokens in the contexts.
Table 5.8 gives examples of sampled sentences for the difficult word Rock. In this
example, the context where the word ‘Rock’ has high prediction loss is about the
music genre and not the most prominent sense of the word, sfone. Sampling sentences
that contain this word in this particular context provides an additional signal for the
translation model to improve parameter estimation.

5.7.3 Resulis

The results of the translation experiments are given in Tables 5.9 and 5.10 for German—
English and English—German, respectively. In these experiments, we set the hyperpa-
rameters s and w to 0.75 and 4, respectively. Comparing the experiments with different
similarity measures, Exct and Sem, we observe that in all test sets we achieve the best
results when using word embeddings. This indicates that for targeted sampling it is
more beneficial to have diversity in the context of difficult words as opposed to having

92



5.8. Qualitative results

Table 5.8: Results of context-aware targeted sampling for the difficult token ‘Rock’

Sentence from bitext containing difficult word

Bud|dy Hol|ly was part of the first group induc|ted into the
Rock and R|oll Hall of F|ame on its formation in 1986.

Sentences from monolingual data Similarity Sampled

A 2008 Rock and R|oll Hall of F|ame induc|t|ee, Mad|onna 0.86 v
is ran|ked by the Gu|inn|ess Book of World Rec|ords as the

top-selling recording artist of all time.

The winners were chosen by 500 voters, mostly musicians 0.81 v
and other music industry veter|ans, who belong to the Rock

and R|oll Hall of Flame Foundation.

The Rock and R|oll Hall of Fam|ers gave birth to the Califor-  0.79 4
nia rock sound.

After an ice cold San Miguel beer at the H|ard Rock Café 0.42 X
(Ay]ala Center) just enter the Bur|gos Street and enjoy the

different clubs.

See a play on Broad|way, enjoy stunning views from the Top 0.34 X

of the Rock, or spend the day at the Museum of Mo|dern Art,
all situated nearby.

The Library received the donations and endo|w|ments of 0.29 X
prominent individuals such as John D. Rock|efleller and
James B. Wil|b]ur.

the exact n-grams. When using embeddings as the similarity measure, it is worth noting
that with a context of size 4 the model performs very well but fails when we increase the
window size to include the whole sentence. The experiments focusing on tokens from
the same words (sibling tokens) achieve improvements over the baselines, however, they
perform slightly worse than the experiments using neighboring tokens as context.

The best BLEU scores are obtained with the mean of prediction loss as difficulty
criterion (MPL) and using word representations to identify the most similar contexts.
We observe that summarizing the distribution of the prediction losses by its mean is
more beneficial than using individual losses. Our results motivate further explorations
of using context for targeted sampling sentences for back-translation.

5.8 Qualitative results

Finally, we review our proposed approach and further investigate individual token losses.
We observed that the individual token loss, even after training converges, has a degree
of instability and for the same word, it varies from context to context. However, in our
experiments in the previous section, using local context to identify these difficult words
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was not very successful.

We look at some examples from the training data where individual token loss is
unstable in different contexts. Figure 5.5 illustrates several sentences from the training
data containing the subword ‘danger@ @’ and the respective prediction losses of the
trained model. The symbol ‘@ @’ signifies subword unit boundary. In all instances, this
subword unit is part of the word ‘dangerously’. All of the source sentences of these
examples include the same German translation, ‘gefdhrlich’, that corresponds to the
translation of this word. In this particular example, we see no clear indication in the
context of why the model’s confidence for the token ‘danger’ is considerably different
for different contexts.

but if it [is implemented , in 3 - 5 years Argentina wil
| look exactly like the country we have always known

a largely closed economy that remains danger@® ously vu
|

nerable to external sho@@ cks

in fact , it is much more = CENFEICGCHous!y more - than that
the situation has got EENFENIC@NMous!y worse in some regi
ons , particularly in Africa |, leve l
s that the pressing question of ability

Figure 5.5: Visualization of token prediction loss (final training epoch) for the subword
danger@@ in three different sentences. Darker means the model has less confidence
predicting the word. Subword unit boundaries are marked with ‘@ @’

Finally, we study the importance of the position of the token in the confidence of
the model. The prediction loss of the token ¢ in the target sentence is conditioned on

Sentence

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Position

Figure 5.6: Prediction losses of 1000 randomly sampled sentences of the same length
(20 tokens) from the training data. Darker means the model has less confidence predict-
ing the word.
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the source sentence and the target tokens generated up to the token in position 7. As a
result, words that occur later in the sentence have more contextual evidence than words
appearing earlier and this could lead to better prediction. We examine whether the
position of the token in the sentence is a notable factor in prediction loss values.

We randomly sample 1000 sentences of the same length (20 tokens) from the
training data and observe the confidence of the model in the prediction. Figure 5.6
shows the spread of prediction loss values in each position in the sentence. The only
distinct pattern we observe is that the last position has consistently low prediction loss.
This is expected since the end-of-sentence symbol always follows the end of sentence
markers, such as ‘., °I’, or ‘?”. We observe that the average loss values are slightly
higher for the first position (12% higher). However, other positions have very similar
average losses. We conclude that the position in the sentence is not a significant factor
in individual prediction losses.

5.9 Conclusion

Motivated by our observations in Chapter 4 that synthesizing new context is useful for
translation of rare words, we further explored in this chapter the impact of additional
contexts on the translation of words that are difficult to predict by the baseline model.
We asked:

RQ2.3 Do signals from the NMT model help identify low-confidence words that could
benefit from additional context?

In this chapter, we explored different aspects of the back-translation method to gain
a better understanding of its performance. Our analyses showed that the quality of
the synthetic data has a small impact on the effectiveness of back-translation once
there is sufficient training data available. However, the ratio of synthetic to real
training data plays a more critical role. When the ratio of synthetic to real data is
high, the model becomes biased towards noise in the synthetic data and the quality
decreases.

Next, we examined the NMT model and found that words with high prediction
losses after training benefit the most from additional back-translated data. While
individual prediction losses are not a distinctive factor in identifying difficult words
and same words in very similar contexts have high variance of prediction loss,
by averaging these values we can successfully spot difficult words. Our findings
showed that, when original model has a low confidence in predicting words, the
addition of contexts for those words to the training data increases the overall
accuracy of the model on the unseen test set.

Equipped with this information, we asked:
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RQ2.4 How can we successfully apply data selection of monolingual data to diversify
the contexts of low-confidence words?

As an alternative to random sampling target sentences for back-translation, we
proposed targeted sampling and specifically targeted words that are difficult to
predict. We found that data augmentation with the goal of increasing contexts for
difficult-to-predict words improved the translation quality in German«<English.
Interestingly, the proposed frequency-based sampling approach is a simple, yet
effective strategy that is hard to outperform. This indicates that signals from the
data distribution are on par with signals from the failures of the model.

This allows us to answer our more general question:

Research Question 2: How is the translation quality of a word influenced by the
availability of diverse contexts?

In this chapter, we continued our study on the influence of having diverse contexts on
translation quality. We found that translation quality improves when we diversify the
context of difficult words. We investigated the effective method of back-translation
for NMT and explored alternatives to the typically used random selection of target
sentences that are to be back-translated into the source language.

In Chapters 4 and 5, we studied the impact of the availability of data and why models
suffer from a lack of diverse contexts during training. We proposed two main data aug-
mentation approaches with multiple variants targeting different problems in translation.
Both approaches proposed in Chapters 4 and 5 lead to improvements in translation
quality.
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6.1 Introduction and research questions

In Chapter 3, we experimented with changing the scope of the context from sentence-
level to document-level to capture the meaning of ambiguous words. In Chapters 4 and
5, we demonstrated that added context significantly help translating rare and difficult
words. The next question we are interested in is which phenomena we still fail to
capture with current approaches to using contexts. Neural machine translation has
achieved substantial improvements in translation of different linguistic phenomena over
traditional rule-based and phrase-based models. For instance, reordering, subject-verb
agreement, double-object verbs, and overlapping subcategorization are various areas
where neural models successfully overcome the limitations of phrase-based models
(Isabelle et al., 2017, Bentivogli et al., 2016).

In this chapter, we examine which phenomena are not fully captured by current
NMT models. NMT models use both source and target sentences as contexts to generate
a target word. We are interested in cases where this scope is not sufficient for the NMT
model. To shed light on this vulnerability of current NMT models, we ask:

Research Question 3: 7o what extent are neural translation models vulnerable as a
result of relying on the observed context in the training data to infer meaning ?

We study the ability of NMT models to translate fairly complex linguistic phenomena.
To examine this question, in this chapter, we focus on the translation of units that
possibly require cues beyond the literal context, namely idiomatic expressions. Idioms,
a category of multiword expressions, are an interesting language phenomenon where
the overall meaning of the expression cannot be inferred from the meanings of its parts.
For the most part, idiom acquisition for humans requires additional resources such as
explicit definitions of the expressions. NMT models, however, only have access to the
nearby and local context of the idiomatic expression.
To further investigate why neural translation models struggle in this area, we ask:
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RQ3.1 What are the challenges of idiom translation with neural models?

The first challenge for learning and evaluating idiom translation is the lack of
dedicated data sets. In this chapter, we address this problem by creating the first
large-scale data set for idiom translation. Building a hand-crafted data set for
idiom translation is costly and time-consuming. In this chapter, we automatically
build a new bilingual data set for idiom translation extracted from an existing
general-purpose German<«>English parallel corpus. The first part of our data set
consists of 1,500 parallel sentences where the German side contains an idiom,
while the second part consists of 1,500 parallel sentences where the English side
contains an idiom. Additionally, we provide the corresponding training data sets
for German—English and English—German translation where source sentences
including an idiom phrase are identified.

We then study how this data set can aid in assessing the translation quality of idiomatic
expressions, thus asking:

RQ3.2 How is the translation quality of NMT influenced by idiomatic expressions?

Having prepared the idiom translation training and test data, we investigate how
to assess the translation quality of idiomatic expressions. The labels in our data
are indicators of the existence of idioms in a sentence. We use these labels as an
additional signal during training of the NMT model and examine whether this flag
is sufficient in identifying a phrase as idiomatic and translating it correctly. Finally,
we introduce several metrics to evaluate the translation quality of idiom phrases in
a sentence.

Organization. This chapter is organized as follows: In Section 6.2, we provide an
overview of existing work on idiom identification and translation. Next, in Section 6.3
we introduce our data collection procedure and details on the extracted training and
test data. Section 6.4 describes the design of the experiments for translating idioms.
Section 6.5 proposes various metrics to locally evaluate idiom translation and provides
experimental results on the translation task and analyzes the performance. Finally, we
discuss the conclusions and implications of this work in Section 6.6.

6.2 Idiomatic expressions

Non-compositional multiword expressions, or idioms, are lexical semantic units where
the meaning is often not merely a function of the meaning of its constituent parts
(Nunberg et al., 1994, Kovecses and Szabd, 1996).

The non-compositionality characteristic of idiomatic expressions exists to different
degrees in a language (Nunberg et al., 1994). In English for example, for the idiom “spill
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the beans”, the word ‘spill’ symbolizes ‘reveal’ and ‘beans’ symbolizes the ‘secrets’.
For the idiomatic expression “kick the bucket”, on the other hand, no such analysis
is possible. Automatically identifying these idiomatic expressions in a sentence is
challenging. In the following section, we discuss previous works in this area.

6.2.1 Idiom identification

Expressions that potentially have idiomatic meanings can be recognized using various
lexical association measures (Evert and Krenn, 2001, Evert and Kermes, 2003). How-
ever, other methods are necessary to decide whether a particular multiword expression
(MWE) has an idiomatic use in a particular context. Katz and Giesbrecht (2006) use
distributional semantics as a model of context similarity to examine whether the local
context of an MWE can distinguish its idiomatic use from its literal use. Salehi and
Cook (2013) use the translation of the components of the MWE in multiple languages
to compute similarities between strings. This compositionality score illustrates the rela-
tive degree of compositionality of the MWE. Salehi et al. (2015) implement a similar
approach but uses word embeddings to compute the compositionality score of an MWE.

Salton et al. (2016) use skip-thought vectors, sent2vec, first introduced by Kiros
et al. (2015) for idiom classification. In this approach, they define the classes as to
whether an MWE is used literally or idiomatically. More recently, Klyueva et al. (2017)
propose to use an RNN that predicts the possible tags of an MWE. The system scored
better in more ‘syntactic’ MWEs like inherently reflexive verbs, light verb constructions,
and verb-particle constructions. However, they were not able to detect idioms with
reasonable accuracy.

6.2.2 Idiom translation

Automatic translation of idiomatic phrases is a long-established problem in NLP
(Schenk, 1986). As we illustrated in previous chapters, NMT models battle with
translating rare words. In a way, idioms are similar to this problem. While the occur-
rence of the expression might not be rare, the idiomatic meaning of the expression in a
particular context is often uncommon (Salton et al., 2014a, Isabelle et al., 2017, Agrawal
et al., 2018). The challenge of translating idiomatic phrases in NMT is partly due to the
underlying complexity of identifying a phrase as idiomatic and generating its correct
non-literal translation, and partly due to the fact that idioms are rarely encountered in
the standard data sets used for training NMT systems.

As an example, in Table 6.1, we provide an idiomatic expression in German and
the literal and idiomatic translations in English. We note that the literal translation of
an idiom is not the correct translation; neither does it capture part of the meaning. To
illustrate the problem of idiom translation we also provide the output of three NMT
systems for this sentence: GoogleNMT (Wu et al., 2016), DeepL!, and the OpenNMT

Lwww . deepl.com/translator
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Table 6.1: Example of an idiomatic phrase in German and its translation. We compare
the output of state-of-the-art commercial models (DeepL and GoogleNMT), as well
as our trained model (based on OpenNMT). In translating a sentence containing this
idiomatic phrase, we notice that none capture the idiom translation correctly.

German phrase eine weifle Weste haben
Literal translation to have a white vest
Idiomatic translation to have clean slate

Sentence Coca-Cola und Nestlé gehoren zu den Unterzeichn-
ern. Beide haben nicht gerade eine weille Weste.

Reference translation Coca Cola and Nestlé are two signatories with
“spotty” track records.

DeepL Coca-Cola and Nestlé are among the signatories.
Neither of them is exactly the same.

GoogleNMT Coca-Cola and Nestlé are among the signatories.
Both do not have just a white vest.

OpenNMT Coca-Cola and Nestlé are among the signatories.
Both don’t have a white essence.

implementation (Klein et al., 2017) based on Bahdanau et al. (2015) and Luong et al.
(2015a) trained on WMT17 parallel corpora. All systems fail to generate the proper
translation of the idiomatic expression. This problem is particularly pronounced when
the source idiom is very different from its equivalent in the target language, as is the
case here.

Although there are a number of monolingual data sets available for identifying
idiomatic expressions (Muzny and Zettlemoyer, 2013, Markantonatou et al., 2017),
there is limited work on building a parallel corpus annotated with idioms, which is
necessary to investigate this problem more systematically. Salton et al. (2014b) selected
a small subset of 17 English idioms, collected 10 sentence examples for each idiom
from the Internet, and manually translated them into Brazilian-Portuguese to use for
translation. Isabelle et al. (2017) built a challenge set of 108 short sentences that each
focus on one difficult phenomenon of the language. Their manual assessment of the
eight sentences containing an idiomatic phrase showed that NMT systems struggle with
the translation of these phrases.

Shao et al. (2018) introduced a new evaluation metric for detecting literal translation
errors in Chinese—English translation, and concluded that idiom translation remains
an open problem in MT. Moussallem et al. (2018) released a multilingual resource on
idioms currently containing five languages: English, German, Italian, Portuguese, and
Russian. In this work, the authors built the data set by crawling various sources and
then have them manually evaluated by native speakers.

While these approaches are valuable for studying the problem of idiom translation,
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they each require manual efforts to identify and label idioms. To further research in
idiom translation, we still need large-scale training and testing resources which are hard
to obtain with manual labeling.

6.3 Data collection

In this section, we introduce our proposed data collection procedure for building a
training and test set. We focus on German<«>English translation of idioms. This is an
established language pair commonly used in machine translation literature. Automati-
cally identifying idiomatic phrases in a parallel corpus requires a gold standard data set
annotated manually by linguists. We use an online dictionary containing idiomatic and
colloquial phrases?, which is built manually, as our gold standard for extracting idiom
phrase pairs.

Examining the WMT German<English test sets from 2008 to 2016 (Bojar et al.,
2017), we observe very few sentence pairs containing an idiomatic expression. The
standard parallel corpora available for training however contain a sizeable number of
such sentence pairs. Therefore, we automatically select sentence pairs from the training
corpora where the source sentence contains an idiom phrase to build the new test set.
Note that we only focus on idioms on the source side and we have two separate lists
of idioms for German and English. Hence, we independently build two test sets (for
German idiom translation and English idiom translation) with different sentence pairs
selected from the parallel corpora.

Table 6.2: Two examples displaying different constraints of matching an idiom phrase
with occurrences in the sentence.

German idiom alles iiber einen kamm scheren
English equivalent to measure everything by the same yardstick

Matching German sentence Aber man kann eben nicht alle Inseln iiber einen
Kamm scheren.

English translation But we cannot measure all islands by the same stan-
dards.

German idiom in den kinderschuhen stecken

English equivalent to be in the fledgling stage

Matching German sentence Es steckt immer noch in den Kinderschuhen.
English translation It is still in its infancy.

Depending on the language, the words making up an idiomatic phrase are not always
contiguous in a sentence. For instance, in German, the subject can appear between the

2yww.dict.cc
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verb and the prepositional phrase making up the idiom. German also allows for several
re-orderings of the phrase.

In order to generalize the process of identifying idiom occurrences, we lemmatize the
phrases and consider different re-orderings of the words in the phrase as an acceptable
match. We also allow for a fixed maximum number of words to occur in between the
words of an idiomatic phrase. Table 6.2 shows two examples of idiom occurrences that
match these criteria. Following this set of rules, we extract sentence pairs containing
idiomatic phrases and create a set of sentence pairs for each unique idiom phrase.

There are various ways of combining regular and idiomatic sentences and building
training and test data. We know that the NMT model is capable of translating a word
correctly at test time if it has observed it at training time. In the previous chapters, we
showed that the frequency of occurrences in the training data and the quality of the
contexts are important factors in helping the model learn to translate. Motivated by this,
we distribute sentences with idiomatic phrases between training and test sets so that
there are no idioms in the test set that we have not seen during training. We also make
sure that there is no overlap between the training and test sets.
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Figure 6.1: The process of data collection and construction of the test set containing
only sentence pairs with idiomatic phrases.

Considering these principles, we build the training and test data as follows: First,
we sample without replacement from WMT data sets and select individual sentence
pairs to build the idiom test set. To build the new training data, we use the remaining
sentence pairs in each idiom set as well as the sentence pairs from the original parallel
corpora that did not include any idiomatic phrases. In this process, we ensure that for
each idiomatic expression there is at least one occurrence in both training and test data
and that no sentence pair is included in both training and test data.

Figure 6.1 visualizes the process of constructing the new training and test sets.
As aresult of this construction, for each language direction, we obtain a targeted test
set for idiom translation and the corresponding training corpus representing a natural
distribution of sentences with and without idioms. We annotate each sentence pair
with the canonical form of its source-side idiom phrase and its equivalent in the target
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Table 6.3: Statistics of the constructed German and English idiom translation data sets.

German idiom translation data set

Number of unique idioms 103
Training size 4.5M
Idiomatic sentences in training data 1848
Test size 1500

English idiom translation data set

Number of unique idioms 132
Training size 4.5M
Idiomatic sentences in training data 1998
Test size 1500

language.

Table 6.3 provides some statistics of the two data sets. For each unique idiom in the
test set, we also provide the frequency of the respective idiom in the training data. Note
that this is based on the lemmatized idiom phrase under the constraints mentioned in
Section 6.3 and is not necessarily an exact match of the phrase. Table 6.4 shows several
examples from the data set for German idiom translation. We observe that for some
idioms the literal translation in the target language is close to the actual meaning, while
for others it is not the case.

Note that multiword expressions that at times have an idiomatic meaning can also be
translated literally depending on the context (e.g., “spill the beans” to literally describe
the act of spilling the beans). This data set represents this additional difficulty: Models
cannot just memorize fixed translation of idioms but also have to consider the specific
context in which they are used.

6.4 Translation experiments

While the main focus of this chapter is to generate data sets for training and evaluating
idiom translation, we also perform a few NMT experiments using our data set to measure
the problem of idiom translation on large-scale data.

In the first experiment, following the conventional settings, we do not use any labels
indicating whether a particular phrase is used idiomatically or not in the training data. In
the second experiment, we use the labels in the training data as an additional feature to
investigate the effect of informing the model of the existence of an idiomatic phrase in a
sentence during training. We perform a German—English experiment by providing the
model with additional input flags. This approached is similar to the work by Sennrich
et al. (2016a), where they control the honorifics produced at test time by adding a side
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constraint to the source side.

The additional flag indicates whether a source sentence contains an idiom and are
implemented as a special extra token <idm> that is prepended to each source sentence
containing an idiom both in the training and test data. This a simple approach that can
be applied to any sequence-to-sequence architecture.

We use a 4-layer attention-based encoder-decoder model as described in Section 2.4
trained with hidden dimension size of 1000, and batch size of 80 for 20 epochs. In all
experiments, the NMT vocabulary is limited to the most common 30K words in both
languages and we preprocess source and target language data with Byte Pair Encoding
(BPE) (Sennrich et al., 2016¢) using 30K merge operations. We also use a phrase-based
translation system similar to Moses (Koehn et al., 2007) as baseline to measure PBMT
performance for idiom translation. Several examples of our idiom translation test set
and the output translations of the PBMT and NMT models are illustrated in Table 6.5.

6.5 Idiom translation evaluation

Ideally, idiom translation should be evaluated manually, but this is a very costly process.
Automatic metrics, on the other hand, can be used on large data sets at no cost and
have the advantage of replicability (Section 2.6). We use three metrics to evaluate the
translation quality with a specific focus on idiom translation accuracy: BLEU, Modified
Unigram Precision, and Word-level Idiom Accuracy. We describe each metric below.

6.5.1 BLEU

The traditional BLEU score (Papineni et al., 2002), discussed in Section 2.6, is a good
measure to determine the overall quality of the translations. However, this measure
considers the precision of all n-grams in a sentence and by itself does not focus on the
translation quality of the idiomatic expressions.

6.5.2 Modified unigram precision

To specifically concentrate on the quality of the translation of idiomatic expressions,
we also look at the localized precision. In this approach, we translate the idiomatic
expression in the context of a sentence and only evaluate the translation quality of the
idiom phrase.

To isolate the idiom translation in the sentence, we look at the word-level alignments
between the idiomatic expression in the source sentence and the generated translation
in the target sentence. We use fast—-align (Dyer et al., 2013) to extract word
alignments. Since idiomatic phrases and the respective translations are not contiguous
in many cases, we only compare the unigrams of the two phrases. We compute unigram
matches between the reference translation and the translation output, the candidates
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Table 6.5: Examples from the resulting test set of sentence pairs containing idiomatic
expressions. NMT and PBMT translations of sentences are provided, highlighting the
challenge of idiom translation.

SRC Seitdem aber begannen sich zwischen Polivka und Harabi§ die Streit-
igkeiten zu hiufen, die in der Absetzung “Konig Boleslavs 1. gewdihlt
bis zum Sankt-Nimmerleins-Tag” gipfelten.

REF From then on , quarrels begin to accumulate between Polivka and
Harabis , which culminated in the dethronement of “the king Boleslav I
elected forever and ever”.

PBMT Since then, however, the disputes between Polivka and Harabis began to
accumulate, culminating in the departure of King Boleslavs I.

NMT Since then, but began between Polivka and Harabi§ disputes to
accumulate in the removal “king Boleslavs I. elected by the
Sankt-Nimmerleins-Tag culminated”.

SRC Sie wurde vor Ort notirztlich behandelt und von Rettungskriften in ein
Krankenhaus gebracht.

REF She was treated at the site by an emergency doctor and taken to hospital
by ambulance.

PBMT It was treated on site in the field, and it was brought to a hospital from
the rescue forces.

NMT she was on the ground and notirztlich treated by rescue workers in a
hospital.

SRC Janson ist selbst ein alter Hase in seinem Metier, der Schauspielkunst.

REF Janson is an old hand himself when it comes to his profession, the art
of acting.

PBMT Janon himself is an old hase in his painter, the artistic art.
NMT Janson itself is an old hand in his subjects, the schauspielkunst.

SRC Mit unserer Mitteilung vom letzten Sommer haben wir den Stein ins
Rollen gebracht und demonstriert, dass Europa an der Erarbeitung eines
internationalen Instruments beteiligt ist.

REF Our communication of last summer enabled us to get things up and
running and to demonstrate that Europe was participating in the drawing
up of an international instrument.

PBMT With our communication of last summer we have the ball rolling and
demonstrated that Europe in the drafting of an international instrument
is involved.

NMT With our communication last summer, we launched the stone and
demonstrated that Europe is involved in the development of an interna-
tional instrument.
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set, as follows:
> countp(unigram)
Ce{Candidates} unigrameC

> > count(unigram’)

C’e{candidates} unigram’eC’

UniPrec =

6.1)

where count;;, = min(count, max_ref_count). By computing the clipped count, we
truncate each word’s count so that it does not exceed the largest count observed in a
reference for that word. Note that for this metric we have two references: The idiom
translation as an independent expression, and the human-generated idiom translation in
the target sentence.

6.5.3 Word-Level idiom accuracy

We also use another metric to evaluate the word-level translation accuracy of the idiom
phrase. We use word alignments between source and target sentences to determine the
number of correctly translated words. We use the following equation to compute the
accuracy:

H-1
WAcc = —— 6.2
cc I (6.2)

where H is the number of correctly translated words, I is the number of extra words in
the idiom translation, and N is the number of words in the gold idiomatic expression.

Table 6.6: Translation performance on the German idiom translation test set. Word-level
Idiom Accuracy and Unigram Precision are computed only on the idiom phrase and its
corresponding translation in the sentence.

WMT08-16 Idiom test set
Model BLEU BLEU UniPrec WAcc
PBMT baseline 20.2 19.7 57.7 71.6
NMT baseline 26.9 24.8 53.2 67.8
NMT sRrc flag 25.2 22.5 64.1 73.2
NMT T1GT flag 17.8 16.2 543 64.0

6.5.4 Evaluation results

Table 6.6 presents the results for the translation task using different metrics. Looking at
the overall BLEU scores, we observe that baseline performance on the idiom-specific
test set is lower than on the union of the standard test sets (WMT 2008-2016). While
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the scores on these two data sets are not directly comparable, this result is in line with
previous findings that sentences containing idiomatic expressions are harder to translate
(Isabelle et al., 2017). We can also see that the performance gap is not as pronounced
for a PBMT system, suggesting that phrase-based models are capable of memorizing
the idiomatic phrases to some extent.

The NMT model using a special input flag to indicate the presence of an idiom
in the source sentence performs better than PBMT but slightly worse than the NMT
baseline in terms of BLEU. Despite this drop in BLEU performance, by examining the
unigram precision and word-level idiom accuracy scores, we observe that this model
generates more accurate idiom translations. When comparing this to having the idiom
flag on the source or target side, we observe a significant difference: The experiment
with the target flag performs the worst, partially because during inference, only the
source sentence is available and hence there is no contextual signal to aid the model.
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Figure 6.2: Attention visualization of the translation of two sampled German sen-
tences. Darker color means higher weight. The blocked area marks the idiomatic
expression and its generated translation. The reference translations are: (left) “Berlin
has a mind of its own and is doing its own thing.” and (right) “We are therefore all
in the same boat, so to speak.”

Figure 6.2 illustrates the attention distribution of the NMT model during translation
of an example German sentence. We expected that in order to translate each word in the
idiomatic expression correctly, the model would pay a noticeable degree of attention
to the other words in the expression. However, we see that it does not happen and the
model essentially translates the sentence word by word, i.e., literally. These preliminary
experiments reiterate the problem of idiom translation with neural models, and in
addition show that with a labeled data set, we can devise simple models to address this
problem to some extent.
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6.6 Conclusion

Motivated by our observations in Chapters 4 and 5 that illustrate the importance of
local context on learning difficult words, we further explored in this chapter some
shortcomings of current models. Concretely, we were interested in finding cases where
NMT models are unsuccessful. One case of a complex language phenomenon is
idiom translation where it is very difficult to infer the meaning of the phrase without
explanation and only from the observed context.

To investigate the behaviour of NMT models in translating idiomatic expressions,
we asked:

RQ3.1 What are the challenges of idiom translation with neural models?

We identified two main challenges when translating idiom phrases, namely lack of
dedicated data sets and lack of targeted evaluation metrics. To address this problem,
we have extracted a parallel data set for training and testing idiom translation for
German—English and English—German. In the test sets, we included sentences
with at least one idiom on the source side. In the training set, we included a mixture
of idiomatic and non-idiomatic sentences with labels to distinguish between the
two. We release our new data sets which can be used to further investigate and
improve NMT performance of idiom translation. Using our new resources, we
performed preliminary translation experiments to evaluate the quality of idiom
translation. Experiments on this test set showed PBMT models scored higher than
NMT models on our metrics which explicitly measure idiom translation quality.

RQ3.2 How is the translation quality of NMT influenced by idiomatic expressions?

We observed that even though the NMT model achieved a higher overall BLEU
score, it performed worse on idiom translation metrics in comparison with PBMT
model. Next, we studied whether a flag in the training data can help to distinguish
between when a phrase is to be translated literally and when it should be translated
idiomatically. Our experiments showed that adding a side flag during training
improves the quality of idiom translation. However, we found that the BLEU
score on standard test sets declined. Our experiments suggest that there is no
correlation between overall BLEU scores and the localized precision of idiomatic
phrase translations.

It allows us to return to our more general research question:

Research Question 3: 7o what extent are neural translation models vulnerable as a
result of relying on the observed context in the training data to infer meaning ?

To answer this question, we specifically examined non-compositional multiword ex-
pressions. Since the literal meaning of the components is different from the idiomatic
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meaning of the entire expression, the model needs to know in which context to trans-
late it literally and in which idiomatically. We showed that NMT models perform
poorly on idiom translation despite their overall strong advantage over previous MT
paradigms. We conclude that further research on idiom translation can benefit from
having a dedicated data set.

In the next chapter, we continue investigating this question by examining cases where
there are no complex linguistic phenomena, such as non-compositional phrases, in the
observed context.
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7.1 Introduction and research questions

In the previous chapters, we first investigated how to enhance the use of context to
address some of the shortcomings of neural translation models. Then in Chapter 6, we
showed that the translation of idiomatic phrases is challenging for the current NMT
models. We saw that the scope of the observed context was not sufficient to infer the
meaning of idioms. Based on these findings, in this chapter, we continue examining the
following question:

Research Question 3: 7o what extent are neural translation models vulnerable as a
result of relying on the observed context in the training data to infer meaning ?

While the lack of suitable context exposes shortcomings in current models, we extend
our research in this chapter to situations where appropriate data is available. We first
look into the robustness of current translation models. Namely, we investigate what is
the effect of small perturbations of the source sentence on the translation. Observing
that in some cases translations change unexpectedly with these small perturbations, we
study whether and to what extent it can be replicated and quantified with automatically
modified test data. Concretely we ask:

RQ3.3 How can contextual modifications during testing reveal a lack of robustness of
translation models and affect the translation quality?

To answer this question, we locally modify sentence pairs in the test set and identify
examples where a trivial modification in the source sentence causes an ‘unexpected
change’ in the translation. These modifications are generated conservatively to
avoid insertion of any noise or rare words in the data (Section 7.4). Our goal is not
to fool the NMT models, but instead, to identify common cases where the models
exhibit unexpected behaviour and in the worst cases result in incorrect translations.
We identify these unexpected and erroneous changes in the translation output as a
sign of an underlying volatility of NMT models.
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RQ3.4 To what extent is a lack of robustness an indicator of a generalization problem
in neural machine translation models?

We investigate to what extent two current state-of-the-art NMT models are robust
against changes in the input during inference. We observe that our modifications
expose volatilities of both RNN and Transformer translation models in 26% and
19% of sentence variations, respectively. Our findings show how vulnerable
current NMT models are to trivial linguistic variations, putting into question the
generalization abilities of these models.

Organization. The chapter is organized as follows: Section 7.2 discusses prior works
on the impact of noise on the performance of machine translation. In Section 7.3, we
provide an example of unexpected behaviour of NMT models and discuss how it is
different from the unexpected behaviour when encountering noise in the input text.
In Section 7.4, we introduce our sentence variation generation approach and provide
details on the experimental settings. Section 7.5 proposes various metrics to identify and
quantify these unexpected changes and provides experimental results on a translation
task. Finally, we discuss the conclusions and implications of this work in Section 7.6.

7.2 Noisy text translation

Recently, several approaches investigated NMT models when encountering noisy input
and how worst-case examples of noisy input can ‘break’ state-of-the-art NMT models
(Michel and Neubig, 2018). Noisy input text can cause mistranslations in most transla-
tion systems, and there has been growing research interest in studying the behaviour of
translation systems when encountering noisy input (Li et al., 2019).

Belinkov and Bisk (2018) show that character-level noise in the input leads to poor
translation performance. They propose to swap or randomize letters in a word in the
input sentence. For instance, they change the word ‘noise’ in the source sentence into
‘iones’. Lee et al. (2018) randomly insert words in different positions in the source
sentence and observe that in some cases the translations are completely unrelated to
the input. Michel and Neubig (2018) propose a benchmark data set for translation of
noisy input sentences, consisting of noisy, user-generated comments on Reddit. The
types of noisy input text they observe include spelling or typographical errors, word
omission/insertion/repetition, and grammatical errors.

7.3 Volatility in machine translation

In the discussed works in Section 7.2, the focus of the research is on studying how
the translation systems are not robust when handling noisy input text. In these ap-
proaches, the input sentences are semantically or syntactically incorrect which leads

114



7.4. Variation generation

to mistranslations. However, in this chapter, our focus is on input text that does not
contain any types of noise. We modify input sentences in a way that the outcomes are
still syntactically and semantically correct. We investigate how translation systems
exhibit volatile behaviour in translating sentences that are extremely similar and only
differ in one word without any noise injection. While it is to some extent expected that
the performance of NMT models that are trained on predominantly clean but tested on
noisy data deteriorates, other changes are more unexpected.

Table 7.1: Insertion of the German word ‘sehr’ (English: ‘very’) in different positions
in the source sentence results in substantially different translations. Note that all source
sentences are syntactically correct and semantically plausible. We use a Transformer
model trained on WMT data with 6 encoder and decoder layers and 8 attention heads. '
indicates the original sentence from WMT 2017.

Source: Ich bin ____ erleichtert und ___  bescheiden.

NMT output
o}

10} I am easier and modest.
10} sehr T T am relieved and very modest.
sehr ¢ I am very much easier and modest.

sehr sehr 1am very easy and very modest.

Reference
10} 10} I am relieved and humble.

sehr sehr I am very relieved and very humble.

In this chapter, we explore unexpected and erroneous changes in the output of NMT
models. Consider the simple example in Table 7.1 where the Transformer model is used
to translate very similar sentences. Surprisingly, we observe that by simply altering one
word in the source sentence—inserting the German word ‘sehir’ (English: ‘very’)—an
unrelated change occurs in the translation. In principle, an NMT model that generates
the translation of the word ‘erleichtert’ (English: ‘relieved’) in one context, should also
be able to generalize and translate it correctly in a very similar context. Note that there
are no infrequent words in the source sentence and after each modification, the input
is still syntactically correct and semantically plausible. We call a model volatile if it
displays inconsistent behaviour across similar input sentences during inference.

7.4 Variation generation

While there are various ways to automatically modify sentences, we are interested in
simple semantic and syntactic modifications. These trivial linguistic variations should
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have almost no effect on the translation of the rest of the sentence.
We define a set of rules to slightly modify the source and target sentences in the test
data and keep the sentences syntactically correct and semantically plausible.

* Delete: A conservative approach to modifying a sentence automatically without
breaking its grammaticality is to remove adverbs. We identify a list of the 50
most frequent adverbs in English and their translations in German.! For every
sentence in the WMT test sets, if we find a sentence pair containing both a word
and its translation from this list, we remove both words and create a new sentence
pair.

* Insert: Randomly inserting words in a sentence has a high chance of producing a
syntactically incorrect sentence. To ensure that sentences remain grammatical
and semantically plausible after modification, we define a bidirectional n-gram
probability for inserting new words as follows:

C(wwowswaws)

R _ 7.1
(w3 [ wiwswws) 25 Clwrwawjwaws) o

ws is inserted in the middle of the phrase w;wsw,ws, if the conditional proba-
bility is greater than a predefined threshold. The probabilities are computed on
the WMT data. This simple approach, instead of using a more complex language
model, serves our purposes since we are interested in inserting very common
words that are already captured by the n-grams in the training data.

* Substitute number: Another simple yet effective approach to safely modifying
sentences is to substitute numbers with other numbers. In this approach, we select
every sentence pair from the test sets that contain a number and substitute the
number ¢ in both source and target sentences with ¢ + k where 1 < k < 5. We
choose a small range for change so that the sentences are still semantically correct
for the most part and result in a few implausible sentences.

* Substitute gender: Finally, a local modification is to change the gender of the
pronoun in the sentences. The goal of this modification is to investigate the
existence and severity of gender bias in our models. This is inspired by recent
approaches that have shown that NMT models learn social stereotypes such as
gender bias from training data (Escudé Font and Costa-jussa, 2019, Stanovsky
etal., 2019).

Note that in a minority of cases, these procedures can lead to semantically incorrect
sentences. For instance, by substituting numbers we can potentially generate sentences
such as ”She was born on October 34th*. While this can cause problems for a reasoning

'Here, we use the dict . cc online dictionary.
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task, it barely affects the translation task, as long as the modifications are consistent on
the source and target side.

Table 7.2 shows examples of generated variations. We emphasize that only modifi-
cations with local consequences have been selected and we intentionally ignore cases
such as negation which can result in wider structural changes in the translation of the
sentence.

Table 7.2: Examples of different variations from WMT. [w;\w;] indicates that w; in
the original sentence is replaced by w;. ¢ is the empty string.

Modification Sentence variations

Delete Some 500 years after the Reformation, Rome [now\¢] has a Martin
Luther Square.

Insert I loved Amy and she is [¢\also] the only person who ever loved me.

Subs number I'm very pleased for it to have happened at Newmarket because this
is where I landed [30\31] years ago.

Subs gender  [He\She] received considerable appreciation and praise for this.

We generate 10K sentence variations by applying these modifications to all sentence
pairs in WMT test sets 2013-2018 (Bojar et al., 2018). We use RNN and Transformer
models to translate sentences and their variations.

7.4.1 Experimental setup

In the translation experiments, we use the standard English<>German WMT-2017
training data (Bojar et al., 2018). We perform NMT experiments with two different
architectures as described in Sections 2.4 and 2.5: RNN (Luong et al., 2015a) and
Transformer (Vaswani et al., 2017). We preprocess the training data with Byte-Pair
Encoding (BPE) using 32K merge operations (Sennrich et al., 2016c). Table 7.3 shows
the case-sensitive BLEU scores as calculated by multi-bleu.perl.

Table 7.3: BLEU scores of different baseline models on the WMT news data for
translation of German<English.

De-En En-De
WMTI16 WMT17 WMTI8 WMTI6 WMTI17 WMTI18
RNN 32.5 28.2 35.2 28.1 22.4 34.6
Transformer 36.2 32.1 40.1 334 27.9 39.8
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RNN We use a 2-layer bidirectional attention-based LSTM model implemented in
OpenNMT (Klein et al., 2017) trained with an embedding size of 512, hidden dimension
size of 1024, and batch size of 64 sentences. We use Adam (Kingma and Ba, 2015) for
optimization.

Transformer We also experiment with the Transformer model (Vaswani et al., 2017)
implemented in OpenNMT. We train a model with 6 layers, the hidden size is set to
512, and the filter size set to 2048. The multi-head attention has 8 attention heads. We
use Adam (Kingma and Ba, 2015) for optimization. All parameters are set based on the
suggestions by Klein et al. (2017) to replicate the results of the original paper.

7.5 Unexpected and erroneous changes

The modifications described above generate sentences that are extremely similar and
hence are expected to have a very similar difficulty of translation. First, we evaluate
the NMT models on how robust and consistent they are in translating these sentence
variations rather than their absolute quality. Next, we perform manual evaluation on the
translation outputs to assess the impact of unexpected changes on translation quality.

7.5.1 Deviations from original translation

The variations are aimed to have minimal effect on changing the meaning of the
sentences. Hence, major changes in the translations of these variations can be an
indication of volatility in the model. To assess whether the proposed sentence variations
result in major changes in the translations, we measure changes in the translations of
sentence variations with Levenshtein distance (Levenshtein, 1966). We also use the first
and last positions of change in the translations, which represents the span of changes.

Ideally, with our simple modifications, we expect a value of zero for the span of
change and a value of at most 2 for the Levenshtein distance for a translation pair. This
indicates that there is only one token difference between the translation of the original
sentence and the modified sentence.

We define two types of changes based on these measures: minor and major. We
choose the threshold to distinguish between minor and major changes conservatively to
allow for more variations in the translations. The change in translations is empirically
considered major if both metrics are greater than 10, and minor if both are less than 10.
Note that edit distances and spans are based on BPE subword units.

With two very similar source sentences, we expect the Levenshtein distance and
span of change between translations of these sentences to be small. Figure 7.1 shows
the results for the RNN and Transformer model. While the majority of sentence
variations have minor changes, a substantial number of sentences, 18% of RNN and
13% of Transformer translations, result in translations with major differences. This is a
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RNN Transformer
10 10

Span of change
Frequencies (log)
Span of change
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Figure 7.1: Levenshtein distance and span of change between translations of sentence
variations for RNN and Transformer. The majority of sentence variations fall into the
category of minor changes between translations (blue area). However, a surprising
number of cases have significant changes (red area). RNN exhibits a slightly more
unstable pattern i.e., sentence variations with large edit differences and large spans of

change.

surprising indication of volatility since these trivial modifications, in principle, should
only result in minor and local changes in the translations.

Table 7.4: An example of the generated variations of an English sentence and different
sentence-level metrics for the translation of each variation. We compute the oscillation
range for each sentence in the test data.

Source: Mr Ivanov took up the post in December #.

Reference: Ivanov nahm den Posten im Dezember # an.

® NMT output

2012 Herr Ivanov hat den Beitrag im Dezember 2012 iibernommen.
bleu=22.78 meteor=60.54 ter=36.36 LengthRatio=109.09

2013 Herr Ivanov nahm den Beitrag im Dezember 2013 auf.
bleu=43.67, meteor=66.89, ter=27.27, LengthRatio=109.09

2014 Herr Ivanov nahm den Beitrag im Dezember 2014 auf.

bleu=43.67, meteor=66.89, ter=27.27, LengthRatio=109.09
Oscillation range: bleu=20.9, meteor=6.4, ter=9.1, LengthRatio=0

7.5.2 Oscillations of variation in translations

In this section, we look into various sentence-level metrics to further analyze the
observed behaviour. In particular, we focus on the substitute numbers modification
since with this modification, we can easily generate numerous variations of the same
sentence. Having a high number of variations for each sentence gives us the opportunity
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of observing oscillations of various string matching metrics.

We use sentence-level BLEU, METEOR (Denkowski and Lavie, 2011), TER
(Snover et al., 2006), and LengthRatio to quantify changes in the translations. Length-
Ratio represents the translation length over reference length as a percentage. For a given
source sentence, we define the oscillation range as changes in the sentence-level metric
for the translations of all variations of the sentence (see Table 7.4 for an example).

RNN Transformer
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Figure 7.2: Oscillations of various sentence-level attributes for randomly sampled
sentences from our test data and their substitute number variations. The data points are
the mean values for all variations of each sentence, and the error bars indicate the range
of oscillation of the metrics. The x-axis represents test sentence instances, sorted based
on the corresponding metric. Ideally, each data point should have zero oscillation.

While sentence-level metrics are not reliable indicators of translation quality, they
do capture fluctuations in translations. With the variations we introduced, in theory,
there should be no fluctuations in the translations. Figure 7.2 and Table 7.5 provide
the results. We observe that even though these sentence variations differ by only one
number, there are many cases where an insignificant change in the sentence results in
unexpectedly large oscillations. Both RNN and Transformer exhibit this behaviour to a
certain extent.
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Table 7.5: Mean oscillations for substitute number variations. In theory, the variations
should result in zero oscillations for every metric.

BLEU METEOR TER LengthRatio

RNN 4.0 3.8 5.2 5.3
Transformer 3.8 3.3 4.2 34

7.5.3 The effect of volatility on translation quality

While edit distances, spans of change, and oscillation in variations provide some
indication of volatility, they do not capture all aspects of this unexpected behaviour. It is
also not entirely clear what effect these unexpected changes have on translation quality.
To further investigate this, we also perform two manual evaluations by eight fellow PhD
students working on information and language processing systems. The native language
of the annotators consists of English, Dutch, and Chinese. All non-native annotators
use English as a second language. Our manual evaluation does not require familiarity
with the German language.

In the first evaluation, we provide annotators with a pair of sentence variations and
their corresponding translations and ask them to identify the differences between the two
sentence pairs. In the second evaluation, we additionally provide the source sentences
and reference translations and ask the annotators to rank the sentence variations based
on the translation quality similar to Bojar et al. (2016). In total, the annotators evaluated
400 randomly selected sentence quadruplets.

Table 7.6: Definitions of different labels of changes and examples for each category.
The annotators identified these differences between the translations.

Label Definition Example

Word form One or more words are differentin  observe — observation
form but belong to the same lex-
eme.

Reordered One or more words are reordered he said go — go, he said

in the translation sentence.

Paraphrased One word is replaced with a syn- first six months — first half of the
onym or a section of the sentence year
is paraphrased.

Add/Remove  One or more words are added or will participate — will also partic-
dropped from the translation sen- ipate

tence.
Other Other changes in the translation were torn through — have been
sentence. bypassed

Table 7.6 shows the identified categories of changes from annotators’ labels. The
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Table 7.7: A random sample of sentences from the WMT test sets and our proposed
variations shown with ‘unexpected change’ annotations (AT ranslation). The cases
where the unexpected change leads to a change in translation quality are marked in
column AQuality. [w;\w,] indicates that w; in the original sentence is replaced by w;.
S is the original and modified source sentence, R is the original and modified reference
translation, 7" is the translation of the original sentence, and 7T, is the translation of the
modified sentence. Differences in translations related to annotations are underlined.

S Coes letztes Buch “Chop Suey” handelte von der chinesischen Kiiche in den USA,
wihrend Ziegelman in ihrem Buch “[97\101] Orchard” iiber das Leben in einem Wohn-
haus an der Lower East Side aus der Lebensmittelperspektive erzihlt.

R Mr. Coe’s last book, “Chop Suey,” was about Chinese cuisine in America, while Ms.
Ziegelman told the story of life in a Lower East Side tenement through food in her book
“[97\101] Orchard.”

T  Coes’s last book, “Chop Suey,” was about Chinese cuisine in the US, while Ziegelman,
in her book *“97 Orchard” talks about living in a lower East Side.

T, Coes last book “Chop Suey” was about Chinese cuisine in the United States, while
Ziegelman writes in her book “101 Orchard” about living in a lower East Side.

ATranslation: [reordered] [paraphrased] | AQuality: No

S Man hilt [bereits\@] Ausschau nach Parkbank, Hund und FuBball spielenden Jungs und
Midels.

R You are [already\¢@] on the lookout for a park bench, a dog, and boys and girls playing
football.

T  We are already looking for Parkbank, dog and football playing boys and girls.

T Look for Parkbank, dog and football playing boys and girls.
ATranslation: [word form] [add/remove] | AQuality: Yes

S Bei einem Unfall eines Reisebusses mit [43\45] Senioren als Fahrgisten sind am Don-
nerstag in Krummhorn (Landkreis Aurich) acht Menschen verletzt worden.

R On Thursday, an accident involving a coach carrying [43\45] elderly people in
Krummhérn (district of Aurich) led to eight people being injured.

T  Inthe event of an accident involving a coach with 43 senior citizens as passengers, eight
people were injured on Thursday in Krummaudin (County Aurich).

T In the event of an accident involving a 45-year-old coach as a passenger, eight people
were injured on Thursday in the district of Aurich.

ATranslation : [word form] [add/remove] [other] | AQuality: Yes

S Esistein anstrengendes Pensum, aber die Dorfmusiker helfen [normalerweise\@], das
Team motiviert zu halten.

R 1It’s abackbreaking pace, but village musicians [usually\@] help keep the team motivated.
T It’s a demanding child, but the village musicians usually help keep the team motivated.
T Itis a hard-to-use, but the village musician helps to keep the team motivated.
ATranslation: [word form] [other] | AQuality: Yes
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Figure 7.3: Categories of unexpected changes in the translation of sentence variations
as provided by annotators. The percentage of sentence variations with minor and major
edit differences, as defined in 7.5.1, are shown separately. The hatched pattern indicates
the ratio of sentence variations for which the translation quality changes.

main types of unexpected changes identified by the annotators are a ‘change of word
form’, e.g., verb tense, ‘reordering of phrases’, ‘paraphrasing’ parts of the sentence, and
an ‘other’ category, e.g., preposition. A sentence pair can have multiple labels based on
the types of changes. Table 7.7 provides examples from the test data.

Statistics for each category of unexpected change are shown in Figure 7.3. Our first
observation is that, as to be expected, there are very few ‘unexpected changes’ when two
variations lead to translations with minor differences. Interestingly, the vast majority
of changes are due to paraphrasing and adding or dropping of words. Comparing the
performance of the RNN and Transformer model, we see that both RNN and Transformer
display inconsistent translation behaviour. From the annotators’ assessments, we find
that in 26% and 19% of sentence variations, the modification results in a change in
translation quality for the RNN and Transformer model, respectively. From the manual
evaluations, we conclude that the oscillations in translation outputs captured by our
metrics indeed point to harmful changes in translation quality. This behaviour is not
exposed by standard test sets and evaluation metrics.

7.5.4 Generalization and compositionality

Because of their ability to generalize beyond their training data, deep learning models
achieve exceptional performances in numerous tasks. The generalization ability allows
translation systems to generate long sentences not seen before. Recently there has been
some interest in understanding whether this performance depends on recognizing shal-
low patterns, or whether the networks are indeed capturing and generalizing linguistic
rules (Linzen et al., 2016, Chowdhury and Zamparelli, 2018).

The capability of generalization of current deep learning models can be interpreted as
whether compositionality arises in learning problems where the compositional structure
has not been explicitly declared. The principle of compositionality (Frege, 1892) has
been extremely influential throughout the history of formal semantics and cognitive
science with many arguments for and against it (Montague, 1974, Pelletier, 1994,
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Janssen, 2001).

In simple terms, compositionality can be defined as the ability to construct larger
linguistic expressions by combining simpler parts. For instance, if a model applies the
correct compositional rules to understand ‘John loves Mary’, it must also understand
‘Mary loves John’ (Fodor and LePore, 2002).

Investigating the compositional behaviour of neural networks in real-world natural
language problems is a challenging task. Recently, several approaches have studied
deep learning models’ understanding of compositionality in natural language by using
synthetic and simplified languages (Andreas, 2019, Chevalier-Boisvert et al., 2019).
Hupkes et al. (2020) designed theoretically grounded tests based on different interpreta-
tions of compositionality. Their experiments showed that the current state-of-the-arts
neural network architectures struggle to capture different aspects of compositionality in
language and there is a need for a more extensive set of evaluation criteria to evaluate
these models. Lake and Baroni (2018) introduced the SCAN data set consisting of
simplified natural language commands and their translations into sequences of actions.
They showed that, when there is a systematic difference between training and test data,
neural models fail to generalize because they lack the ability to extract systematic rules
from the training data. Baroni (2019) observed that current models seem to be able to
generalize without any compositional rules. He argued that to a certain extent neural
networks can be productive without being compositional.

Although we do not specifically look into the compositional potential of translation
systems, we are inspired by compositionality in defining our modifications. We argue
that the observed volatile behaviour of the translation systems in this chapter is a side
effect of current models not being compositional. If a translation system has a good
understanding of the underlying structures of the sentences ‘Mary is 10 years old’
and ‘Mary is 11 years old’, it must also translate them very similarly regardless of the
accuracy of the translation. While current evaluation metrics capture the accuracy of
the NMT models, these volatilities go unnoticed.

Current neural models are successful in generalizing without learning any explicit
compositional rules, however, our findings show that they still lack robustness. We
highlighted this lack of robustness in this chapter and suspect that it is associated with
these models’ lack of understanding of the compositional nature of language.

7.6 Conclusion

Motivated by our findings in the previous chapters, we continued investigating the
circumstances where current models do not perform as expected. Specifically, we are
interested in cases where the semantic and syntactic complexity of the sentence remains
unchanged with minor modifications to the observed context. Hence we investigated:

RQ3.3 How can contextual modifications during testing reveal a lack of robustness of
translation models and affect the translation quality?
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We studied an unexpected and erroneous behaviour in current NMT models by
examining various metrics to quantify oscillations in translations of very similar
sentences. We show that even with minor modifications preserving the grammat-
icality and plausibility of the sentence, we can effectively identify a surprising
number of cases where the translations of extremely similar sentences are unexpect-
edly different. Our experiments on our test set showed that current NMT models
are not completely robust and they expose their weaknesses when probed with
specific test cases.

RQ3.4 To what extent is a lack of robustness an indicator of a generalization problem
in neural machine translation models?

Models that have compositional understanding of the world are capable of general-
izing to unseen composite cases (Lake and Baroni, 2018, Cogswell et al., 2019).
‘We proposed an approach to examine the compositional understanding and measure
the generalization capability of NMT models. We did so by introducing a specific
test set and various evaluation metrics. If a model is capable of compositional
understanding, it should have hardly any oscillations in the translation outputs on
this test set. However, once we probed these models with extensive test cases,
we observed that they do in fact exhibit unexpected changes in the translation
outputs. Our analyses showed that both RNN and Transformer models exhibit
volatile behaviour with changes in translation quality for 26% and 19% of sentence
variations, respectively. Our experiments highlighted the need for a comprehensive
evaluation setup for deeper analyses of current neural models.

This concludes the main research question of this chapter as follows:

Research Question 3: 7o what extent are neural translation models vulnerable as a
result of relying on the observed context in the training data to infer meaning?

To answer this question, we examined the vulnerability of current NMT models to small
changes to the observed context. Primarily, we focused on modifications that do not
introduce new linguistic complexities for the translation model. We proposed a simple
approach to modifying standard test sentences without introducing noise. By creating
this data set, we can automatically measure if NMT models lack robustness and exhibit
volatile behaviour. We observed that neural models, even with high performances on
standard test sets, struggle in showing compositional understanding and suffer from a
lack generalization.
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Conclusions

In this thesis, we explored the role of context in machine translation as well as lexical
modeling, using deep learning frameworks. With the increase of computational power
of machines and the availability of data, progress in deep learning has focused on
developing more advanced models. In fact, with the increasing amount of training
data, the performance of many computer vision and language understanding tasks has
increased significantly. In this thesis, we are motivated by what these models learn from
the available data and how we can use this information to resolve linguistic challenges
that arise from statistical learning from data. Specifically, we investigated the influence
of contextual cues in understanding different words and proposed several approaches
that improve how these models learn from context.

Firstly, we looked into ambiguous words and studied how document-level context
assists in distinguishing different meanings of a word. Next, we focused on the influence
of context in the bilingual setting of machine translation. We examined how neural trans-
lation models use context to learn and transfer meaning and showed that by diversifying
data for difficult words, we can improve translation quality. In order to identify difficult
words, we first looked at the data distribution and specifically targeted rare words. Since
there is a lack of diverse contexts in the training data for rare words, the translation of
them is challenging. Next, we investigated the failures of a trained model to identify
difficult words. These difficult words are words that the model has low confidence in
predicting after training on a sizable amount of data. We identified difficult words for
an NMT model and performed data augmentation targeting these words. By creating
new contexts for difficult words, we improved the generation capability of the NMT
model and the translation quality.

Next, we addressed the shortfalls of relying only on the contexts observed in the
training data to learn the meanings of words. We examined under which conditions
context is not enough for capturing various linguistic phenomena. In particular, we
studied the interesting case of idiom translation and showed that current NMT models
often fail to capture such nuances. Neural networks optimize the learning process on
the available data and the lack of data for complex linguistic phenomena such as idiom
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translation is an obstacle for developing stronger models.

Finally, we raised more general questions about the learning capabilities of current
state-of-the-art translation models. We analyzed how these models fail unexpectedly
even in cases where there are no evident complex linguistic phenomena. By introducing
simple contextual modifications, we identified an underlying generalization problem of
state-of-the-art translation models.

In the following section, we revisit our research questions and summarize the main
findings of this thesis. We then propose a number of questions that remain open for
further exploration.

8.1 Main findings

In Chapter 3, we started with a preparatory question on the importance of context when
learning word representations for difficult words. Going past local neighboring words,
we looked at document-level contexts by asking:

RQ1.1 To what extent can distributions over word senses be approximated by distri-
butions over topics of documents without assuming these concepts to be identical?

To answer this question, we investigated whether document-level information is an
adequate contextual cue to help distinguish between different senses of a word. We
experimented with a hierarchical Dirichlet process for modeling document topics
which generated two sets of distributions that we used in our methods: distributions
over topics for words in the vocabulary and distributions over topics for documents
in the corpus. We observed that these distributions distinguish between senses of
words. Next, we examined how we can leverage this information to learn word
representations by asking:

RQ1.2 How can we exploit document-level topics to distinguish between different
meanings of a word and learn the corresponding representations?

We found that the distribution over topics is different for different senses of an
ambiguous word. This motivated us to combine this distribution with the Skipgram
model to provide information on word senses to the embeddings. To achieve
this, we devised three model variations that learned multiple representations per
word based on the assigned topic in different contexts. We then evaluated these
embeddings by asking:

RQ1.3 What are the advantages of using document-level topics in learning multiple
representations per word?

We evaluated word embeddings on the word similarity task and observed slight
improvements under different settings. However, there was no clear winner across
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all data sets. Since word similarity data sets consider individual words in isolation
and do not provide any contexts, we then evaluated the embeddings in a more
context-aware setting. Our evaluation on the lexical substitution task showed that
topic distributions capture word senses to a large extent. Moreover, we obtained
statistically significant improvements in a lexical substitution task without using
any syntactic information. The best results were achieved by our HTLE model
which learns topic-sensitive representations by hard-labeling topics to target words
and not using generic representations.

These three sub-questions together allowed us to answer our first main research
question:

Research Question 1: Can document-level topic distribution help infer the meaning
of a word?

Our experiments showed that we can use document-level topic distribution to improve
word representation learning. To summarize, we introduced an approach in Chapter 3
to learn topic-sensitive word representations that exploits the document-level context
of words and does not require annotated data or linguistic resources. Additionally, we
also learned representations for topics and our qualitative analyses showed that words
belonging to the same topics also tend to be clustered together.

Having observed the effectiveness of wider context in capturing polysemy in word
embeddings, we investigated in Chapter 4 the impact of context on the translation of
difficult words. We first asked:

RQ2.1 How can we successfully augment the training data with diverse contexts for
rare words?

By leveraging language models trained on large amounts of monolingual data,
we generated new sentence pairs containing rare words in new contexts. We first
confirmed that the translation performance is primarily affected by low-frequency
and out-of-vocabulary words. Our analysis in Section 4.6 further showed that
the poor translation quality of rare words is a result of a lack of diverse training
examples. To address this problem, we proposed a method to automatically
generate new contexts for these words. Next, we used this data to augment the
parallel corpus used to train the translation model and re-trained the entire system.
Our results showed that this approach improves the representations of rare words
learned by the model and consequently increases the number of times the model
generates these words correctly.

We observed substantial improvements in simulated low-resource English—German
and German—English settings.

A natural follow-up question is whether we can perform augmentation during test
time as well. So we asked:
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RQ2.2 Do rare words benefit from augmentation via paraphrasing during test time?

Our experiments showed that augmentation at test time reduces the number of
unks in the output and results in more fluent sentences. We cannot modify a
source sentence resulting in a change of meaning without modifying the reference
translation as well. Since we do not have access to the reference translations
during inference, any alteration we made to the source sentence must keep the
meaning of the sentence unchanged. In Section 4.7, we introduced a substitution
via paraphrasing method to replace rare and out-of-vocabulary words in source
sentences. We used different paraphrase knowledge resources to do this: WordNet,
PPDB, GermaNet, CBOW, and our embedding approach proposed in Chapter 3.
We gained improvements in BLEU scores while significantly reducing the number
of unk generated in the target output.

In Chapter 5, we continued addressing our second research question by further
analyzing the effectiveness of additional context for learning the meaning of a
word. Rather than looking at the distribution of the training data, we investigated
the behaviour of a neural MT system during training by asking:

RQ2.3 Do signals from the NMT model help identify low-confidence words that could

benefit from additional context?

We found that signals from failures of the model can be used to identify where
the model is not learning satisfactorily. To investigate this question we first
explored different aspects of other influential augmentation methods, in particular
back-translation, in Section 5.4. Our analyses showed that the quality of the
synthetic data generated with a reasonably good model has a small impact on the
effectiveness of back-translation, but that the ratio of synthetic to real training data
plays a more important role. With a higher ratio, the model becomes biased towards
noise in the synthetic data and unlearns the parameters. Next, we looked into which
words benefit most from additional back-translated data. We observed that words
with high prediction losses in the original model undergo the most changes after
training with synthetic data. Our findings showed that with the addition of contexts
for words with high prediction loss, we can increase the overall accuracy of the
model.

Equipped with this information, we addressed the following question:

RQ2.4 How can we successfully apply data selection of monolingual data to diversify

the contexts of low-confidence words?

In Section 5.6, we proposed our sampling approach targeting words that are
difficult to predict. These words benefit the most from a more diverse context after
augmentation. Our approach included several variants of using the prediction loss
for identifying relevant sentences to back-translate. We also used the contexts
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of difficult words by incorporating context similarities as a feature to sample
sentences for back-translation. We discovered that using the prediction loss to
identify weaknesses of the translation model and providing additional synthetic data
targeting these shortcomings improved the translation quality of German—English
and English—German translations.

Having discussed our specific sub-questions, we return to our more general question:

Research Question 2: How is the translation quality of a word influenced by the
availability of diverse contexts?

In Chapters 4 and 5, we investigated the effect of the availability of data, where the
lack of diverse contexts during training causes difficulties. Rare words, by definition,
suffer from a lack of diverse context. Our studies showed that both translating and
generating rare words is a challenging task with NMT models. We then continued with
the impact of diverse contexts on translation quality in NMT. In particular, we focus on
the back-translation method and the synthetic contexts that are generated with a reverse
trained NMT model. We investigated this method and explored alternatives to select
the monolingual data in the target language that is to be back-translated into the source
language to improve translation quality. Both data augmentation approaches proposed
in Chapters 4 and 5 lead to improvement of translation quality by generating diverse
contexts for training.

Continuing our research on the impact of context on the quality of NMT models, we
subsequently investigated some of its limitations. In Chapter 6, we looked into idiom
translation with neural models. Since the literal meaning of the components is different
than the idiomatic meaning of the entire expression, the model needs to know in which
context to translate it literally and in which idiomatically. Neural MT, in particular, has
been shown to perform poorly on idiom translation despite its overall strong advantage
over previous MT paradigms (Isabelle et al., 2017).

We began by asking:

RQ3.1 What are the challenges of idiom translation with neural models?

One of the main challenges of studying idiom translation is the lack of dedi-
cated and labeled data for evaluation and analysis. As an essential step towards
answering this question, we required a test set explicitly tailored to evaluating
idiom translation quality. To this end, we harvested a parallel data set for training
and testing idiom translation for German—English and English—German. The
test sets included sentences with at least one idiom on the source side while the
training data is a mixture of idiomatic and non-idiomatic sentences with labels to
distinguish between the two. Using our new resources, we performed preliminary
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translation experiments and proposed different metrics to evaluate the quality of
idiom translation.

We then evaluated the translation quality of neural models on our idiom translation
test set:

RQ3.2 How is the translation quality of NMT influenced by idiomatic expressions?

We observed that the NMT model achieved a higher overall BLEU score but scored
lower in idiom translation metrics. This is in agreement with previous works on
investigating idioms as one of the weak points of neural models (Shao et al., 2018).
Since there are no explicit signals in the sentence to identify when a phrase is to
be translated literally and when it is to be translated idiomatically, we examined
whether such a signal would help. Our experiments in Section 6.5 showed that
adding a flag during training to indicate idiomatic use improves the quality of
idiom translation in general. However, the overall BLEU score declined slightly.
We concluded that there is little correlation between overall BLEU scores and the
localized precision of idiomatic phrase translation. Our experiments showed that
idiom translation can benefit from having a tailored development and test set and
more specific metrics for evaluation.

Our next research question focused on other cases where NMT models fail to
generate a correct translation given the observed context. In Chapter 7, we first
examined how to expose this shortcoming in translation models by asking:

RQ3.3 How can contextual modifications during testing reveal a lack of robustness of

translation models and affect the translation quality?

We studied the behaviour of NMT models and observed an unexpected but recurring
pattern: A model that translates a given phrase correctly in a sentence fails to
translate it correctly in another sentence which is very similar to the first. To
explain these observations, we introduced new quantitative metrics measuring
such unexpected changes. These metrics measured oscillations in translations
of very similar sentences. Our experiments further showed that even with minor
modifications preserving the grammaticality and plausibility of the sentence, we
can effectively identify a surprising number of cases where the translations of
extremely similar sentences are very different. By further manual inspection, we
observed that these differences included ‘changes of word forms’, ‘reorderings
of phrases’, ‘changes by paraphrasing’, ‘adding or dropping words from the
translations’, and ‘semantically different translations’. We concluded that with
contextual modifications during testing, we can reveal a lack of robustness of
translation models.

Knowing this shortcoming of NMT models, we then asked:
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RQ3.4 7o what extent is a lack of robustness an indicator of a generalization problem
in neural machine translation models?

We created a test set from our the sentence variation method proposed in Section 7.4.
Next, we examined the robustness of current NMT models with this new test
data and various evaluation metrics. Our analyses showed that both RNN and
Transformer models exhibit volatile behaviour with changes in translation quality.
We observed that these models fall short of capturing the compositional nature
of the language, which confirms previous findings on the lack of compositional
behaviour of NMT systems (Lake and Baroni, 2018). Additionally, we found that
current evaluation sets do not spot the unexpected patterns we identified with our
test data.

These answers allow us to return to our more general question:

Research Question 3: 7o what extent are neural translation models vulnerable as a
result of relying on the observed context in the training data to infer meaning?

To study the influence of the observed context, we investigated how NMT models handle
translating non-compositional and compositional events. Our findings in Chapters 6
and 7 showed that even well-performing models with high translation quality still suffer
from a number of problems in both cases.

First, we looked into non-compositional multiword expressions or idioms. Idiom
translation is one of the more difficult challenges of machine translation. To study this,
in Section 6.3, we created a data set for training and testing idiom translation. We found
that with the observed context, current NMT models struggle with translating non-
compositional expressions. PBMT models on the other hand, despite underperforming
on general-purpose data sets, achieve better idiom translation quality.

Next, we investigated the impact of observed context on translating compositional
expressions. To achieve this, we defined a test set and evaluation metrics and investigated
the NMT model’s behaviour in this particular setting. In creating this test set, we focused
on modifications that do not explicitly introduce new challenges for the translation
model. Large oscillations in translations in the test set are an indication that the models
do not capture composition in a systematic way, but often rely on memorized patterns
to translate new sentences. In Section 7.4, we proposed a simple approach to modify
standard test sentences without introducing noise and hence generating semantically and
syntactically correct variations. Our findings showed that even well-performing models
with high translation quality are prone to this problem and more extensive evaluations
are necessary for assessing a system. We believe that our insights will be useful for
developing more robust NMT models.
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8.2 Future work

In this thesis, we studied how context is used by neural models to learn and generate
words in a language and proposed methods to improve it. While this work highlighted
the potentials of neural translation models in learning from data and studied some cases
where they fall short, there are still many questions left to explore. Here, we discuss a
few of these questions:

Are evaluation metrics for generation tasks still adequate? Since manual eval-
uation is very expensive, several automatic metrics have been designed to evaluate
generation tasks as described in Section 2.6, including BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and Lavie, 2005), and TER (Snover et al.,
2006).

These metrics compare an automatically generated candidate with a reference that
is created manually. Matching the words in the candidate and reference gives us useful
and reproducible results on the performance of a system and has helped advance tasks
such as machine translation. However, with the improvements in generation models, the
errors in the candidates are becoming increasingly subtle and idiosyncratic and existing
metrics are not fully capable of highlighting them. While this issue has recently been
addressed by Chen et al. (2019) and Ribeiro et al. (2020), further research on approaches
and metrics that highlight deeper problems in generation models and go beyond n-gram
based matching are necessary.

How can we learn complex nuances and structures of language? Many neural
models still struggle with complex language structures, such as idiomatic expressions,
in their respective tasks. One reason is that many interesting phenomena in language do
not occur frequently. As a result, exclusively data-driven models fail to capture these
nuances. One way of addressing this issue requires constructing data sets that are both
adequately large and of high quality. With the availability of data sets that target specific
linguistic phenomena, the process of learning them will be measurable and developing
models targeting these challenges will be more accessible.

How compositional are sequence-to-sequence models? Compositionality is the
ability to construct larger linguistic expressions by combining simpler parts (Frege,
1892, Fodor and Lepore, 1992). Investigating the compositional behaviour of neural
networks in real-world natural language problems is a challenging task.

Current NMT models deliver high average translation quality provided enough
training data and a good training-test domain match. It is not entirely clear, though, how
much of this success stems from learning the underlying compositional structure of the
sentence. In general, many traits of neural models are still a black box which hinders
advancements to some extent. Recently, a few studies have focused on studying the
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level of compositionality in neural sequence-to-sequence models using toy data sets
(Lake and Baroni, 2017, Hupkes et al., 2020). Creating evaluation paradigms to further
analyze this aspect can potentially lead to a better understanding of the inner workings
of these influential models.
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Summary

Neural networks learn patterns from data to solve complex problems. To understand
and infer meaning in language, neural models have to learn complicated nuances.
Discovering distinctive linguistic phenomena from data is not an easy task. For instance,
lexical ambiguity is a fundamental feature of language which is challenging to learn.
Even more prominently, inferring the meaning of rare and unseen lexical units is
difficult with neural networks. Meaning is often determined from context. With context,
languages allow meaning to be conveyed even when the specific words used are not
known by the reader. To model this learning process, a system has to learn from a few
instances in context and be able to generalize well to unseen cases. Neural models use a
sizable amount of data that often consists of contextual instances to learn patterns. The
learning process is hindered when training data is scarce for a task. Even with sufficient
data, learning patterns for the long tail of the lexical distribution is challenging.

In this thesis, we focus on understanding certain potentials of contexts in neural
models and design augmentation models to benefit from them. We focus on machine
translation as an important instance of the more general language understanding prob-
lem. To translate from a source language to a target language, a neural model has to
understand the meaning of constituents in the provided context and generate constituents
with the same meanings in the target language. This task accentuates the value of cap-
turing nuances of language and the necessity of generalization from few observations.
The main problem we study in this thesis is what neural machine translation models
learn from data and how we can devise more focused contexts to enhance this learning.
First, we study how document-level contexts aid in distinguishing different meanings
of a word. Second, we investigate how translation models exploit context to learn and
transfer meaning and show that different and diverse contexts resolve various obstacles
of translation. Third, we examine under which conditions the observed context in the
data is not enough for inferring meaning and capturing various linguistic phenomena.

Looking more in-depth into the role of context and the impact of data on learning
models is essential to advance the Natural Language Processing (NLP) field. Un-
derstanding the importance of data in the learning process and how neural network
models interact with and benefit from data can help develop more accurate NLP systems.
Moreover, it helps highlight the vulnerabilities of current neural networks and provides
insights into designing more robust models.
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Samenvatting

Neurale netwerken zijn computermodellen die patronen leren uit data, om zo complexe
problemen op te lossen. Om betekenis in taal te begrijpen en af te leiden, moeten neurale
netwerken ingewikkelde nuances leren. Voorbeelden van taalkundige fenomenen die
niet gemakkelijk zijn voor een neuraal netwerk, zijn lexicale ambiguiteit (woorden met
meerdere betekenissen) en zeldzame of nieuwe woorden die het neurale model niet
of slechts enkele keren heeft gezien in de trainingsdata. De betekenis van zeldzame
of ambigue woorden hangt af van de context waarin ze voorkomen. Door middel
van context kunnen talen betekenis overbrengen, zelfs als de lezer bepaalde gebruikte
woorden niet kent. Om dit leerproces te modelleren, moet een systeem leren van slechts
enkele voorbeelden in een bepaalde context en moet het goed kunnen generaliseren
naar ongeziene gevallen. Neurale modellen gebruiken een aanzienlijke hoeveelheid
data, vaak bestaande uit voorbeelden in context die gebruikt worden om patronen te
leren. Als er maar weinig trainingsdata voor een bepaalde taak is, wordt het leerproces
gehinderd, maar ook als er genoeg data beschikbaar is, blijft het leren van zeldzame
woorden een uitdaging.

De focus van dit proefschrift ligt op het begrijpen van de mogelijkheden die con-
text biedt voor neurale modellen om hier vervolgens van te kunnen profiteren. We
richten ons op machinaal vertalen als een belangrijk voorbeeld van het meer algemene
probleem van taalbegrip. Om te vertalen van een brontaal naar een doeltaal, moet een
neuraal model de betekenis van woorden of zinnen in de gegeven context begrijpen
en woorden of zinnen met dezelfde betekenis genereren in de doeltaal. Deze taak be-
nadrukt het belang van het vastleggen van nuances in taal en de noodzaak om te kunnen
generaliseren vanuit slechts een beperkt aantal observaties. Het belangrijkste probleem
dat we in dit proefschrift bestuderen is wat neurale machinale vertaalmodellen leren
van data en hoe we meer gefocuste contexten kunnen bedenken om dit leerproces te
verbeteren. Allereerst bestuderen we hoe context op documentniveau kan helpen bij het
onderscheiden van verschillende betekenissen van een woord. Daarnaast onderzoeken
we hoe vertaalmodellen context gebruiken om betekenis te leren en over te dragen en
laten we zien dat het gebruik van verschillende contexten een aantal obstakels tijdens
het vertalen kan overwinnen. Ten slotte onderzoeken we onder welke voorwaarden de
waargenomen context in de data onvoldoende is om betekenis af te kunnen leiden en
bepaalde taalkundige fenomenen te vatten.

Door dieper in te gaan op op de rol die context speelt en de impact van data op
het leren van modellen, draagt het werk in dit proefschrift bij aan de vooruitgang van
Natural Language Processing (NLP). Het is belangrijk dat we goed begrijpen hoe neurale
modellen interageren met en profiteren van data, om zo accuratere NLP-systemen te
ontwikkelen. Bovendien helpt het onderzoek in dit proefschrift om de kwetsbaarheden
van huidige neurale netwerken te benadrukken en geeft het inzicht in hoe robuustere
modellen ontworpen kunnen worden.
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