
Description LogicsDescription logics are formal knowledge representation languages with a relativelysimple syntax and well-de�ned semantics. According to the description logicparadigm, knowledge is divided into a terminological part (TBox), where conceptslike \beverages that are carbonated and have some ingredient that is alcoholic" arede�ned, and an assertional part (ABox), where individuals are related to each otherand asserted as being instances of certain concepts.A (partial) de�nition for the concept Cider, involving other concepts and the role(relation) has-ingredient could be given as follows:Cider _v Beverage u Carbonated u 9has-ingredient.AlcoholicA corresponding ABox might contain the following assertions:my-drink : Cider (my-drink; x) : has-ingredientReasoning in description logics:� Is a given concept formula consistent?� Does a concept subsume another one, i.e. is it more general than the other?� Is a given ABox individual an instance of a given concept formula?� Is a given ABox consistent?Tableau-like calculi for description logics:It turns out that all the above questions can be reduced to the question whether agiven ABox is consistent. Tableau based calculi for description logics are similar toTableaux for modal logics, but with named worlds, the ABox individuals.Recently, research into optimisation techniques for description logics has been veryactive. Optimisations include:� Semantic branching with branching heuristics (e.g. prefer subformulas appear-ing often in short disjunctions);� Boolean constraint propagation: avoid branching whenever possible;� Backjumping: keep track of origin of formulas to be able to prune redundantbranches; . . . c
2000 by Ulle Endriss, King's College London



Wellington 1.0Wellington 1.0 is the �rst public release of the description logics based knowl-edge representation and reasoning system developed by the Group of Logic andComputation at King's College London. To run or download the software pleasevisit the project web site:http://www.dcs.kcl.ac.uk/research/groups/logic/wellington/Currently,Wellington can be used to check the consistency of an ABox speci�edin the description logicALC, to check a concept formula for consistency, or to checkwhether one concept formula subsumes another one.

Main design objectives:� Extensibility to di�erent logics, calculi and their algorithmic variations by usingopen object-oriented data-structures;� Usability for end-users through easy-to-use GUIs and for application program-mers by providing appropriate Java libraries;� E�ciency through use and further development of optimisation techniques.*The ABox stored in �le k dum n15.alc (see screen shot) starts like this:(INSTANCE A (NOT (OR (OR (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1(SOME R1 (NOT (AND (AND (AND (OR (ALL R1 (ALL R1 (OR P0 (NOT (ALL R1 (OR (ALL R1 P0) (NOT P0))))))) (NOT (ALL R1 (OR P0 (NOT (ALL R1 (OR (ALL R1 P0) (NOT P0)))))))) (ALL R1(OR (ALL R1 (ALL R1 P0)) (NOT (ALL R1 P0))))) (OR (OR (OR P0 (ALL R1 P0)) (NOT (SOME R1 (ALL R1 P0)))) (NOT (ALL R1 (OR P0 (NOT (ALL R1 (OR (ALL R1 P0) (NOT P0))))))))) (OR (OR(OR (OR (ALL R1 P0) (NOT P0)) (ALL R1 (OR (ALL R1 P0) (NOT P0)))) (NOT (SOME R1 (ALL R1 (OR (ALL R1 P0) (NOT P0)))))) (NOT (ALL R1 (OR (OR (ALL R1 P0) (NOT P0)) (NOT (ALL R1(OR (ALL R1 (OR (ALL R1 P0) (NOT P0))) (NOT (OR (ALL R1 P0) (NOT P0)))))))))))))))))))))))))))) (OR (OR (OR (OR (OR (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOME R1 (SOMER1 (SOME R1 (SOME R1 (NOT (AND (ALL R1 (OR (ALL R1 (ALL R1 P0)) (NOT (ALL R1 P0)))) (OR (OR (OR P0 (ALL R1 P0)) (NOT (SOME R1 (ALL R1 P0)))) (NOT (ALL R1 (OR P0 (NOT (ALL . . .c
2000 by Ulle Endriss, King's College London



Current and Future DevelopmentsWellington 1.0 is only the beginning. In the long run we intend to build asystem o�ering a choice of algorithms for several languages. In particular, we wantto integrate the following features:� TBox unfolding and general TBox axioms.� Concrete domain reasoning. In cooperation with the LIIA Strasbourg we havede�ned a general Java interface for concrete domains to be able to exchangemodules. Amongst other things, we want to use this for reasoning about tem-poral intervals. Example:EatingOrderObedient _v before(starter � time; desert � time)�� Arithmetical reasoning. Ohlbach (1999) introduces a description logic witharithmetical constraints over sets of role-�llers. Example:ShoeFetishist _= Person u jhas-shoej > 0:8� jhas-sockjFor this logic we intend to implement a theory resolution style calculus withmathematical programming as the background theory.� Classi�cation (determining the partial order over named concepts wrt. the sub-sumption relation).� Knowledge acquisition (see poster by Stefan Schlobach).The Data Driven Logic Algorithms ProjectData Driven Logic Algorithms is an EPSRC funded three year project based at King'sCollege, which is focusing on the integration of description logics with various other�elds, like mathematical programming, databases, arti�cial learning, and temporalreasoning. The people involved in the project are Hans J�urgen Ohlbach, Dov Gabbay,Odinaldo Rodrigues, Stefan Schlobach, and Ulrich Endriss.One of the main objectives of the project is to develop a powerful hybrid systemfor reasoning with expressive description logics. Wellington 1.0 will provide thebasis for this venture.*In the example, the roles starter and desert are meant to relate someoneto the event of that person having his or her starter and desert, respectively. c
2000 by Ulle Endriss, King's College London


