Representation Matters:

Characterisation and Impossibility Results for Interval Aggregation

Ulle Endriss

Arianna Novaro

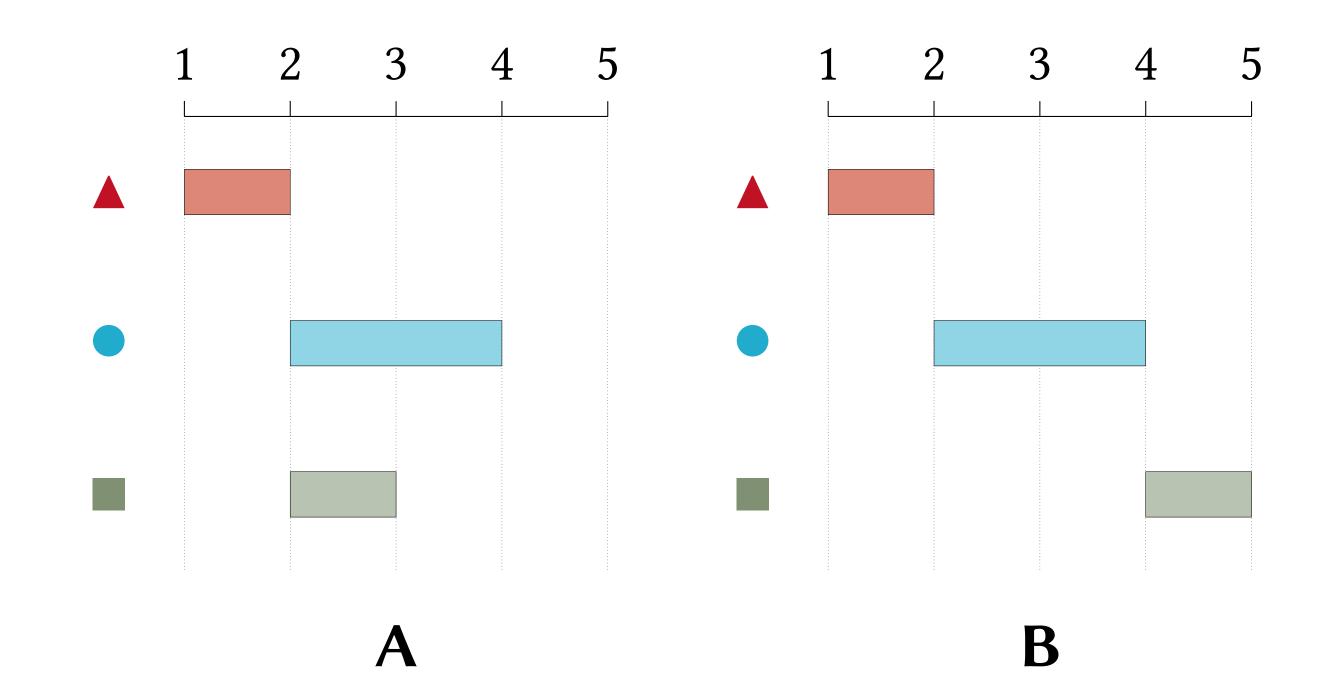
Zoi Terzopoulou

ILLC, University of Amsterdam ulle.endriss@uva.nl

CES, University of Paris 1 Panthéon-Sorbonne arianna.novaro@univ-paris1.fr

LAMSADE, Université Paris Dauphine-PSL zoi.terzopoulou@dauphine.psl.eu

Each agent submits an interval on a given scale: we want to aggregate them into a collective interval.



- The agents submit pieces of information about their intervals: let's aggregate them via the *median* rule.
- ► The *collective* (median) left endpoint in **A** and **B** is 2.
- Now, we ask for the right endpoints of their intervals, and use the median rule: what do we get for **A** and **B**?
- What if they instead submit the widths of their intervals?

Are there natural rules that can be represented both as aggregating separately the *left* and *right endpoints* and aggregating separately the *left endpoints* and the *widths*?

Scales, Intervals, Components

Scale: a nonempty $S \subseteq \mathbb{R}$, with a min and max element.

- $S = \{-3, 0, 2, 4, 7, 10, 12\}$ is a discrete scale
- S' = [0, 1] is the standard continuous scale

Interval: a nonempty subset of the scale *S* with two extremes and *all* the points of *S* in-between those.

 $I = \{0, 2, 4\}$ is an interval of S, while $\{4, 10\}$ is not

Component: a function $\gamma: \mathcal{I}(S) \to D$, for a domain D.

left endpoint (ℓ) , right endpoint (r), width (w)

Representation-Faithfulness

Aggregation rule: function $F: \mathcal{I}(S)^n \to \mathcal{I}(S)$ from a profile of n agents' intervals on S to a collective interval.

F is faithful to a representation γ of q components, if there exist functions $f_k: D_k^n \to D_k$ for $k \in \{1, ..., q\}$ such that $F(\mathbf{I})$ for any profile \mathbf{I} can be computed by applying each f_k to the corresponding component-profile.

F is a γ -rule if it is faithful to γ and if $f_k(x, ..., x) = x$ for every $x \in D_k$ and for every $k \in \{1, ..., q\}$.

Impossibility theorem. For any given discrete scale S, every interval aggregation rule that is both an (ℓ, r) -rule and an (ℓ, w) -rule must be a **dictatorship**.

Characterisation theorem. For any given continuous scale S, a continuous interval aggregation rule is both an (ℓ, r) -rule and an (ℓ, w) -rule if and only if it is an (ℓ, r) -weighted averaging rule.