
The KGP Model of Agency for Global
Computing: Computational Model and

Prototype Implementation

A. Bracciali1, N. Demetriou2, U. Endriss3, A. Kakas2, W. Lu4, P. Mancarella1,
F. Sadri3, K. Stathis4,1, G. Terreni1, and F. Toni3,1

1 Dip. di Informatica, Università di Pisa {braccia,paolo,terreni}@di.unipi.it
2 Dept of Computer Science, Cyprus University {demetriou,antonis}@cs.ucy.ac.cy

3 Dept of Computing, Imperial College London {ue,fs,ft}@doc.ic.ac.uk
4 School of Informatics, City University London {lue,kostas}@soi.city.ac.uk

Abstract. We present the computational counterpart of the KGP (Kno-
wledge, Goals, Plan) declarative model of agency for Global Computing.
In this context, a computational entity is seen as an agent developed us-
ing Computational Logic tools and techniques. We model a KGP agent
by relying upon a collection of capabilities, which are then used to define
a collection of transitions, to be used within logically specified, context
sensitive control theories, which we call cycle theories. In close relation-
ship to the declarative model, the computational model mirrors the log-
ical architecture by specifying appropriate computational counterparts
for the capabilities and using these to give the computational models of
the transitions. These computational models and the one specified for the
cycle theories are all based on, and are significant extensions of, existing
proof procedures for abductive logic programming and logic program-
ming with priorities. We also discuss a prototype implementation of the
overall computational model for KGP.

1 Introduction

Global Computing (GC) and its applications rely upon computing environments
that are composed of autonomous computational entities whose activity is not
centrally controlled but is decentralised instead. Decentralisation results either
because global control is impossible or at times impractical, or because the en-
tities are created or controlled by different owners. The computational entities
may be mobile, due to the movement of the physical platforms or by movement
of the entities from one platform to another. In other words, the environment
in which the entities are situated is open and evolves over time. For instance,
in a typical GC application it might be required to allow for the introduction
and deletion of computational entities. The internal structure and behaviour of
these entities may also be heterogeneous and may vary over time.

Programming the behaviour of a computational entity that is situated in a
GC environment is a non-trivial task. One of the problems is that such an en-
tity should be in a position to operate with incomplete information about the

environment. Incompleteness might arise from the entities having newly joined
the environment of an application and having only a partial view over the status
of that application. Incompleteness might also arise from the autonomy of the
entities and their unwillingness to disclose information about themselves. More-
over, incompleteness might sometimes be caused by the fact that information
in a GC environment becomes rapidly out of date. Thus, a GC entitity needs
to be able to discover relevant information or other entities in the dynamically
evolving environment.

If the ultimate goal of GC research is to provide a solid scientific foundation
for the design of GC systems, we will need to lay the groundwork for achieving
effective principles for building and analysing such systems. In trying to achieve
this goal, within the GC project SOCS we interpret the GC vision as follows.
Entities in GC systems are defined via Computational Logic (CL), as understood
in [26, 29, 27], which is used to define their internal organisation, reasoning and
their mutual interactions. We call the entities computees, standing for agents in
CL. 5 One important feature of computees is that they are able to reason by
using CL tools and techniques. We call the systems composed of such entities
societies (see [7]) as they are characterised by “social rules” for computees to
interact and operate in the presence of each other.

In order to interact freely, computees can use high-level communication, as
understood in multi-agent systems. Computees may be heterogeneous as far as
behaviour is concerned, provided by CL-based cycle theories allowing a highly
modular and flexible specification of control. Cycle theories allow to render com-
putees adaptable to dynamically changing environments and allow to charac-
terise, via different cycle theories, heterogeneously behaved computees.

Computees also need to adapt their internal state as the environments in
which they are situated evolve. A number of CL techniques have been developed
for addressing tasks such as temporal reasoning in a changing environment, hy-
pothetical reasoning for dealing with incomplete information, hypothetical rea-
soning for planning, hypothetical reasoning to achieve communication, argumen-
tation for decision-making, inductive logic programming for learning. However,
in order to cope with the GC challenges, CL techniques in isolation are inade-
quate, as none serves all dimensions in the operation of computees. Our model
for computees integrates (extensions of) a number of existing CL techniques, in
order to achieve the enhanced performance which is required by the GC vision.

We call our model KGP , since computees’ internal state consists of a knowl-
edge base (K), from which they reason, goals (G) that they need to achieve,
and plans (P) for their goals, consisting of actions that may be physical, sens-
ing or communicative. Computees pursue their goals while being alert to the
environment and adapt their goals and plan to any changes that they perceive.

The paper is organised as follows. In section 2 we summarise the main fea-
tures of the KGP model and give some of the technical details underlying it. In
sections 3–5 we provide the computational models of some components of the
KGP model and state their soundness wrt their formal specification. The overall

5 In this paper, we will use the terms computees and agents interchangeably.

computational model is built bottom-up, mirroring the hierarchical and modular
structure of the abstract model. Section 3 also gives some background on the CL
techniques that we have employed to define the KGP model, namely Abductive
Logic Programming (ALP) and Logic Programming with Priorities (LPP), as
well as the proof procedures (for ALP and for LPP) from which we have built
the computational counterpart of the KGP model, in a bottom-up fashion. In
section 6 we describe the prototype implementation of KGP agents, namely the
SOCS-iC (for SOCS individual Computee) component of the PROSOCS plat-
form [36]. Section 7 concludes.

2 KGP model: recap

Here we briefly summarise the KGP model for computees, see [18, 17] for any
additional details. This model relies upon

– an internal (or mental) state,
– a set of reasoning capabilities, supporting planning, temporal reasoning,

identification of preconditions of actions, reactivity and goal decision,
– a sensing capability,
– a set of transition rules, defining how the state of the computee changes, and

defined in terms of the above capabilities,
– a set of selection functions, to provide appropriate inputs to the transitions,
– a cycle theory, for deciding which transitions should be applied when, and

defined using the selection functions.

The model is defined in a modular and hierarchical fashion.

Internal state. This is a tuple 〈KB,Goals, P lan, TCS〉, where:

– KB is the knowledge base of the computee, and describes what the computee
knows (or believes) of itself and of the environment. KB consists of modules
supporting different reasoning capabilities:
• KBplan, for Planning,
• KBpre, for the Identification of Preconditions of actions,
• KBTR, for Temporal Reasoning,
• KBGD, for Goal Decision,
• KBreact, for Reactivity, and
• KB0, for holding the (dynamic) knowledge of the computee about the

external world in which it is situated (including past communications).
Syntactically, KBplan,KBreact and KBTR are abductive logic programs with
constraint predicates (see section 3.1), KBpre is a logic program (see sec-
tion 3.1), KBGD is a logic program with priorities (see section 3.2), and
KB0 is a set of logic programming facts, and it is (implicitly) included in all
the other modules.

– Goals is the set of properties that the computee wants to achieve, each one
explicitly time-stamped by a time variable. Goals may also be equipped with
a temporal constraint (belonging to TCS) bounding the time variable and

defining when the goals are expected to hold. Goals may be mental or sensing.
Both can be observed to hold (or not to hold) via the Sensing capability. In
addition, mental goals can be brought about actively by the computee by its
Planning capability and its actions.

– Plan is a set of actions scheduled in order to satisfy goals. Each is explic-
itly time-stamped by a time variable and possibly equipped with a temporal
constraint, similarly to Goals, but defining when the action should be ex-
ecuted. Actions are partially ordered, via their temporal constraints. Each
action is also equipped with the preconditions for its successful execution,
determined by the Identification of Preconditions capability. Actions may be
physical, communicative, or sensing. We assume that actions are atomic and
do not have a duration. Actions can be seen as special kinds of goals which
are directly executable.

– TCS is a set of constraint atoms (referred to as temporal constraints) in
some given underlying constraint language with respect to some structure
< equipped with a notion of constraint satisfaction |=<(see section 3.1). We
assume that the constraint predicates include <,≤, >,≤, =, 6=. Temporal
constraints refer to time constants, namely numbers, and time variables,
namely distinguished variables which can be instantiated to time constants.
These constraints bind the time of goals in Goals and actions in Plan. For
example, they may specify a time window over which the time of an action
can be instantiated, at execution time.

Goals and actions are uniquely identified by their associated time variable, which
is implicitly existentially quantified within the overall state.

To aid revision and partial planning, Goals and Plan form a tree 6. The tree
is augmented by calls to the Goal Decision, Planning and Reactivity capabil-
ities. The tree is given implicitly by associating with each goal and action its
parent. Top-level goals and actions are children of the root of the tree, which,
by convention, is the special symbol ⊥. Actions always occur as leaves.

Reasoning capabilities. These are:

– Planning, which generates partial plans for sets of goals. It provides (tem-
porally constrained) sub-goals and actions designed for achieving the input
goals.

– Reactivity, which reacts to perceived changes in the environment, by replac-
ing (some) goals in Goals and actions in Plan with (possibly temporally
constrained) goals and actions.

6 In the full model [5], we actually have two trees, the first containing non-reactive
goals and actions, the second containing reactive goals and actions. All the top-
level non-reactive goals are either assigned to the computee by its designer at birth,
or they are determined by the Goal Decision capability. All the top-level reactive
goals and actions are determined by the Reactivity capability. Here for simplicity we
overlook the distinction amongst the two trees.

– Goal Decision, which revises the top-most level goals of the computee, adapt-
ing the computee’s state to changes in its own preferences and in the envi-
ronment. Differently form Reactivity, it only modifies the top-level goals, it
does not add actions to Plan and it does not depend upon the current Goals
and Plan.

– Identification of Preconditions for action execution.
– Temporal Reasoning, which reasons about the evolving environment, and

makes predictions about properties (fluents) holding in the environment,
based on the partial information the computee acquires.

Sensing capability. In addition to the reasoning capabilities above, the computee
is equipped with a Sensing capability which links it to its environment, by allow-
ing to observe that properties hold or do not hold, and that other agents have
executed actions in the past.

Transitions. The state of a computee evolves by applying transition rules, which
employ capabilities and the constraint satisfaction |=<. The transitions are:

– Goal Introduction (GI), changing the top-level Goals, and using Goal Deci-
sion.

– Plan Introduction (PI), changing Goals and Plan, and using Planning and
Introduction of Preconditions.

– Reactivity (RE), changing Goals and Plan, and using the Reactivity capa-
bility.

– Sensing Introduction (SI), changing Plan by introducing new sensing actions
for checking the preconditions of actions already in Plan, and using Sensing.

– Passive Observation Introduction (POI), changing KB0 by introducing un-
solicited information coming from the environment, and using Sensing.

– Active Observation Introduction (AOI), changing KB0 by introducing the
outcome of (actively sought) sensing actions, and using Sensing.

– Action Execution (AE), executing all types of actions, and thus changing
KB0.

– Goal Revision (GR), revising Goals, and using Temporal Reasoning and
Constraint Satisfaction.

– Plan Revision (PR), revising Plan, and using Constraint Satisfaction.

Cycle. The behaviour of a computee is given by the application of transitions in
sequences, repeatedly changing the state of the computee. These sequences are
not determined by fixed cycles of behaviour, as in conventional agent architec-
tures, but rather by reasoning with cycle theories. These are logic programs with
priorities (see section 3.2), defining preference policies over the order of applica-
tion of transitions, which may depend on the environment and the internal state
of a computee. This provision of a declarative control for computees in the form
of cycle theories is a highly novel feature of the model, which could, in principle,
be imported into other agent systems.

In the remainder of this section, we give some details on the state of computees.
Details on the other components of the model (capabilities, transitions, selec-
tion functions and cycle) will be illustrated when describing their computational
models, in sections 3–5. Here, note that alternative choices for reasoning capabil-
ities and transitions would have been possible, and the model could be extended
to incorporate further such capabilities and further transitions.

Vocabularies. We assume (possibly infinite) vocabularies of time constants (e.g.,
the set of all natural numbers), time variables (indicated with t, t′, s, . . .), fluents
(indicated with f, f ′, . . .), action operators (indicated with a, a′, . . .), and names
of computees (indicated with c, c′, . . .). Given a fluent f , f and ¬f are referred
to as fluent literals. We use l, l′, . . . to denote fluent literals. Moreover, given a
fluent literal l, by l we denote its complement, namely ¬f if l is f , f if l is ¬f .

We assume that the set of fluents is partitioned in two disjoint sets: mental
fluents and sensing fluents. Intuitively, mental fluents represent properties that
the computee itself is able to plan for so that they can be satisfied, but can
also be observed. On the other hand, sensing fluents represent properties which
are not under the control of the computee and can only be observed by sensing
the external environment. For example, problem fixed and get resource may
represent mental fluents, namely the properties that (given) problems be fixed
and (given) resources be obtained, whereas request accepted and connection on
may represent sensing fluents, namely the properties that a request for some
(given) resource is accepted and that some (given) connection is active.

We also assume that the set of action operators is partitioned into three
disjoint sets: sensing, physical, and communication action operators. Intuitively,
sensing actions represent actions that the computee performs in order to es-
tablish whether some fluents hold in the environment. These fluents may be
sensing fluents, but they can also represent effects of actions that the computee
may need to check in the environment. On the other hand, physical actions
are actions that the computee performs in order to achieve some specific effect,
which typically causes some changes in the environment. Finally, communication
actions are actions which involve communications with other computees. For ex-
ample, sense(connection on, t) is a sensing action, aiming at checking whether
or not the sensing fluent connection on holds; do(clear table, t) may be a phys-
ical action operator, and tell(c1, c2, request(r1), d, t) may be a communication
action expressing that computee c1 is requesting from computee c2 the resource
r1 within a dialogue with identifier d, at time t.

Goals. A goal G is a pair of the form 〈l[t], G′〉 where

– l[t] is the fluent literal of the goal, referring to a time variable t;
– G′ is the parent of G.

Top-level goals are goals of the form G = 〈l[t],⊥〉. As an example, we may have
a top-level goal G of the form 〈problem fixed(p2, t),⊥〉 and a subgoal G′ of
G of the form 〈get resource(r1, t′), G〉, with TCS = {5 ≤ t ≤ 10, 5 ≤ t′ < t},

meaning that to fix problem p2 within a certain time interval, the computee needs
to have (or acquire) a resource r1 within an appropriate other time interval.

Mental (sensing) goals are goals whose fluent is mental (sensing, respectively).

Actions. An action A is a triple of the form 〈a[t], G, C〉 where

– a[t] is the operator of the action, referring to the execution time variable t;
– G is the goal towards which the action contributes (i.e., the action belongs

to a plan for the goal G). G may be a post-condition for A (but there may
be other such post-conditions).

– C are the preconditions which should hold in order for the action to take
place successfully; syntactically, C is a conjunction of (timed) fluent literals.

As an example, we may have an action 〈tell(c1, c2, request(r1), d, , t′′), G′, {}〉
within the state of some computee c1, where G′ is given above, 5 ≤ t′′ < t′ also
belongs to TCS, and c2 is the name of some other computee.

(Non-)Sensing actions are actions whose operator is a (non-)sensing one.

Time variables. In both a timed fluent literal l[t] and a timed operator a[t], the
time t is a time variable. This variable is treated as an existentially quantified
variable, the scope of which is the whole state of the computee. Whenever a goal
(respectively action) is introduced within a state, the time variable associated
with the goal (respectively action) is to be understood as a distinguished, fresh
variable, serving as its identifier. When a time variable is instantiated (e.g., at
action execution time) the actual instantiation is recorded in (the KB0 part of)
the state of the computee. This allows us to keep different instances of the same
action (respectively goal) distinguished.

For simplicity, we assume that, given a state 〈KB,Goals, P lan, TCS〉, all
occurrences of variables in Goals and Plan are time variables. In other words, our
goals and actions are ground except for the time parameter. Variables other than
time variables in goals and actions can be dealt with similarly. We concentrate
on time variables as time plays a fundamental role in our model, and we avoid
dealing with the other variables to keep the presentation of the model simple.

KB0. Amongst the various modules in KB, we distinguish KB0, which records
the actions which have been executed (by the computee or by others) and their
time of execution as well as the properties (i.e. fluents and their negation) which
have been observed and the time of the observation. Formally, KB0 contains
assertions of the form:

– executed(a[t], τ) where a[t] is a timed operator and τ is a time constant,
meaning that action a has been executed at time t = τ by the computee.

– observed(l[t], τ) where l[t] is a timed fluent literal and τ is a time constant,
meaning that the property l has been observed to hold at time t = τ .

– observed(c, a[τ ′], τ) where c is a computee’s name, different from the name of
the computee whose state we are defining, τ and τ ′ are time constants, and
a is an action operator. This means that the given computee has observed
at time τ that computee c has executed the action a at time τ ′ (τ ′ ≤ τ).

Note that assertions in KB0 of the third kind are variable-free. These are in-
tended, e.g., to represent reception of communication from other computees.
Instead, assertions of the first two kinds refer explicitly to a time variable t.
This representation with explicit variables allows us to instantiate implicitly the
time variable of (executed) actions and (observed) goals, via Σ(S) (see below),
while keeping the time variable explicitly as an identifier for actions and goals.
As a consequence, the time variables in KB0 are not properly speaking variables
as such.

Since KB0 is used in all the remaining modules in KB, and these are rep-
resented in a logic programming style, we are not allowed to have assertions
with existentially quantified variables. Hence, the various knowledge bases will
include a variant of KB0, namely KB0Σ(S), where Σ(S) is defined below. We
will refer to KB0Σ(S) simply as KB0.

Valuation of time variables and temporal constraints.
Given a state S=〈KB, Goals, P lan, TCS〉, we denote by Σ(S) (or simply Σ,
when S is clear from the context) the valuation:

Σ(S) = {t = τ | executed(a[t], τ) ∈ KB0} ∪ {t = τ | observed(l[t], τ) ∈ KB0}

Intuitively, Σ extracts from KB0 the instantiation of the (existentially quanti-
fied) time variables in Plan and Goals, derived from having executed (some of
the) actions in Plan and having observed that (some of the) fluents in Goals
hold (or do not hold). Thus, KB0 provides a “virtual” representation of Σ.

Below, Σ(t), for some time variable t, will return the value of t in Σ, if there
exists one, namely, if t = τ ∈ Σ, then Σ(t) = τ . The valuation of any temporal
constraint Tc in a state S will always take Σ into account. Namely, any ground
valuation for the temporal variables in Tc must agree with Σ on the temporal
variables assigned to in Σ.

3 Computational models for capabilities

The reasoning capabilities of Planning, Reactivity, Identification of Precondi-
tions and Temporal Reasoning are specified within the framework of Abductive
Logic Programming (ALP), and the reasoning capability of Goal Decision is
specified within the framework of Logic Programming with Priorities (LPP).
Their computational models rely upon proof procedures for ALP and LPP (as
appropriate). In this section, we briefly recall ALP and LPP, and summarise
the concrete proof procedures used for the computational model of the reason-
ing capabilities. Finally, we give detailed specification and computational model
for Planning (chosen as the representative ALP-based capability) and for Goal
Decision. The remaining capabilities, of Identification of Preconditions and Re-
activity, are briefly mentioned. We also state the soundness results for these
capabilities, building upon the soundness results for the underlying procedures.
For details and proofs see [5].

3.1 ALP-based capabilities

Background: abductive logic programming with constraints. An abduc-
tive logic program with constraints is a tuple 〈<, P, A, I〉 where:

– < is a structure consisting of a domain D(<) and a set of constraint pred-
icates including equality, together with an assignment of relations on D(<)
for each constraint predicate. The structure is equipped with a notion of
<-satisfiability. Given (a set of) constraints C, |=< C stands for C is <-
satisfiable, and σ |=< C, for some grounding σ of the variables of C over
D(<), stands for C is <-satisfied by σ.

– P is a normal logic program with constraints, namely a set of rules of the
form H ← L1 ∧ . . .∧Ln with H atom, Li literals, and n ≥ 0. Literals can be
positive, namely atoms, or negative, namely of the form not B, where B is an
atom, or constraint atoms over <. The negation symbol not indicates nega-
tion as failure [8]. All variables in H, Li are implicitly universally quantified,
with scope the entire rule. If n = 0, the rule is called a fact.

– A is a set of abducible predicates in the language of P . Atoms whose predicate
is abducible are referred to as abducible atoms or simply as abducibles.

– I is a set of integrity constraints, that is, a set of sentences in the language
of P . All the integrity constraints in the KGP model have the implicative
form L1 ∧ . . . ∧ Ln ⇒ A1 ∨ . . . ∨ Am (n ≥ 0,m > 0) where Li are literals
(as in the case of rules) 7, Aj are atoms (possibly the special atom false).
All variables in the integrity constraints are implicitly universally quantified
from the outside.

Given an abductive logic program 〈<, P, A, I〉 and a formula (query) Q, which is
an (implicitly existentially quantified) conjunction of literals in the language of
the abductive logic program, the purpose of abduction is to find a (possibly min-
imal) set of (ground) abducible atoms Γ which, together with P , “entails” (an
appropriate ground instantiation of) Q, with respect to some notion of “entail-
ment” that the language of P is equipped with, and such that the extension of P
“satisfies” I (see [19] for possible notions of integrity constraint “satisfaction”).
Here, the notion of “entailment” depends on the semantics associated with the
logic program P (there are many different possible choices for this [19]), ap-
propriately combined with the notion of <−satisfiability, as in Constraint Logic
Programming [16]. We will refer to such a combined semantics as |=LP (<).

Formally and concretely, given a query Q, a set ∆ of (possibly non-ground)
abducible atoms, and a set C of (possibly non-ground) constraints, the pair
(∆,C) is an abductive answer (with constraints) for Q, with respect to an ab-
ductive logic program with constraints 〈<, P, A, I〉, iff for all groundings σ for
the variables in Q,∆, C such that σ |=< C, it holds that (i) P ∪∆σ |=LP (<) Qσ,
and (ii) P ∪∆σ |=LP (<) I. Here, ∆σ plays the role of Γ in the earlier informal
description of abductive answer.

7 If n = 0, then L1, . . . , Ln represents the special atom true.

Such notion can be extended to take into account an initial set of (possibly
non-ground) abducible atoms ∆0 and an initial set of (possibly non-ground) con-
straint atoms C0, so that an abductive answer for Q, with respect to 〈<, P,A, I〉,
∆0, C0, is a pair (∆,C) such that ∆∩∆0 = {}, C∩C0 = {}, and (∆∪∆0, C∪C0)
is an abductive answer for Q, with respect to 〈<, P, A, I〉 (in the earlier sense).

In the sequel, for simplicitly, we will omit < from abductive logic programs.
In ALP (with constraints), abductive answers are computed via abductive

proof procedures, which typically extend SLD-resolution, providing the compu-
tational backbone underneath most logic programming systems, in order to check
and enforce integrity constraint satisfaction, the generation of abducible atoms,
and the satisfiability of constraint atoms (if any). There are a number of such
procedures in the literature, e.g. the A-system [24]. To provide a computational
counterpart to (the abductive tasks in) the KGP model, we propose and adopt
the CIFF proof procedure [11, 12], extending the IFF proof procedure [13] for the
purposes of the SOCS project. This procedure is summarised next. Full details
are given in [11].

CIFF: A proof procedure for ALP with constraints. CIFF extends IFF by
dealing with constraints and non-allowed abductive logic programs, by tackling
the issue of allowedness dynamically, i.e. at runtime, rather than adopting a
static and overly strict set of allowedness conditions as in IFF [13]. To this
end, the CIFF procedure includes a dynamic allowedness rule which is triggered
whenever the procedure encounters a particular formula it cannot manipulate
correctly due to a problematic quantification pattern.

In defining CIFF, we assume the availability of a sound and complete con-
straint solver, that we use as a black box component of the procedure. We do not
make any assumption on the language of constraints, except for assuming that
it includes a relation symbol for equality and it is closed under complements.

Input. Given an abductive logic program 〈P, A, I〉, the input to the CIFF pro-
cedure consists of a query Q, the set of integrity constraints I, and, in the back-
ground, a theory Th, which is a set of iff-definitions obtained by completing [8]
the non-abducible, non-constraint predicates in the language of 〈P,A, I〉. Thus,
the set of abducibles A is implicitly the set of predicates for which there is no
definition in Th. The iff-definitions in Th have the following form:

p(X1, . . . , Xk) ↔ D1 ∨ · · · ∨Dn

Negative literals are treated as implications (e.g. not q(X, Y) is treated as q(X, Y)
⇒ false).

Output. There are three possible outputs of the CIFF procedure: (1) the proce-
dure succeeds and produces an abductive answer to the query Q; (2) the pro-
cedure fails, thereby indicating that there is no abductive answer to the query
Q; and (3) the procedure reports that computing an abductive answer for the
query Q is not possible, because a critical part of the input is not allowed.

Proof rules. The CIFF procedure generates outputs from inputs by repeatedly
applying a number of proof rules to the input. During this process, CIFF manip-
ulates, essentially, formulas that are either atoms or implications or disjunctions
of atoms and implications. Such formulas are referred to individually as goals.
Implications are obtained by manipulating integrity constraints and (the rewrit-
ing of) negative literals. The theory Th is kept in the background and is only
used to unfold defined predicates as they are being selected. Disjunction may
thus be generated, and splitting will be applied to give rise to different branches
in the proof search tree. The root of this tree is the original input (Q ∧ I).
Nodes of this tree are sets (conjunctions) of goals. CIFF repeatedly manipulates
a selected node, via the proof rules, by rewriting goals in the node, adding new
goals to the node, deleting superfluous goals from it, or adding false to the node
(and thus effectively deleting the node completely). For a full description of the
proof rules, see [11]. Here, we only mention:

– Case analysis for constraints: Replace any goal of the form Con ∧ A ⇒ B,
where Con is a constraint not containing any universally quantified variables,
by [Con∧(A ⇒ B)]∨Con. There is a similar case analysis rule for equalities.

– Constraint solving: Replace any node containing an unsatisfiable set of con-
straints (as atoms) by false.

– Dynamic allowedness rule: Label nodes with problematic quantification pat-
terns as undefined.

A node containing false is called a failure node. If all leaf nodes in a search
proof tree are failure nodes, then the derivation leading to that tree is said to be
failed (the intuition being that there exists no answer to the query in question).
A node to which no more proof rules can be applied is called a final node. A final
node that is not a failure node and which has not been labelled as undefined is
called a success node.

Answer extraction. An extracted answer from a final success node N is a pair
〈∆,C〉, where ∆ is the set of abducible atoms in N and C is obtained from the
set of constraint atoms, equalities and disequalities in N . Below, we will use the
following notations:

– 〈P,A, I〉, Q `CIFF (∆, C) to stand for (∆,C) is the answer extracted from
a final success node obtained from the initial goal Q ∧ I;

– 〈P,A, I〉, Q, ∆0, C0 `CIFF (∆,C) to stand for 〈P,A, I〉, Q ∧∆0 ∧ C0 `CIFF

(∆ ∪∆0, C ∪ C0) and ∆ ∩∆0 = {} and C ∩ C0 = {};
– 〈P,A, I〉, Q `CIFF fail to stand for: there is a failed derivation for Q;
– 〈P,A, I〉, Q `CIFF flounder to stand for: there is a search proof tree for Q

with no success leaf nodes and at least one undefined leaf node.

Soundness results. We have shown that CIFF is sound [11, 12], and in particular
the following result:

Theorem 1. (CIFF soundness of success) Given a query Q and initial ∆0, C0:
if 〈P,A, I〉, Q, ∆0, C0 `CIFF (∆,C)
then (∆, C) is an abductive answer for Q, with respect to 〈P, A, I〉,∆0, C0.

Specification and computational model for the ALP-based capabili-
ties. KBplan, KBreact, KBTR, and KBpre are all specified within the frame-
work of the event calculus (EC) for reasoning about actions, events and changes
[28]. Below, we give the abductive logic program KBplan and the logic program
KBpre. KBreact is an extension of KBplan, incorporating additional integrity
constraints representing reactive rules. KBTR is another variant of the EC, shar-
ing a common kernel with KBplan. Both KBreact and KBTR are fully described
in [5]. KBTR is also given in [6].

Abductive event calculus for KBplan and KBpre. In a nutshell, the EC allows to
write meta-logic programs which ”talk” about object-level concepts of fluents,
events (that we interpret as action operations), and time points. The main meta-
predicates of the formalism are: holds at(F, T) (a fluent F holds at a time T),
clipped(T1, F, T2) (a fluent F is clipped - from holding to not holding - between
times T1 and T2), declipped(T1, F, T2) (a fluent F is declipped - from not holding
to holding - between times T1 and T2), initially(F) (a fluent F holds from the
initial time, say time 0), happens(O, T) (an operation O happens at a time T),
initiates(O, T, F) (a fluent F starts to hold after an operation O at time T)
and terminates(O, T, F) (a fluent F ceases to hold after an operation O at time
T). Roughly speaking, in a planning setting the last two predicates represent
the cause-effects links between operations and fluents in the modelled world. We
will also use a meta-predicate precondition(O, F) (the fluent F is one of the
preconditions for the executability of the operation O).

The EC allows to represent a wide variety of phenomena, including operations
with indirect effects, non-deterministic operations, and concurrent operations
[33]. A number of abductive variants of the EC have been proposed to deal with
planning problems, e.g. see [32]. Here, we propose a novel variant, somewhat
inspired by the E-language [21], to allow situated agents to generate partial
plans in a dynamic environment.

We give KBplan= 〈Pplan, Aplan, Iplan〉. Pplan consists of two parts: domain-
independent rules and domain-dependent rules. The basic domain-independent
rules, directly borrowed from the original EC, are:

holds at(F, T2) ← happens(O, T1), initiates(O, T1, F),
T1 < T2, not clipped(T1, F, T2)

holds at(¬F, T2) ← happens(O, T1), terminates(O, T1, F),
T1 < T2, not declipped(T1, F, T2)

holds at(F, T) ← initially(F), 0 ≤ T, not clipped(0, F, T)
holds at(¬F, T) ← initially(¬F), 0 ≤ T, not declipped(0, F, T)
clipped(T1, F, T2) ← happens(O, T), terminates(O, T, F), T1 ≤ T < T2

declipped(T1, F, T2) ← happens(O, T), initiates(O, T, F), T1 ≤ T < T2

The domain-dependent rules define initiates, terminates, and initially, e.g.
initiates(go(X, L1, L2), T, at(X, L2)) ← holds at(mobile(X), T)
initiates(go(X, L1, L2), T, free(L1)) ← holds at(mobile(X), T)
terminates(go(X, L1, L2), T, at(X, L1) ← holds at(mobile(X), T), L1 6= L2

terminates(go(X, L1, L2), T, free(L2) ← holds at(mobile(X), T), L1 6= L2

initially(at(bob, (1, 1)))

Namely, the operation go from one location L1 to some other location L2 ini-
tiates the agent (robot) X being at location L2 and location L1 being free and
terminates X being at location L1 and location L2 being free, provided that X
is mobile. Moreover, some agent bob is initially at location (1, 1). The conditions
for the rules defining initiates and terminates can be seen as preconditions for
the effects of the operator go to take place. Preconditions for the executability
of operators are specified within KBpre, which contains a set of rules defining
the predicate precondition, e.g.

precondition(go(X, L1, L2), at(X, L1))
precondition(go(X, L1, L2), free(L2))

namely the preconditions of the operator go(X, L1, L2) are that X is at the
initial location L1 and that location L2 X is moving to is free.

In order to accommodate (partial) planning we will assume that the domain-
independent part in Pplan also contains the rules:

happens(O, T) ← assume happens(O, T)
holds at(F, T) ← assume holds(F, T1), T1 ≤ T2, not clipped(T1, F, T2)
holds at(¬F, T) ← assume holds(¬F, T1), T1 ≤ T2, not declipped(T1, F, T2)

i.e. an operator can be made to happen and a fluent can be made to hold sim-
ply by assuming them, where assume happens and assume holds are the only
predicates in Aplan in KBplan. This supports partial planning as follows. Actions
〈a[t], , 〉 in the state amount to atoms assume happens(a, t), thus, abducing
an atom in the predicate assume happens amounts to planning to execute the
corresponding action. Moreover, goals 〈l[t], 〉 in the state correspond to atoms
holds at(l, t) and assume holds(l, t) (depending on whether they have already
been planned for or not): thus, abducing atoms in the predicate assume holds
amounts to planning to further plan for the corresponding sub-goal.

Iplan contains the following domain-independent integrity constraints:
holds at(F, T), holds at(¬F, T) ⇒ false
assume happens(O, T), precondition(O,P) ⇒ holds at(P, T)
assume happens(O, T), not executed(O, T), time now(T ′) ⇒ T > T ′

namely a fluent and its negation cannot hold at the same time, when assuming
(planning) that some action will happen, we need to enforce that each of its
preconditions hold and that this action will be executable in the future.

To allow agents to draw conclusions from the contents of KB0, which rep-
resent the “narrative” part of the computee’s knowledge, the following bridge
rules are also amongst the domain independent rules of Pplan:

clipped(T1, F, T2) ← observed(¬F, T), T1 ≤ T < T2

declipped(T1, F, T2) ← observed(F, T), T1 ≤ T < T2

holds at(F, T2) ← observed(F, T1), T1 ≤ T2, not clipped(T1, F, T2)
holds at(¬F, T2) ← observed(¬F, T1), T1 ≤ T2, not declipped(T1, F, T2)
happens(O, T) ← executed(O, T)
happens(O, T) ← observed(C, O, T)

Note that we assume that the value of a fluent literal is changed according to
observations only from the moment the observations are made, and actions by
other agents have effects only from the time observations are made that they
have been executed, rather than by the execution time itself. These choices are

dictated by the rationale that observations can only be considered and reasoned
upon from the moment the planning agent makes them.

Below, KBτ
plan=〈Pplan ∪ {time now(τ)}, Aplan, Iplan〉.

Planning. The planning capability |=τ
plan is specified as follows 8. Let S =

〈KB, Goals, P lan, TCS〉 be a state, and G = 〈l[t], 〉 be a mental goal in Goals.
Let

– ∆0 =
⋃
〈a[t′], , 〉∈Plan{assume happens(a, t′)}∪⋃
〈l′[t′], 〉∈Goals−{G}{assume holds(l′, t′)}

– C0 = TCS ∧Σ(S).

Then, S,G |=τ
plan (As,Gs, T c) where

– As = {a[t′] | assume happens(a, t′) ∈ ∆} and
– Gs = {l′[t′] | assume holds(l′, t′) ∈ ∆}

for some (∆,Tc) which is an abductive answer for holds at(l, t), wrt KBτ
plan,

∆0 C0. If no such abductive answer exists, then S,G |=τ
plan ⊥, where ⊥ is used

here to indicate failure.
The computational counterpart of |=τ

plan, given by `τ
plan, is defined in terms

of CIFF, as follows.

– S, G `τ
plan (As,Gs, T c) iff

• KBτ
plan, holds at(l, t),∆0, C0 `CIFF (∆,Tc)

• As = {a[t]|assume happens(a, t) ∈ ∆}
• Gs = {g[t]|assume holds(l, t) ∈ ∆}.

– S, G `τ
plan ⊥ iff KBτ

plan, holds at(l, t),∆0, C0 `CIFF X and X = fail or
X = flounder.

Directly from theorem 1, we prove soundness of `τ
plan wrt |=τ

plan, in the case of
success.

Theorem 2. (Planning soundness of success)
If 〈KB, Goals, P lan, TCS〉, G `τ

plan (As,Gs, T c),
then 〈KB,Goals, P lan, TCS〉, G |=τ

plan (As,Gs, T c).

Identification of preconditions. This capability is specified as follows: given a
timed action operator a[t], KB, a[t] |=pre Cs iff

– either there exists c such that KBpre |=LP precondition(a, c) and Cs =∧{c[t] | KBpre |=LP precondition(a, c)}
– or, otherwise, Cs = true.

The computational counterpart `pre of this capability can be obtained by com-
puting |=LP suitably. Trivially, if a sound and complete realisation of |=LP is
used, the resulting `pre is sound and complete with respect to |=pre.
8 In the full model, we consider planning for multiple goals concurrently. Here, for

simplicity we present the case of planning for single goals only.

Reactivity. The specification of |=τ
react and the provision of `τ

react are very similar
to those of |=τ

plan and `τ
plan, and are omitted here for lack of space.

Temporal reasoning. The temporal reasoning capability |=TR is invoked by other
components of the KGP model (namely the Goal Decision capability, the Goal
Revision transition and some of the selection functions, see section 4) to prove
or disprove that a given (possibly temporally constrained) fluent literal holds
(wrt the given theory KBTR). We briefly summarise the specification of |=TR

(see [5, 6] for the details).

– KBTR is another variant of the EC, similar to KBplan, and, analogously,
is divided into a domain-independent part, a domain dependent part, and
a narrative part KB0, assumed not to contain “inconsistent” observations.
The set of abducibles in KBTR has assume holds as its only abducible.

– |=TR is invoked by the Goal Decision capability to prove that a fluent literal
l[t], referring to a time constant t, holds wrt KBTR, denoted as KB |=TR l[t].
|=TR is invoked by the revision transitions and selection functions to prove
that a fluent literal l[t], referring to a time variable t constrained by some
Tc, holds wrt KBTR, denoted as KB |=TR l[t] ∧ Tc.

– |=TR is understood skeptically, as follows. KB |=TR l[t] ∧ Tc (where Tc
may be empty) iff (i) there exists an abductive answer for holds at(l, t)∧Tc,
given KBTR, and (ii) there exists no abductive answer for holds at(l, t)∧Tc,
given KBTR, namely the fluent literal can be proven abductively, and its
complement cannot.

The computational counterpart of |=TR, given by `TR, is given by first providing
a transformed version KB′

TR of KBTR, and then by appropriate calls to the
CIFF proof procedure, as follows (all details can be found in [6]).

– The transformation of KBTR into KB′
TR relies upon the intuition that

changes may happen only at significant time points, called oases, when
events occur, while in the remaining time intervals, called deserts, noth-
ing changes. Hence, it is possible to check for the validity of the query fluent
literals and the integrity constraints in KBTR with respect to oases only.
The transformed KB′

TR addresses to some extent computational issues of
viable realisation and scalability.

– `TR is defined as follows, given l[t] ∧ Tc (with Tc possibly empty):
KB `TR l[t] ∧ Tc iff
• KB′

TR, holds at(l, t) ∧ Tc `CIFF (∆,C), for some (∆,C), and
• KB′

TR, holds at(l, t) ∧ Tc `CIFF fail.
KB `fail

TR l[t] ∧ Tc iff
• KB′

TR, holds at(l, t) ∧ Tc `CIFF fail, or
• KB′

TR, holds at(l, t) ∧ Tc `CIFF (∆,C), for some (∆,C), and
KB′

TR, holds at(l, t) ∧ Tc `CIFF (∆′, C ′), for some (∆′, C ′).

The following result of soundness directly follows from theorem 1 and from the
equivalence between KBTR and KB′

TR.

Theorem 3. (temporal reasoning soundness)
Given l[t] ∧ Tc (with Tc possibly empty):

If KBTR `TR l[t] ∧ Tc then KBTR |=TR l[t] ∧ Tc.
If KBTR `fail

TR l[t] ∧ Tc then KBTR 6|=TR l[t] ∧ Tc.

3.2 LPP-based capability: Goal Decision

Background: logic programming with priorities. For the purposes of this
paper, a logic program with priorities, referred to as T , consists of four parts:

(i) a low-level part P , consisting of a logic program; each rule in P is assigned
a name, which is a term; e.g., one such rule could be

n(X) : p(X) ← q(X, Y), r(Y)
with name n(X);

(ii) a high-level part H, specifying conditional, dynamic priorities amongst rules
in P ; e.g., one such priority could be

h(X) : m(X) Â n(X) ← c(X)
to be read: if (some instance of) the condition c(X) holds, then (the cor-
responding instance of) the rule named by m(X) should be given higher
priority than (the corresponding instance of) the rule named by n(X).

(iii) an auxiliary part A, defining predicates occurring in the conditions of rules
in P, H and not in the conclusions of any rule in P ;

(iv) a notion of incompatibility which, for our purposes, can be assumed to be
given as a set of rules defining the predicate incompatible, e.g.

incompatible(p(X), p′(X))
to be read: any instance of the literal p(X) is incompatible with the cor-
responding instance of the literal p′(X). We assume that incompatibility is
symmetric, and refer to the set of all incompatibility rules as I.

Any concrete LPP framework is equipped with a notion of entailment, that we
denote by |=pr, defined differently by different approaches to LPP, wrt some
given underlying logic programming semantics |=LP . Intuitively, T |=prα iff α is
the conclusion (wrt |=LP) of a sub-theory of P∪A which is “preferred” wrt H∪A
in T over any other sub-theory of P ∪A that derives a conclusion incompatible
with α (wrt I). For example, in [30, 25, 22], |=pr is defined via argumentation
(see the next section).

The concrete framework for LPP that we adopt within the computational
counterpart of the KGP model is that of Logic Programming without Negation
as Failure (LPwNF) [9] suitably extended to deal with dynamic preferences [22].
Other concrete frameworks that could be used for LPP instead are, for instance,
those presented in [30, 25].

LPwNF : An argumentation-based framework for LPP. In this section,
we summarise the main features of LPwNF and the notion of preference reason-
ing |=pr, given with respect to an argumentation-based formulation of LPwNF .

LPwNF is a concrete LPP framework, whereby the various components of
a theory T , as defined earlier, are as follows:

(i) The low-level part P consists of labelled propositional rules of the form
label : l ← l1, ..., ln, where l, l1, ..., ln are atoms a or explicitly negative
literals ¬a. The underlying semantics, |=LP , is given by the single inference
rule of modus ponens. Non-ground rules are represented via all their ground
instances in the given Herbrand universe of the program.

(ii) The high-level part H consists of propositional rules of the form label : l Â
l′ ← l1, ..., ln, where l1, ..., ln are atoms or explicitly negative literals and l, l′

are labels of rules in P .
(iii) The auxiliary part A is a set of propositional rules of the form l ← l1, ..., ln.
(iv) The notion of incompatibility includes incompatible(p,¬p), for all atoms p,

and incompatible(r Â s, s Â r), for all labels of rules r and s.

We realise the notion of preference reasoning |=pr for LPwNF through argu-
mentation. Argumentation has recently been shown to be a useful framework for
formalising non-monotonic reasoning and other forms of reasoning (see e.g. [4,
10, 20, 31, 30]). In general, an argumentation framework is a pair (Th,At) where
Th is a theory in some background (monotonic) logic, equipped with an en-
tailment |=Th, and At is a binary attacking relation on the subsets of Th, i.e.
At ⊆ 2Th×2Th. The subsets of Th form the arguments of the framework and At
is therefore an attacking relation between arguments. We will write ∆ attacks
∆′ iff (∆,∆′) ∈ At.

The semantics of an argumentation framework is based upon the following
notion of admissible argument. An argument ∆ ⊆ Th is admissible iff

– ∆ does not attack itself,
– for all arguments ∆′ ⊆ Th, if ∆′ attacks ∆, then ∆ (counter-)attacks ∆′.

To provide |=pr for an LPwNF theory T =(P, H, A, I), we view the latter as
a concrete argumentation framework (Th,At) as follows. The set of arguments
Th is given by P ∪H ∪ A, with |=Th given by |=LP . The attacking relation At
is realised via a notion of conflict (using the notion of incompatibility I of T)
together with a notion of strength between arguments (using the preference rules
in the H component of T). Then, the preference semantics |=pr of an LPwNF
theory is given through argumentation in terms of the maximally admissible
subsets of the corresponding argumentation framework. Usually, two variants of
|=pr are defined. Given an LPwNF theory T , the corresponding argumentation
framework (Th, At) and a formula F ,

– T |=cred
pr F iff there is one maximal (with respect to set inclusion) admissible

argument ∆ of (Th, At) where F holds, i.e. ∆ |=LP F ;
– T |=skep

pr F iff T |=cred
pr F and, for any G s.t. I ∪A |=LP incompatible(F, G),

it holds that T 6|=cred
pr G.

In the KGP model, the preference entailment, |=pr, is given by the skeptical
entailment |=skep

pr in this section, when we define the Goal Decision capability,
and by |=cred

pr in section 5, when we define the operational trace of computees
via cycle theories.

Computing preferential reasoning in LPwNF . The computational coun-
terpart of |=pr for LPwNF is realised via a proof procedure, referred to as
GORGIAS [5]. Given a formula F , GORGIAS aims to construct an admissible
argument, ∆, that derives F , under the background logic |=LP .

GORGIAS is based on an existing proof theory for computing admissible
arguments for abstract argumentation frameworks [23]. This prooof theory is
given in terms of derivations of trees, where nodes are arguments and each node
is labelled as “attack” or “defence”. A defence node is followed by a set of
children attack nodes, one for each of its possible minimal (counte-)attacks. An
attack node is followed by a defence node containing a (counter-)attack against
its parent. Successful derivations terminate with a tree whose root, ∆, is an
admissible argument supporting, via |=LP , the initially given formula F . The
root node ∆0 of the initial tree is computed by reducing the given formula F
into a minimal set that concludes F via |=LP .

GORGIAS specialises this abstract proof theory by incorportating the LPwNF
specific way of computing attacks and counter-attacks. Any node N of the tree
results from first choosing a “culprit” conclusion c of the parent node of N and
then reducing (by resolution) some conflicting (incompatible) literal, c, of c so
that N minimally entails c under the background logic |=LP .

The GORGIAS proof procedure then provides the following derivability re-
lations for LPwNF . Given a theory T in LPwNF and a literal L, let (Th, At)
be the corresponding argumentation framework. Then

– T `cred
pr L iff there exists a successful derivation of GORGIAS for L.

– T `sk
pr L iff T `cred

pr L and T 6`cred
pr L for any L such that I ∪ A |=LP

incompatible(L,L).

We can then show that for finite theories of LPwNF , these derivability relations
`sk

pr , `cred
pr based upon GORGIAS, are sound and complete, as follows.

Theorem 4. (soundness and completeness of `cred
pr and `pr) Let T be a finite

theory of LPwNF . Then the derivability relation `cred
pr is sound and complete

with respect to |=cred
pr , provided that GORGIAS uses a sound and complete reali-

sation of |=LP . Hence the skeptical relation `sk
pr is also sound and complete with

respect to |=skep
pr , provided that GORGIAS uses a sound and complete realisation

of |=LP .

Specification and computational model for Goal Decision. The com-
putee Goal Decision capability, |=τ

GD, selects, at a given instant, the top level
goals to be pursued. These goals are preferred by the computee at the time of
their selection, but this may change over time. This capability relies directly on
the underlying preference reasoning within the LPwNF framework. It simply
uses this form of reasoning with a specific LPwNF theory, KBGD, in which the
computee represents its goal preference policy.

The knowledge base KBGD is written in four parts in the standard way
as for any theory in LPwNF . The details of the specific form of its rules are
ommitted due to lack of space. The main specialised forms of sentences in KBGD

are the following. Statements of incompatibility in KBGD, incompatible(l1, l2),
are amongst literals, l1 and l2, referring to a subset of the fluents in the language
of the computee separated out as the set of goal fluents. Rules in the basic (low-
level) part of KBGD have conclusions of the form 〈g[t], T g〉 where g is a goal
fluent, Tg is a (possibly empty) set of temporal constraints and the time variable
t is existentially quantified with scope the conclusion of the rule. The auxiliary
part, A, of KBGD is augmented with KB0∪KBTR and so the conditions of the
rules in KBGD are evaluated by combining the background derivability |=LP of
the LPwNF framework with the Temporal Reasoning capability |=TR. Finally,
any rule in KBGD may have in its body a special atom, denoted by now(τ) that
refers to the (current) time τ at which the capability of goal decision is applied
by the computee. We will denote by KBτ

GD the knowledge base obtained by
adding to (the auxiliary part of) KBGD the atom now(τ).

The capability of |=τ
GD is defined directly in terms of the preference, |=pr, of

LPwNF as follows. Given a state 〈KB, Goals, P lan, TCS〉, and a time point τ ,

KB |=τ
GD Gs

iff Gs is a maximal set, Gs = {〈g1[t1], T g1〉, . . . , 〈gn[tn], T gn〉}, n ≥ 0, where gi

are goal fluent literals and Tgi are temporal constraints on ti, such that:

KBτ
GD |=pr 〈g1[t1], T g1〉 ∧ . . . ∧ 〈gn[tn], T gn〉

This means that a new set of goals Gs is generated that is currently (skeptically)
preferred under the preference policy represented in KBGD and the current
information in KB0, via the use of the Temporal Reasoning capability by |=pr.
Note that any two goals in Gs are necessarily compatible with each other. Note
also that |=τ

GD may return an empty set of goals when there are no skeptically
preferred goals at the time τ of application of this capability.

The derivability relation, `τ
GD, and the computational model for Goal De-

cision can be drawn directly from the general GORGIAS proof procedure for
LPwNF and the derivability relations `cred

pr and `pr that this provides, as pre-
sented earlier. A simple but relatively inefficient way to compute `τ

GD would
then be to generate one by one skeptical goals, via |=pr, adding the most re-
cently generated goal to the previous goals and re-checking, again via `pr, that
the whole set remains a skeptical conclusion. A more efficient algorithm for com-
puting `τ

GD that exploits some of the special features of KBGD relies only on
the credulous derivability relation of LPwNF to generate in the first step a set
of candidate goals and then, using checks of incompatibility, to filter from this
the required goals.

Let us assume that the knowledge base, KBτ
GD, for any given current time

τ together with KBTR ∪ KB0 added to the auxiliary part of KBGD is such
that only a finite number of goals can be derived from T = KBτ

GD ∪KBTR ∪
KB0 via the background logic |=LP . We call this assumption the goal finiteness

assumption. We also assume that the auxiliary part of T is consistent. Then,
the following soundness result holds, directly from theorem 4.

Theorem 5. (Goal Decision soundness) Let T = KBτ
GD ∪KBTR ∪KB0 have

goal finiteness property and a consistent auxiliary part. Suppose that a sound and
complete realisation of |=LP is used within `cred

pr . If T `τ
GD Gs then T |=τ

GD Gs.

4 Computational model for transitions

The KGP model relies upon the state transitions GI, PI, RE, SI, POI, AOI,
AE, GR, PR, as discussed in section 2. In [5], we have provided computational
counterparts `GI , `PI , `RE , `SI , `POI , `AOI , `AE , `GR, `PR for this tran-
sitions, defined via transition rules themselves, obtained from the specifications
by replacing calls to capabilities appropriately by calls to their computational
counterparts. Below, for one concrete transition (PI), we first summarise the
formal specification, and then provide the computational countertpart.

Plan Introduction

This transition takes as input a state and a set of goals in the state (that have
been selected by the goal selection function, see below) and produces a new state
by calling the computee’s Planning (|=τ

plan, see section 3.1) and Identification of
Preconditions (|=pre, see section 3.1) capabilities. For simplicity, we will provide
specification and computational counterpart of this transition in the case of a
single input goal (see [5] for the general case of multiple input goals).

Specification of (PI)
〈KB, Goals, P lan, TCS〉 G

〈KB, Goals′, P lan′, TCS′〉 τ

where G is a goal selected for planning and

Goals′ = Goals ∪ Subg(G)
Plan′ = Plan ∪ Pplan(G)
TCS′ = TCS ∪ Tc

where the sets Subg(G), Pplan(G) and Tc are obtained as follows.

(i) if G is a mental goal: let 〈KB, Goals, P lan, TCS〉, G |=τ
plan X. Then,

either X = ⊥ and Subg(G) = Pplan(G) = Tc = {},
or X = (As,Gs, T c) and Subg(G) = {〈l[t], G〉 | l[t] ∈ Gs}, Pplan(G) =
{〈a[t], G, P 〉 | a[t] ∈ As and KB, a[t] |=pre P}.

(ii) if G = 〈l[t], G′〉 is a sensing goal:
Subg(G) = {}, and
Pplan(G) = 〈sense(l[t′]), G′, C〉, where KBpre, sense(l[t′]) |=pre C, and
Tc = {t′ ≤ t}.

Computational counterpart of PI: `τ
PI consists of two components, dealing sep-

arately with mental and sensing goals. Below, given a partial plan X returned
by `τ

plan, we write G(X) (respectively A(X), T (X)), meaning {} if X = ⊥, and
Gs (respectively As, Tc) if X = (As,Gs, Tc).

G = 〈l[t], 〉 mental goal
〈KB, Goals, P lan, TCS〉, G `τ

plan X

Goals1 = Goals ∪G(X)
Plan1 = Plan ∪A(X)
TCS1 = TCS ∪ T (X)

〈KB, Goals, P lan, TCS〉, G `τ
PI 〈KB,Goals1, P lan1, TCS1〉 (`

τ
PI)

G = 〈l[t], G′〉 sensing goal
KBpre, sense(l[t′]) `pre P
Plan1 = Plan ∪ {〈sense(l[t′]), G′, P 〉}
TCS1 = TCS ∪ {t′ ≤ t}

〈KB, Goals, P lan, TCS〉, G `τ
PI 〈KB, Goals, P lan1, TCS1〉 (`

τ
PI)

Clearly, if `τ
plan is correct wrt |=τ

plan and `pre is correct wrt |=pre, then the
computational counterpart `PI is correct wrt PI. Thus, by theorem 2 (and the
analogous theorem for |=pre),

Theorem 6. (Plan Introduction soundness) Given states S, S′, goal G, time-

point τ , if S, G `τ
PI S′ then (PI)

S G

S′
τ .

Note that the PI transition (and its computational counterpart) relies upon a
given input goal to be planned for. Such an input is provided within the KGP
model via an appropriate selection function cGS , defined in terms of capabili-
ties and the constraint satisfaction |=<. Similarly, the KGP model relies upon
selection functions for action selection (to provide inputs to the AE transition),
precondition selection (to provide inputs to the SI transition), and fluent selec-
tion (to provide inputs to the AOI transition). In the next section, we will see
that these selection functions play another important role, of “enabling” transi-
tions within cycles. In [5], we provide computational counterparts for all these
selection functions, in terms of the computational counterparts of the various
capabilities and the constraint satisfaction used therein.

5 Computational model for cycle

The role of the cycle theory is to dynamically control the sequence of the inter-
nal transitions that the agent applies in its “life”. It regulates these “narratives
of transitions” according to certain requirements that the designer of the agent
would like to impose on the operation of the agent, but still allowing the pos-
sibility that any (or a number of) sequences of transitions can actually apply

in the “life” of an agent. Thus, whereas a fixed cycle can be seen as a restric-
tive and rather inflexible catalogue of allowed sequences of transitions (possibly
under pre-defined conditions), a cycle theory identifies preferred patterns of se-
quences of transitions. In this way a cycle theory regulates in a flexible way the
operational behaviour of the agent.

Cycle theory. Formally, a cycle theory Tcycle consists of the following parts:

– An initial part Tinitial, that determines the possible transitions that the agent
could perform when it starts to operate (initial cycle step). More concretely,
Tinitial consists of rules of the form

R0|T (S0, X): ∗T (S0, X) ← C(S0, τ, X), now(τ)
with name R0|T (S0, X), and sanctioning that, if the conditions C are satis-
fied in the initial state S0 at the current time τ , then the initial transition
should be T , applied to state S0 and input X, if required. Note that the
conditions C determine the input X of the first transition T . Such inputs
are determined by calls to the appropriate selection functions (see section 4).
Note also that C(S0, τ, X) may be true, and Tinitial might simply indicate
a fixed initial transition T1.
The notation ∗T (S, X) in the head of these rules, meaning that the transition
T can be potentially chosen as the next transition, is used in order to avoid
confusion with the notation T (S, X, S′, τ) that we have introduced earlier to
represent the actual application of the transition T .

– A basic part Tbasic that determines the transitions (cycle steps) that may
follow other transitions, and consists of rules of the form

RT |T ′(S′, X ′): ∗T ′(S′, X ′) ← T (S, X, S′, τ), EC(S′, τ ′, X ′), now(τ ′)
with name RT |T ′(S′, X ′), and sanctioning that, after the transition T has
been executed, starting at time τ in the state S and ending at the current
time τ ′ in the resulting state S′, and the conditions EC evaluated in S′

at τ ′ are satisfied, then transition T ′ could be the next transition to be
applied in the state S′ with the (possibly empty) input X ′, if required.
The conditions EC are called enabling conditions as they determine when
a cycle-step from the transition T to the transition T ′ can be applied. In
addition, they determine the input X ′ of the next transition T ′. Such inputs
are determined by calls to the appropriate selection functions.

– A behaviour part Tbehaviour that contains rules describing dynamic priorities
amongst rules in Tbasic and Tinitial. Rules in Tbehaviour are of the form

RT |T ′(S, X ′) ÂRT |T ′′(S, X ′′)←BC(S,X ′, X ′′, τ), now(τ)
with T ′ 6= T ′′, which we refer to via the name PT

T ′ÂT ′′ . Recall that RT |T ′(·)
andRT |T ′′(·) are (names of) rules in Tbasic∪Tinitial. Note that, with an abuse
of notation, T could be 0 in the case that one such rule is used to specify
a priority over the first transition to take place, in other words, when the
priority is over rules in Tinitial. These rules in Tbehaviour sanction that, at the
current time τ , after transition T , if the conditions BC hold, then we prefer
the next transition to be T ′ over T ′′, namely doing T ′ has higher priority
than doing T ′′, after T . The conditions BC are called behaviour conditions

and give the behavioural profile of the agent. These conditions depend on
the state of the agent after T and on the parameters chosen in the two cycle
steps represented by RT |T ′(S,X ′) and RT |T ′′(S, X ′′). Behaviour conditions
are heuristic conditions, which may be defined in terms of heuristic selection
functions (see [17] for details). For example, the heuristic action selection
function may choose those actions in the agent’s plan whose time is close to
running out amongst those whose time has not run out.

– An auxiliary part including definitions for any predicates occurring in the
enabling and behaviour conditions, and in particular for selection functions
(including the heuristic ones, if needed).

– An incompatibility part, including rules stating that all different transitions
are incompatible with each other:

incompatible(∗T (S, X), ∗T ′(S, X ′))
for all T, T ′ such that T 6= T ′, and that different calls to the same transition
but with different input items are incompatible with each other:

incompatible(∗T (S, X), ∗T (S,X ′)) ← X 6= X ′

Overall, these rules express that only one transition can be chosen at a time.

Hence, Tcycle is an LPP-theory (see Section 3.2) where:

(i) P = Tinitial ∪ Tbasic, and
(ii) H = Tbehaviour.

In the sequel, we will indicate with T 0
cycle the sub-cycle theory Tcycle \ Tbasic and

with T s
cycle the sub-cycle theory Tcycle \ Tinitial.

Operational trace. A cycle theory Tcycle is used to induce cycle operational traces
of an agent, namely a (typically infinite) sequence of transitions

T1(S0, X1, S1, τ1), . . . , Ti(Si−1, Xi, Si, τi), Ti+1(Si, Xi+1, Si+1, τi+1), . . .
(where each of the Xi may be empty), such that

– S0 is the given initial state;
– for each i ≥ 1, τi is given by the clock of the system, such that τi < τi+i;
– (Initial Cycle Step) T 0

cycle ∧ now(τ1) |=pr ∗T1(S0, X1);
– (Cycle Step) for each i ≥ 1
T s

cycle ∧ Ti(Si−1, Xi, Si, τi) ∧ now(τi+1) |=pr ∗Ti+1(Si, Xi+1)
namely each (non-final) transition in a sequence is followed by the most
preferred transition, as specified by T s

cycle. If the most preferred transition
determined by |=pr is not unique, we choose arbitrarily one.

Computational counterpart of operational trace. Since the notion of operational
trace is based upon |=pr and transitions (and selection functions), its computa-
tional counterpart is obtained by replacing |=pr with its computational counter-
part `pr and transitions with their computational counterparts. Thus, a com-
putational operational trace is a (possibly infinite) sequence of computational
counterparts of transitions, of the form

T c
1 (S0, X1, S1, τ1), . . . , T c

i (Si−1, Xi, Si, τi), T c
i+1(Si, Xi+1, Si+1, τi+1), . . .

where

– T 0
cycle ∧ now(τ1) `pr ∗T1(S0, X1) and,

– for each i ≥ 1, T s
cycle ∧ T i(Si−1, Xi, Si, τi) ∧ now(τi+1) `pr∗Ti+1(Si, Xi+1).

Trivially, computational counterparts of operational traces correspond to oper-
ational traces, thanks to the soundness results for each transition (similarly to
theorem 6) and the soundness of |=pr (see theorem 4).

6 Implementation

To realise the logical and computational aspects of the KGP model we have de-
veloped PROSOCS [36], a platform which allows us to deploy and test the func-
tionality of KGP agents via the SOCSiC component of PROSOCS. Deployment
of KGP agents using SOCSiC is based on an agent template whose design [35]
builds upon previous work in multi–agent systems, in particular, the head/body
metaphor described by [37] and [14], and the mind/body architecture introduced
by [3] and more recently used by [15].

In the mind part of a PROSOCS agent, the ALP-based components of the
KGP model are implemented in CIFF [11, 12] and the LPP-based components of
the KGP model are implemented in GORGIAS [1]. Overall, we build the mind
using SICStus Prolog [34] and the bidirectional Java-Prolog interface Jasper it
provides; Jasper is used by the body to exchange information with the mind.

To implement the body of the agent we use Java on top of the Peer-to-
Peer JXTA Project [39]. JXTA is suitable for the low-level functionality of a
PROSOCS agent, such as interaction with the environment, and is provided in
the form of an API (Application Programming Interface). By importing this
API when we instantiate specific PROSOCS agents, we enable such agents to
discover bodies of other PROSOCS agents (using JXTA’s peer discovery proto-
cols facilities for dynamic discovery in a GC network) as well as communicate
with other agents (using JXTA’s facilities for message transport and structuring
via a pipe binding and resolver protocols).

To facilitate experimentation with KGP agents we have built interfaces,
which allow us to animate an agent’s behaviour while interacting with other
agents in the context of a GC application. The aspects of the agent’s behaviour
that we animate, in the current state of the implementation, are: the computa-
tional trace in terms of the names of transitions being executed, the observations
the agent makes and the actions it executes, the internal state of the agent in
terms of its knowledge, goals and plans. More details of the implementation of
the agent template can be found in [2, 36].

7 Conclusions

In this paper we have summarised the declarative model of the KGP agents [18]
and then given its computational counterpart and briefly described its imple-
mentation. The declarative model is based on computational logic, in particular
on abductive logic programming and logic programming with priorities. It is

modular, hierarchical and extensible. It specifies a collection of capabilities, uses
them to define a collection of transitions, to be used within logically specified
context sensitive cycle theories. In close relationship to the declarative model,
the computational model mirrors the logical architecture by specifying appro-
priate computational counterparts for the capabilities and using these to give
the computational models of the transitions. These computational models and
the one specified for the cycle theories are all based on, and are significant ex-
tensions of, existing proof procedures for abductive logic programming and logic
programming with priorities. This design has satisfied two of the main moti-
vations of the KGP model, namely to reduce the gap between the logical and
computational realisations, and to exploit and integrate (extensions of) existing
computational logic tools and techniques.

The paper also reports a first prototype implementation of the KGP model
based on SICStus Prolog, Java and JXTA [36]. The implementation reflects the
modular and hierarchical architecture and is similarly extensible. The prototype
has been used successfully on a number of small scenaria demonstrating, amongst
others, the situatedness of agents and their adaptability and responsiveness to
changes in their environment, as required by the GC challenge.

The KGP model does not currently include a number of features, some of
which are subject of future work. It would be advantageous, for example, to
include a more sophisticated way to assimilate and revise knowledge, for example
using inductive logic programming. Another useful feature would be to allow
agents to have in their knowledge, and to reason with, what they believe other
agents believe. Such knowledge can be used, for example, in communication
strategies and even possibly in planning. A particular issue included in the GC
vision and not addressed in the KGP model to date is physical mobility, although
we do cater, at the knowledge level, for agents moving from one society to another
[38]. This issue will necessitate further work. Finally, we are currently working
on identifying and verifying formally properties of behaviour of computees.

Acknowledgements

This work was funded by the IST programme of the EC, FET under the IST-
2001-32530 SOCS project, within the GC proactive initiative. K. Stathis and F.
Toni were also supported by the Italian MIUR programme “Rientro dei Cervelli”.

References

1. Gorgias User Guide: http://www.cs.ucy.ac.cy/~nkd/gorgias/, 2003.
2. M. Alberti, A. Bracciali, F. Chesani, U. Endriss, M. Gavanelli, W. Lu, K. Stathis,

and P. Torroni. SOCS prototype. Technical report, SOCS Consortium, 2003.
Deliverable D9.

3. J. Bell. A Planning Theory of Practical Rationality. In Proceedings of AAAI’95
Fall Symposium on Rational Agency, pages 1–4. AAAI Press, 1995.

4. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract,
argumentation-theoretic approach to default reasoning. Artificial Intelligence,
93:63–101, 1997.

5. A. Bracciali, N. Demetriou, U. Endriss, M. Gavanelli, A. C. Kakas, E. Lamma,
P. Mancarella, P. Mello, P. Moraitis, F. Sadri, K. Stathis, G. Terreni, F. Toni,
and P. Torroni. Computational model for computees and societies of computees.
Technical report, SOCS Consortium, 2003. Deliverable D8.

6. A. Bracciali and A. Kakas. Frame consistency: Reasoning with explanations. In
Proceedings of the 10th International Workshop on “Non-Monotonic Reasoning”
(NMR2004), Whistler BC, Canada, 2004.

7. F. Chesani, M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. The
SOCS computational logic approach to the specification and verification of agent
societies. 2004. This volume.

8. K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293–322. Plenum Press, 1978.

9. Y. Dimopoulos and A. C. Kakas. Logic programming without negation as failure. In
Logic Programming, Proceedings of the 1995 International Symposium, Portland,
Oregon, pages 369–384, 1995.

10. P. M. Dung. On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence, 77:321–357, 1995.

11. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. The CIFF proof pro-
cedure for abductive logic programming with constraints. In Proceedings JELIA04.
To appear.

12. U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and F. Toni. Abductive logic pro-
gramming with CIFF: implementation and applications. In Proceedings CILC2004,
Convegno Italiano di Logica Computazionale, 2004.

13. T. H. Fung and R. A. Kowalski. The IFF proof procedure for abductive logic
programming. Journal of Logic Programming, 33(2):151–165, Nov. 1997.

14. H. Haugeneder, D. Steiner, and F. McCabe. IMAGINE: A framework for building
multi-agent systems. In S. M. Deen, editor, Proceedings of the 1994 International
Working Conference on Cooperating Knowledge Based Systems (CKBS-94), pages
31–64, DAKE Centre, University of Keele, UK, 1994.

15. Z. Huang, A. Eliens, , and P. de Bra. An Architecture for Web Agents. In Pro-
ceedings of EUROMEDIA’01. SCS, 2001.

16. J. Jaffar and M. Maher. Constraint logic programming: a survey. Journal of Logic
Programming, 19-20:503–582, 1994.

17. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. A logic-based approach
to model computees. Technical report, SOCS Consortium, 2003. Deliverable D4.

18. A. Kakas, P. Mancarella, F. Sadri, K. Stathis, and F. Toni. The KGP model of
agency. In Proceedings ECAI2004, 2004. To appear.

19. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic program-
ming. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of
Logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–324.
Oxford University Press, 1998.

20. A. C. Kakas, P. Mancarella, and P. M. Dung. The acceptability semantics for
logic programs. In Proceedings of the Eleventh International Conference on Logic
Programming, Santa Marherita Ligure, Italy, pages 504–519, 1994.

21. A. C. Kakas and R. Miller. A simple declarative language for describing narratives
with ations. Logic Programming, 31, 1997.

22. A. C. Kakas and P. Moraitis. Argumentation based decision making for au-
tonomous agents. In J. S. Rosenschein, T. Sandholm, M. Wooldridge, and
M. Yokoo, editors, Proceedings of the Second International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS-2003), pages 883–890, Mel-
bourne, Victoria, 2003. ACM Press.

23. A. C. Kakas and F. Toni. Computing argumentation in logic programming. Journal
of Logic and Computation, 9:515–562, 1999.

24. A. C. Kakas, B. van Nuffelen, and M. Denecker. A-System: Problem solving
through abduction. In B. Nebel, editor, Proceedings of the 17th International
Joint Conference on Artificial Intelligence, pages 591–596, Seattle, Washington,
USA, August 2001. Morgan Kaufmann Publishers.

25. R. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and Law
Journal, Special Issue on Logical Models of Argumentation, 4(3-4):275–296, 1996.
Kluwer Academic Publishers.

26. R. A. Kowalski. Logic for Problem Solving. North-Holland, 1979.
27. R. A. Kowalski. Problems and promises of computational logic. In Proceedings of

the Symposium on Computational Logic, pages 1–36. Springer-Verlag, 1990.
28. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation

Computing, 4(1):67–95, 1986.
29. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd extended

edition, 1987.
30. H. Prakken and G. Sartor. A System for Defeasible Argumentation, with Defeasible

Priorities, pages 510–524. 1996.
31. H. Prakken and G. Sartor. Argument-based extended logic programming with

defeasible priorities. Journal of Applied Non-Classical Logics, 7(1), 1997.
32. M. Shanahan. Prediction is deduction but explanation is abduction. In Proceedings

of the 11th International Joint Conference on Artificial Intelligence, pages 1055–
1060, 1989.

33. M. Shanahan. Solving the Frame Problem. MIT Press, 1997.
34. SICStus Prolog user manual, release 3.8.4, 2000. Swedish Institute of Computer

Science.
35. K. Stathis, C. Child, W. Lu, and G. K. Lekeas. Agents and Environments. Tech-

nical report, SOCS Consortium, 2002. IST32530/CITY/005/DN/I/a1.
36. K. Stathis, A. Kakas, W. Lu, N. Demetriou, U. Endriss, and A. Bracciali.

PROSOCS: a platform for programming software agents in computational logic. In
J. Müller and P. Petta, editors, Proceedings of From Agent Theory to Agent Imple-
mentation (AT2AI-4 – EMCSR’2004 Session M), pages 523–528, Vienna, Austria,
2004.

37. D. E. Steiner, H. Haugeneder, and D. Mahling. Collaboration of knowledge bases
via knowledge based collaboration. In S. M. Deen, editor, CKBS-90 — Proceed-
ings of the International Working Conference on Cooperating Knowledge Based
Systems, pages 113–133. Springer Verlag, 1991.

38. F. Toni and K. Stathis. Access-as-you-need: a computational logic framework for
flexible resource access in artificial societies. In Proceedings of the Third Interna-
tional Workshop on Engineering Societies in the Agents World (ESAW’02), volume
2577 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2002.

39. B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J. C. Hugly, and E. Pouyoul.
Project JXTA-C: Enabling a web of things. In Proceedings of the 36th Hawaii
International Conference on System Sciences (HICSS’03), pages 282–287. IEEE
Press, 2003.

