
Computational Semantics
Day 2: Meaning representations and (predicate) logic

Jan van Eijck1 & Christina Unger2

1CWI, Amsterdam, and UiL-OTS, Utrecht, The Netherlands
2CITEC, Bielefeld University, Germany

ESSLLI 2011, Ljubljana

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 1 / 66



Goals

Whatever we decide meanings to be, we want:

• a finite way to specify the meanings of the infinite set of sentences,
i.e. a recursive procedure to determine the meaning of complex
expressions given the meanings of lexical items and a syntactic
structure (compositionality)

• to capture the relation of a natural language expression and the real
world (modeltheoretic semantics)

• to capture certain semantic intuitions
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Semantic intuitions

• Semantic anomalies (despite syntactic well-formedness)
• Colourless green ideas sleep furiously.
• Forty-seven frightened sincerity.

• Contradictions
• It is raining and it is not raining.
• He is a bachelor and merrily married to Mary.

• Entailments
• Speedy Gonzales ran fast. → Speedy Gonzalez ran.
• Every human is mortal. → Chomsky is mortal.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 3 / 66



Outline

Outline

1 Form and Content

2 First-order predicate logic
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Form and Content

Form in Haskell: User defined data types

Imagine we want to use types that correspond to syntactic categories like
S, NP, VP and capture their internal structure.

Instead of coding them as a combination of strings, we want to define
structure trees for them.

This can be done with user defined data types.
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Form and Content

Type definitions

General form:

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

This can be used to create:

• enumeration types

• composite types

• recursive types

• parametric types
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Form and Content

Example: Enumeration types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Examples:

module Day2 where

--data Bool = True | False

data Season = Spring | Summer | Autumn | Winter

data Temperature = Hot | Cold | Moderate
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Form and Content

Example: Enumeration types

Now, we can define a function using objects of type Season and
Temperature.

weather :: Season -> Temperature

weather Summer = Hot

weather Winter = Cold

weather _ = Moderate

But user-defined types do not automatically have operators for equality,
ordering, show, etc.

> weather Spring

No instance for (Show Temperature)

arising from a use of ‘print’ at <interactive>:1:0-13
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Form and Content

Instance declarations for Show

In order to display user-defined types, we can either define the function
show :: Typename -> String explicitely . . .

instance Show Season where

show Spring = "Spring"

show Summer = "Summer"

show Autumn = "Autumn"

show Winter = "Winter"

. . . or derive it.

data Season = Spring | Summer | Autumn | Winter

deriving Show
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Form and Content

Example: Composite types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Examples:

data Book = Book Int String [String]

data Color = White | Black | RGB Int Int Int

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 11 / 66



Form and Content

Example: Recursive types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Example:

data Tree = Leaf | Branch Tree Tree
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Form and Content

Example: Polymorphic types

data type name (type parameters) = constructor1 t11 . . . t1i
| constructor2 t21 . . . t2j
| . . .
| constructorn tn1 . . . tnk

Examples:

data Maybe a = Nothing | Just a

data List a = Nil | Cons a (List a)

data Tree a = Leaf a | Branch (Tree a) (Tree a)
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Form and Content

From context-free grammars to datatypes

Now we can define types like the following:

data S = S NP VP

data N = Boy | Princess | Dwarf | Giant | Wizard

I.e. we treat categories (non-terminals) as types, and words (terminals) as
data constructors. This gives us a very straightforward way to express a
context-free grammar by means of datatypes.
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Form and Content

A context-free grammar in Haskell

S ::= NP VP

NP ::= NAME | DET N | DET RN

ADJ ::= happy | drunken | evil

NAME ::= Atreyu | Dorothy | Goldilocks | Snow White

N ::= boy | princess | dwarf | wizard | ADJ N

RN ::= N REL VP | N REL NP TV

REL ::= that

DET ::= some | every | no

VP ::= IV | TV NP | DV NP NP

IV ::= cheered | laughed | shuddered

TV ::= admired | helped | defeated | found

DV ::= gave
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Form and Content

Haskell Version Again

data S = S NP VP deriving Show

data NP = NP1 NAME | NP2 DET N | NP3 DET RN

deriving Show

data ADJ = Happy | Drunken | Evil

deriving Show

data NAME = Atreyu | Dorothy | Goldilocks | SnowWhite

deriving Show

data N = Boy | Princess | Dwarf | Giant | Wizard | N ADJ N

deriving Show

data RN = RN1 N That VP | RN2 N That NP TV

deriving Show

data That = That deriving Show

data DET = A_ | Some | Every | No | The

deriving Show

data VP = VP1 IV | VP2 TV NP | VP3 DV NP NP deriving Show

data IV = Cheered | Laughed | Shuddered deriving Show

data TV = Admired | Helped | Defeated | Found deriving Show

data DV = Gave deriving Show
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Form and Content

Examples

From well-formed expressions we can read off their structure.

Well, not quite. Building structures from strings is called parsing . . .

• every drunken wizard

np :: NP

np = NP2 Every (N Drunken Wizard)

• No princess laughed.

s1 :: S

s1 = S (NP2 No Princess) (VP1 Laughed)

• Atreyu found the princess.

s2 :: S

s2 = S (NP1 Atreyu) (VP2 Found (NP2 The Princess ))
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Form and Content

Examples

Note that these examples are typed structure trees.

Structure trees that do not ‘belong’ to the tree language are not
well-typed.

> S Princess Cheered

<interactive>:1:2:

Couldn’t match expected type ‘NP’ against inferred type ‘N’

In the first argument of ‘S’, namely ‘Princess’

In the expression: S Princess Laughed

In the definition of ‘it’: it = S Princess Laughed
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Form and Content

Content

It was relatively easy to say what form is: Form is what can be captured
by tree structures.

It is harder to say what content is. But the relevant notion is sameness of
content.

Replace the question ‘What is the meaning of a sentence?’ by the more
precise question ‘When do two sentences express the same meaning’?

Restrict attention to declarative sentences. Declarative sentences are
sentences that can be either true or false in a given context.

It is raining today in Ljubljana and I am Dutch are declarative sentences.
If they are uttered, the context of utterance fixes the meaning of today
and I, and the uttered sentences are either true or false in that context.

Let’s try to be smarter next time is not a declarative sentence. Is drinking
coffee bad for you? is not a declarative sentence either.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 66



Form and Content

Content

It was relatively easy to say what form is: Form is what can be captured
by tree structures.

It is harder to say what content is. But the relevant notion is sameness of
content.

Replace the question ‘What is the meaning of a sentence?’ by the more
precise question ‘When do two sentences express the same meaning’?

Restrict attention to declarative sentences. Declarative sentences are
sentences that can be either true or false in a given context.

It is raining today in Ljubljana and I am Dutch are declarative sentences.
If they are uttered, the context of utterance fixes the meaning of today
and I, and the uttered sentences are either true or false in that context.

Let’s try to be smarter next time is not a declarative sentence. Is drinking
coffee bad for you? is not a declarative sentence either.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 66



Form and Content

Content

It was relatively easy to say what form is: Form is what can be captured
by tree structures.

It is harder to say what content is. But the relevant notion is sameness of
content.

Replace the question ‘What is the meaning of a sentence?’ by the more
precise question ‘When do two sentences express the same meaning’?

Restrict attention to declarative sentences. Declarative sentences are
sentences that can be either true or false in a given context.

It is raining today in Ljubljana and I am Dutch are declarative sentences.
If they are uttered, the context of utterance fixes the meaning of today
and I, and the uttered sentences are either true or false in that context.

Let’s try to be smarter next time is not a declarative sentence. Is drinking
coffee bad for you? is not a declarative sentence either.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 66



Form and Content

Content

It was relatively easy to say what form is: Form is what can be captured
by tree structures.

It is harder to say what content is. But the relevant notion is sameness of
content.

Replace the question ‘What is the meaning of a sentence?’ by the more
precise question ‘When do two sentences express the same meaning’?

Restrict attention to declarative sentences. Declarative sentences are
sentences that can be either true or false in a given context.

It is raining today in Ljubljana and I am Dutch are declarative sentences.
If they are uttered, the context of utterance fixes the meaning of today
and I, and the uttered sentences are either true or false in that context.

Let’s try to be smarter next time is not a declarative sentence. Is drinking
coffee bad for you? is not a declarative sentence either.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 66



Form and Content

Content

It was relatively easy to say what form is: Form is what can be captured
by tree structures.

It is harder to say what content is. But the relevant notion is sameness of
content.

Replace the question ‘What is the meaning of a sentence?’ by the more
precise question ‘When do two sentences express the same meaning’?

Restrict attention to declarative sentences. Declarative sentences are
sentences that can be either true or false in a given context.

It is raining today in Ljubljana and I am Dutch are declarative sentences.
If they are uttered, the context of utterance fixes the meaning of today
and I, and the uttered sentences are either true or false in that context.

Let’s try to be smarter next time is not a declarative sentence. Is drinking
coffee bad for you? is not a declarative sentence either.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 66



Form and Content

Content

It was relatively easy to say what form is: Form is what can be captured
by tree structures.

It is harder to say what content is. But the relevant notion is sameness of
content.

Replace the question ‘What is the meaning of a sentence?’ by the more
precise question ‘When do two sentences express the same meaning’?

Restrict attention to declarative sentences. Declarative sentences are
sentences that can be either true or false in a given context.

It is raining today in Ljubljana and I am Dutch are declarative sentences.
If they are uttered, the context of utterance fixes the meaning of today
and I, and the uttered sentences are either true or false in that context.

Let’s try to be smarter next time is not a declarative sentence. Is drinking
coffee bad for you? is not a declarative sentence either.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 19 / 66



Form and Content

Sameness of Meaning

Jan van Eijck is Dutch and I am Dutch do not have the same meaning, for
if one of the teachers of this course utter them they are both true, and if
the other teacher of the course utters them one will be true and the other
false.

Jan van Eijck is Dutch and Jan van Eijck is Nederlander have the same
meaning, as have Cinderella est belle and Assepoester is mooi.

To check for sameness of meaning one has to interpret sentences in many
different situations, and check if the resulting truth values are always the
same.

But what does ‘interpretation of a sentence in a situation’ mean?

To replace the intuitive understanding by a precise understanding one can
look at formal examples: the language of predicate logic and its semantics,
or the Haskell language, and its interpretation.
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To replace the intuitive understanding by a precise understanding one can
look at formal examples: the language of predicate logic and its semantics,
or the Haskell language, and its interpretation.
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Form and Content

The study of meaning

Lexical semantics:

• What are the meanings of words?

Compositional semantics:

• What are the meanings of phrases and sentences?

• And how are the meanings of phrases and sentences derived from the
meanings of words?
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Form and Content

What is the meaning of words?

Meaning is...

• about the world out there

• related to something in the mind (thoughts, ideas, concepts)
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Form and Content

Formalizing word meanings

• semantic feature sets, e.g.
[[bachelor ]] = [+male,+adult,−married]

• conceptual representations, e.g. fuzzy concepts with a prototype
centroid

We will stay agnostic to what the meanings of words are.

For us it will suffice to have a formal representation of them, that stands
proxy for whatever we assume meanings to be (i.e. that are pointers to
concepts or real world objects or something else).
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Form and Content

Sentence meanings

Denotational meaning (knowing what)
can be formalized as conditions for truth in situations.
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Form and Content

Sentence meanings

Operational meaning (knowing how)
can be formalized as algorithms for performing an action.
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Form and Content

Meanings as truth conditions

To know the meaning of a sentence is
to know how the world would have to
be for the sentence to be true.

(Ludwig Wittgenstein, 1889–1951)

The meaning of words and sentence parts is their contribution to the
truth-conditions of the whole sentence.
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Form and Content

Example

Intuitively, the sentence It is raining in Amsterdam is true if and only if it
is raining in Amsterdam.

This sounds trivial, but it is not!

• How does the sentence get its truth conditions?

• What do the words contribute and how are these contributions
combined?

• How does structure affect truth conditions?

Also, in order to specify a formal procedure for computing the truth
conditions of a sentence, the metalanguage should be a formal language
(and not English).
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Form and Content

The principle of compositionality

The meaning of a complex expression is a function
of the meanings of its parts and of the syntactic
rules by which they are combined.

This is a methodological issue:
The question is not whether natural languages satisfy the principle of
compositionality, but rather whether we can and want to design meaning
assembly in a way that this principle is respected.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 66



Form and Content

The principle of compositionality

The meaning of a complex expression is a function
of the meanings of its parts and of the syntactic
rules by which they are combined.

This is a methodological issue:
The question is not whether natural languages satisfy the principle of
compositionality, but rather whether we can and want to design meaning
assembly in a way that this principle is respected.

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 27 / 66



Form and Content

Modeltheoretic semantics

A particular approach to truth-conditional semantics is modeltheoretic
semantics. It represents the world as a mathematical structure — a
model — and relates natural language expressions to this structure.
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Form and Content

Modeltheoretic semantics

A model should comprise all parts of the world relevant for interpretation:

• entities
(Atreyu, princesses, wizards, and other people)

• information about which properties these entities satisfy
(being happy, laughing, etc.)

• information about which relations hold between which entities
(admiring, defeating, etc.)

• maybe contextual parameters like time and place
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Form and Content

Modeltheoretic semantics

We say that natural language expressions denote objects in the model.

Expression Modeltheoretic object

sentence truth value
proper name entity
nouns unary predicates (properties)
adjectives unary predicates (properties)
intransitive verbs unary predicates (properties)
transitive verbs binary predicates (relations)
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Form and Content

We will demonstrate the workings of a compositional modeltheoretic
semantics using the example of first-order predicate logic (FOL), which
we will need to know anyway as we are going to use it as formal
metalanguage for meaning representations.
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First-order predicate logic

First-order predicate logic
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First-order predicate logic

Sentences denote propositions (linguistic entities that can be ascribed a
truth value, i.e. something like a statement).

In order to be able to talk about the internal structure of propositions,
first-order predicate logic provides us with names of objects, predicates for
attributing properties to objects, and quantifiers for quantifying over
objects.
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First-order predicate logic

Vocabulary of FOL

• variables x , . . .

• individual constants c , . . .

• predicate constants R, . . . of different arities

• logical constants:
• unary connective ¬
• binary connectives ∧,∨,→
• quantifiers ∀,∃

• auxiliary symbols (brackets)
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First-order predicate logic

Syntax of FOL

• Variables and constants are terms.

• If t1, . . . , tn are terms and R is an n-place predicate constant, then
R(t1, . . . , tn) is a formula.

• For x a variable and F a formula, ∀x .F and ∃x .F are formulas.

• If F1 and F2 are formulas, then so are (F1 ∧ F2), (F1 ∨ F2), ¬F1, and
(F1 → F2).

• Nothing else is a formula.
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First-order predicate logic

Examples

• R(x , y)

• ∀x .P(x)

• R(x , y , z) ∧ ∃y .(P(y)→ Q(y))

Notational conventions:

• In ∃x .F and ∀x .F , the dot (and thus the scope of the quantifier)
extends as far to the right as possible.

• We use x , y , z . . . for variables, P,Q,R, . . . for relation symbols, and
omit brackets when they are not necessary.
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First-order predicate logic

A grammar for FOL

Const ::= c | Const ’

Var ::= x | Var ’

Rel ::= R | Rel ’

Term ::= Const | Var

Formula ::= Reln(Term1, . . . ,Termn)

| ∀Var.Formula | ∃Var.Formula

| (Formula ∧ Formula) | (Formula ∨ Formula)

| ¬Formula | (Formula→ Formula)

Where n ∈ N encodes the arity of a relation symbol.
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First-order predicate logic

Implementation

data Term = Var Int

| Const String

deriving Eq

data Formula = Atom String [Term]

| Neg Formula

| Conj [Formula]

| Disj [Formula]

| Impl Formula Formula

| Forall Int Formula

| Exists Int Formula

deriving Eq

Jan van Eijck & Christina Unger Computational Semantics ESSLLI 2011 38 / 66



First-order predicate logic

Implementation

instance Show Term where

show (Var n) = show n

show (Const s) = s

instance Show Formula where

show (Atom s []) = s

show (Atom s ts) = s ++"("++ showLst "," ts ++")"

show (Neg f) = "~" ++ show f

show (Conj fs) = showLst " AND " fs

show (Disj fs) = showLst " OR " fs

show (Impl f1 f2) = show f1 ++ " -> " ++ show f2

show (Forall n f) = "FORALL " ++ show n ++ "." ++ show f

show (Exists n f) = "EXISTS " ++ show n ++ "." ++ show f
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First-order predicate logic

Implementation

showLst :: Show a => String -> [a] -> String

showLst _ [] = []

showLst s (x:xs) | null xs = show x

| otherwise = show x ++ s ++ showLst s xs
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First-order predicate logic

Bound and free variables

An instance of a variable v is bound if is in the scope of an instance of
the quantifier ∀v or ∃v (i.e. occurs in a formula F in ∀v .F or ∃v .F ),
otherwise it is free.

Feel free to try implementing corresponding functions bound and free in
Haskell!
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First-order predicate logic

Semantics of FOL

Formulas are interpreted with respect to a model M = 〈D, I 〉, where

• D is a domain of entities

• I is an interpretation function that specifies an appropriate
semantic value for each constant of the language:

• individual constants are interpreted as elements of D
(i.e. objects in the domain)

• n-place predicate constants R are interpreted as n-ary
relations on D (i.e. relations over objects in the domain)

and an assignment function g that maps each variable to an element of
the domain D.
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First-order predicate logic

Truth of formulas

We write [[F ]]M,g for the interpretation of formula F relative to M, g .

[[Rn(t1, . . . , tn)]]M,g = 1 iff (I(t1), . . . , I(tn)) ∈ I(R)

[[F1 ∧ F2]]M,g = 1 iff [[F1]]M,g = 1 and [[F2]]M,g = 1

[[F1 ∨ F2]]M,g = 1 iff [[F1]]M,g = 1 or [[F2]]M,g = 1

[[¬F ]]M,g = 1 iff [[F ]]M,g = 0

[[F1 → F2]]M,g = 1 iff not both [[F1]]M,g = 1 and [[F2]]M,g = 0

[[∀v .F ]]M,g = 1 iff for all d ∈ D it holds that [[F ]]M,g [v :=d ] = 1

[[∃v .F ]]M,g = 1 iff there is some d ∈ D such that [[F ]]M,g [v :=d ] = 1

Where g [v := d ] is the variable assigment which assigns d to the variable
v , and is identical to g otherwise.
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First-order predicate logic

Example

[[P(x)→ ∃y .Q(y) ∧ R(a, y)]]M,g = 1

• iff not both [[P(x)]]M,g = 1 and [[∃y .Q(y) ∧ R(a, y)]]M,g = 0

• iff not both g(x) ∈ I(P) and there is no d ∈ D such that
[[Q(y) ∧ R(a, y)]]M,g [y :=d ] = 1

• iff not both g(x) ∈ I(P) and there is no d ∈ D such that
[[Q(y)]]M,g [y :=d ] = 1 and [[R(a, y)]]M,g [y :=d ] = 1

• iff not both g(x) ∈ I(P) and there is no d ∈ D such that
g [y := d ](y) ∈ I(Q) and (I(a), g [y := d ](y)) ∈ I(R)
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First-order predicate logic

Reformulation using Lists

[[Rn[t1, . . . , tn]]]M,g = 1 iff [I(t1), . . . , I(tn)] ∈ I(R)

[[¬F ]]M,g = 1 iff [[F ]]M,g = 0

[[∧[F1, . . . ,Fn]]M,g = 1 iff [[F1]]M,g = 1 and . . . and [[Fn]]M,g = 1

[[∨[F1, . . . ,Fn]]M,g = 1 iff [[F1]]M,g = 1 or . . . or [[Fn]]M,g = 1

[[∀v .F ]]M,g = 1 iff for all d ∈ D it holds that [[F ]]M,g [v :=d ] = 1

[[∃v .F ]]M,g = 1 iff there is some d ∈ D such that [[F ]]M,g [v :=d ] = 1
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First-order predicate logic

Implementation

data Model = Model { domain :: Domain ,

mapping :: ConstantMapping ,

interpretation :: Interpretation }

type Domain = [Entity]

type ConstantMapping = String -> Entity

type Interpretation = String -> [Entity] -> Bool

type Assignment = Int -> Entity
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First-order predicate logic

Implementation of g [v := d ]

The implementation of model checking for predicate logic is
straightforward, once we have captured the notion g [v := d ].

change :: (Int -> a) -> Int -> a -> Int -> a

change s x d = \ v -> if x == v then d else s v

Now change g x d is the implementation of g [x := d ].
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First-order predicate logic

Implementation of [[φ]]M,g

eval :: Model -> Assignment -> Formula -> Bool

eval m g (Atom s ts) = (interpretation m) s

(map (intTerm m g) ts)

eval m g (Neg f) = not $ eval m g f

eval m g (Conj fs) = and $ map (eval m g) fs

eval m g (Disj fs) = or $ map (eval m g) fs

eval m g (Impl f1 f2) = not ((eval m g f1)

&& not (eval m g f2))

eval m g (Forall n f) =

all (\d -> eval m (change g n d) f) (domain m)

eval m g (Exists n f) =

any (\d -> eval m (change g n d) f) (domain m)

intTerm :: Model -> Assignment -> Term -> Entity

intTerm m g (Var n) = g n

intTerm m g (Const s) = (mapping m) s
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First-order predicate logic

Satisfiability

The question whether a predicate logical formula is satisfiable, i.e.
whether there is a model and an assignment that make it true, is not
decidable, i.e. there is no method that tells us for an any formula in a
finite number of steps, whether the answer is yes or no.

Predicate logic is expressive enough to formulate undecidable queries. It
can specify the actions of Turing machines, and it can formalize
statements about Turing machines that are undecidable, such as the
Halting Problem.

The semantic tableaux method is a systematic hunt for a conterexample
to the validity of a formula. But this is not a decision method, for there
are formulas for which the tableau construction process does not terminate.

Note: However, there are fragments of first-order predicate logic that are

decidable, e.g. the so-called ∃∗∀∗-prefix class and monadic predicate logic.
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Logical formulas as meaning representations
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Logical formulas as meaning representations

Direct vs indirect interpretation

natural language expression

logical representation

modeltheoretic interpretation
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Logical formulas as meaning representations

Indirect interpretation

Using FOL as language for meaning representations reduces the semantics
of natural language to the semantics of FOL (which we know). Thus our
task is to find a procedure to systematically map natural language
expressions to expressions of FOL.
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Logical formulas as meaning representations

Digression on Direct Interpretation: Predicate Logic in
Haskell

• The domain of discourse is some Haskell type. Let us say the type of
Integers.

• Predicates are properties of integers, such as odd, even, threefold,
(>0), and relations such as (>), (<=).

• Logical operations on predicates are negation, conjunction,
disjunction.

• ‘even or threefold’ becomes \ x -> even x || rem x 3 == 0.

• ‘not even’ becomes not . even or \ x -> not (even x).

• Quantifications are ‘some integers in [1..100] are even’, or ‘all integers
in [1..] are positive’.
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Logical formulas as meaning representations

Examples of Quantifications in Haskell

• ‘some integers in [1..100] are even’

• Day2> any even [1..100]

True

• ‘all integers in [1..100] are positive’:

• Day2> all (>0) [1..100]

True

Day2> all (>0) [1..]

{Interrupted!}

• Question: does a quantification over an infinite list (like [1..])
always run forever?
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Logical formulas as meaning representations

Example vocabulary

• individual constant a, b, c

• predicate constants
• for one-place predicates: boy, princess, dwarf, giant, wizard, happy, evil,

cheer, laugh
• for two-place predicates: admire, defeat, find
• for three-place predicates: give

As well as variables and the logical constants ∀,∃,∧,∨,¬,→.
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Logical formulas as meaning representations

Example formulas

• wizard(b)

• evil(x) ∧ admire(x , c)

• ∀x .happy(x)

• ∃y .∃x .¬find(x , y)
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Logical formulas as meaning representations

Example translation

Lexical item Logical constant

Atreyu a (individual constant)
boy boy (one-place predicate)
princess princess (one-place predicate)
wizard wizard (one-place predicate)
cheered cheer (one-place predicate)
laughed laugh (one-place predicate)
happy happy (one-place predicate)
drunken drunken (one-place predicate)
admired admire (two-place predicate)
defeated defeat (two-place predicate)
found find (two-place predicate)
gave give (three-place predicate)
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Logical formulas as meaning representations

Example logical forms

• Atreyu laughed

laugh(a)

• Everyone cheered

∀x .cheer(x)

• Atreyu admired a princess

∃x .princess(x) ∧ admire(a, x)

• Every dwarf defeated some giant

∀x .dwarf(x)→ ∃y .giant(y) ∧ defeat(x , y)
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Logical formulas as meaning representations

Example model

Assume a model M = 〈D, I 〉, where

• D = {E,A,F,,M,f,g}

• I(a) =E
• I(b) =A
• I(c) =F

• I(d) = M
• I(e) =f
• I(f ) =g
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Logical formulas as meaning representations

Example model

• I(boy) = {E}
• I(princess) = {F}
• I(wizard) = {A}
• I(sword) = {M}
• I(happy) = {E,f,g}

• I(evil) = {A,M}
• I(laugh) = {A,f}
• I(cheer) = {E}
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Logical formulas as meaning representations

Example model

• I(admire) = { (E,F), (A,F), (g,F), (f,g) }

• I(defeat) = { (E,A), (f,g) }

• I(find) = { (E,F), (A,E), (f,g) }

• I(give) = { (A,F,g), (F,E,M) }
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Logical formulas as meaning representations

Examples

• ∃x .boy(x) ∧ admire(x , c) is true relative to M, g
iff for some entity d it holds that both

• d ∈ I(boy) and
• (d , I(c)) ∈ I(admire)

• ∀x .((wizard(x)∧¬evil(x))→ ∃y .admire(x , y)) is true relative to M, g
iff for some entity d it holds that

• if d ∈ I(wizard) and d /∈ I(evil), then
• for some entity d ′ it holds that (d , d ′) ∈ I(admire)
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Logical formulas as meaning representations

Implementation

data Entity = A | B | C | D | E | F deriving (Eq,Show)

model :: Model

model = Model dom intConst int

dom :: Domain

dom = [A,B,C,D,E,F]

intConst :: ConstantMapping

intConst "a" = A

intConst "b" = B

intConst "c" = C

intConst "d" = D

intConst "e" = E

intConst "f" = F

intConst _ = error "unknown constant"
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Logical formulas as meaning representations

Implementation

int :: Interpretation

int "boy" = \ [x] -> x ‘elem ‘ [A]

int "princess" = \ [x] -> x ‘elem ‘ [C]

int "wizard" = \ [x] -> x ‘elem ‘ [B]

int "sword" = \ [x] -> x ‘elem ‘ [D]

int "happy" = \ [x] -> x ‘elem ‘ [A,E,F]

int "evil" = \ [x] -> x ‘elem ‘ [B,D]

int "laugh" = \ [x] -> x ‘elem ‘ [B,E]

int "cheer" = \ [x] -> x ‘elem ‘ [A]

int "admire" = \ [x,y] -> (x,y) ‘elem ‘ [(A,C),(B,C),(E,C),

(F,C)]

int "defeat" = \ [x,y] -> (x,y) ‘elem ‘ [(A,B),(E,F)]

int "find" = \ [x,y] -> (x,y) ‘elem ‘ [(A,C),(B,A),(E,F)]

int "give" = \ [x,y,z] -> (x,y,z) ‘elem ‘

[(B,C,F),(C,A,D)]

int _ = error "unknown constant"
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Logical formulas as meaning representations

Loose end

• We do not yet know how to recursively construct FOL expressions
corresponding to natural language expressions.

• Which kind of FOL expressions correspond to intermediate
constituents like admires every princess?

Difficulty: The structure of FOL expressions is quite different from the
semantic structure of natural language expressions.

Solution: In order to devise a syntax-directed translation of natural
language to FOL, i.e. to compositionally build meaning representations in
tandem with a syntactic analysis, we will interpret natural language
expressions as expressions of a typed lambda calculus (subsuming FOL as
fragment).
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Logical formulas as meaning representations

Course overview

Day 2:
Meaning representations and (predicate) logic

• Day 3:
Lambda calculus and the composition of meanings

• Day 4:
Extensionality and intensionality

• Day 5:
From strings to truth conditions and beyond
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