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Overview

Formal semantics vs distributional semantics
o Compositionality
o Treatment of adjectives

Sanne: Guevara’'s model

Adjectives as linear maps
o ldea: using co-occurrence information

o Implementation and experimental setup

Evaluation
o Predicting adjective noun vectors

o Comparing adjectives
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Formal semantics vs distributional semantics

NP
Az.P(x) A black(z)

Adj N
I

black cat
AP.\x.P(z) A black(x) Az.cat(z)

Compositionality?

The meaning of a complex expression is determined by the
meanings of its constituents and its syntactic structure.
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Treatment of adjectives in formal semantics

N

[black cat] = [black] N[cat] ?

But what about fake, /arge —and ultimatively even bHlack?
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Adjectives are matrices

They are endomorphic linear maps in noun space:

AN =A-N

If we know

the context vector of the AN-pair AN

the context vector of the noun J_\/:
then we can estimate the adjective matrix A.

This estimation is done by partial least square regression.

In contrast to Guevara (2010):

The A matrices are specific to a single adjective.
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Adjectives as linear maps

Experimental setup
o 2.83 billion token corpus

o test set: 26,440 attested AN pairs
° semantic space:
® co-occurrence matrix with sentence-internal co-occurrence
counts
o raw counts transformed into Local Mutual Information scores
o dimensionality reduction by Singular Value Decomposition:
40,999 x 300 matrix
» semantic space also populated by adjectives and nouns not
included in the AN test set
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Intuitively,. . .

...we want the predicted AN vectors to approximate the observed
ones as closely as possible.

» Evaluate the system based on this:

@ compute cosine of the predicted AN vector with all of the 41K
vectors populating the semantic space
@ rank these vectors by the obtained cosine values

@ for each of the 26K observed AN vectors, check its position in
the ranking
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Predicting adjective noun vectors

method | 25% | median | 75%
alm 17 170 >1K
add 27 257 >1K
noun 72 448 >1K
mult 279 >1K >1K
sim 629 >1K >1K
adj >1K >1K >1K

Table 3: Quartile ranks of observed ANs in cosine-ranked
lists of predicted AN neighbors.



Evaluation

Predicting adjective noun vectors

method | 25% | median | 75%
alm 17 170 >1K
add 27 257 >1K
noun 72 448 >1K
mult 279 >1K >1K
sim 629 >1K >1K
adj >1K >1K >1K

Table 3: Quartile ranks of observed ANs in cosine-ranked
lists of predicted AN neighbors.

However. ..

For 27% of the alm-predicted AN vectors, the observed AN
vector is not in the top-1K neighbourset.
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In more detail. ..

The best results were obtained for high frequent adjectives:

new, great, American, large, different. . .

> new, large, different:
highly polysemous, bordering on function words!
» Can the model capture the polysemous nature of adjectives?

> Ideally, adjective meanings would arise only in combination
with the noun they modify. Recall Pustejovsky’'s Generative
Lexicon!
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Wwp13
wp23
wp33
wp43
wps3

green

Wg14
Wwp24
Wp34
Wp44
Wp54

UJ515 0
wpa2s 0
wp3s5 0 b1
Wp4s 0 B2
wgss 0 B3
chair initiative



Evaluation

Dealing with polysemy
» Hope: certain weights affect only certain features

» Example: green could map concrete features to colour
dimensions and abstract features to political dimensions

0
0
0
0
0

green chair initiative




Evaluation

Problematic cases...

e often attributable to anomalous observed AN vectors

e model is worse at approximating the AN vectors of rare

adjectives
SIMILAR DISSIMILAR
adj N obs. neighbor | pred. neighbor adj N obs. neighbor | pred. neighbor
common understanding common approachl common vision|| American affair | Am. development  Am. policy
different authority diff. objective | diff. description||current dimension left (a) current element]
different partner diff. organisation | diff. department| good complaint | current complaint good beginning
general question general issue same great field excellent field | gr. distribution
historical introduction | hist. background same historical thing different today hist. reality
necessary qualification| nec. experience same important summer summer big holiday
new actor new cast same large pass historical region | large dimension|
recent request recent enquiry same special something| little animal special thing
small drop droplet drop white profile chrome (n) white show
young engineer young designer | y.engineering || young photo important song | young image

Table 4: Left: nearest neighbors of observed and alm-predicted ANs (excluding each other) for a random set of ANs

where rank of observed w.r.t. predicted is 1. Right: nearest neighbors of predicted and observed ANs for random set
where rank of observed w.r.t. predicted is > 1K.
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Evaluation

Comparing adjectives

Since adjectives are no longer represented as vectors— how can we
still compare them meaningfully?

Two methods:

@ represent adjective by the centroid of all AN vectors
containing the adjective

American adult, American menu. .. ~ | American N centroid |

@ unfold 300 x 300 matrix into 90K-dimensional vector
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Evaluation

Comparing adjectives

Does this capture semantic similarity?

» Clustering adjectives:

white nice recent big
black excellent new huge
red important current little
green major old small
appropriate young large
» Results:
input purity

matrix 73.7 (68.4-94.7)
centroid | 73.7 (63.2-94.7)
vector 68.4 (63.2-89.5)
random | 45.9 (36.8-57.9)

Table 5: Percentage purity in adjective clustering with
bootstrapped 95% confidence intervals.



Conclusion

o adjectives representable as matrices

¢ in line with their formal semantics treatment as functions
o learnable from co-occurrence data of adjective-noun pairs
o reliable predictions for adjective-noun vectors

o adjectives still comparable with regard to semantic similarity



Discussion / Open questions

o Can we really use centroids to represent polysemous
adjectives?

o Is the model limited to attributive adjectives, or can it also be
applied to predicative constructions?

o Baroni and Zamparelli claim that the model can naturally deal
with recursion. They do not explicitly test this, though. So,
can it?
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