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ABSTRACT
Multiagent resource allocation is a timely and exciting area
of research at the interface of Computer Science and Eco-
nomics. One of the main challenges in this area is the high
complexity of negotiation. In particular, the complexity of
the task of identifying rational deals, i.e. deals that are bene-
ficial for all participants, often hinders the successful transfer
of theoretical results to practical applications. To address
this issue, we propose several protocols designed to tame the
complexity of negotiation by exploiting structural properties
of the utility functions used by agents to model their pref-
erences over alternative bundles of resources. In particular,
we consider domains where utility functions are k-additive
(that is, synergies between different resources are restricted
to bundles of at most k items) and tree-structured in the
sense that the bundles for which there are synergies do not
overlap. We show how protocols exploiting these properties
can allow for drastically simplified negotiation processes.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems; J.4 [Social and Behav-
ioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Multiagent resource allocation, Negotiation

1. INTRODUCTION
Multiagent resource allocation is a timely and exciting area
of research at the interface of Computer Science and Eco-
nomics. Applications range from electronic commerce [19],
over logistics [12], to the exploitation of earth observation
satellites [13]. In this paper, we are going to be concerned

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

with a framework where agents negotiate over a finite num-
ber of indivisible resources in a distributed manner [9, 18].
Agents are assumed to only negotiate deals that are bene-
ficial for each of the parties involved (which may be more
than two). We are interested in negotiation histories that
lead to allocations that are optimal from a social point of
view; and we consider an allocation optimal if it maximises
the sum of utilities of the agents in the system, i.e. if it
maximises (utilitarian) social welfare [1].

Unfortunately, the complexity associated with the task of
identifying rational deals, i.e. deals that are beneficial for
all participants, is typically very high and often hinders the
successful transfer of theoretical results to practical applica-
tions. Common approaches to tame this type of complexity
are to restrict the range of utility functions agents can use to
model their preferences and to exploit the structure of util-
ity functions during negotiation [4, 15, 17]. This is also the
approach we are going to follow in this paper. Concretely,
we are going to discuss so-called tree-structured domains,
where the utility functions of agents are subject to certain
structural restrictions. We use a compact representation of
utility functions based on the notion of k-additivity, which
restricts the synergies between different resources to bun-
dles of at most k items each [11]. Tree-structured domains
are sets of k-additive utility functions where the bundles for
which there are synergies do not overlap.

We then propose two protocols that restrict negotiation
to deals involving only the smallest bundles first, and then
incrementally bigger bundles. However, these guided nego-
tiation processes are not guaranteed to converge to an allo-
cation with maximal social welfare, i.e. the protocols need
to be enhanced further. The first protocol we propose is
made intrusive in the sense that it modifies the structure
of agents’ utility functions. The second protocol has a cen-
tralised flavour and introduces a system agent that can com-
pensate for a temporary loss in utility. This combination of
guidance and social compensation allows us to restore the
convergence properties of the negotiation framework.

Paper Overview
In the remainder of this introduction we briefly review the
multilateral negotiation framework we take as the basis for
our work [9, 18]. We then exemplify the high complexity
of the framework, in Section 2, by analysing the number of
deals that agents need to consider at each stage during a
negotiation process. The class of tree-structured utilities is
introduced in Section 3. Section 4 then presents a number
of protocols exploiting these structural properties of util-



ity functions, and shows how they reduce the complexity of
the negotiation process. Our theoretical results are comple-
mented by a brief experimental analysis of the protocols.
Section 5 concludes with a discussion of the benefits and
drawbacks of the approach advocated in this paper.

Multilateral Negotiation over Indivisible Resources
We briefly review the negotiation framework originally in-
troduced by Sandholm [18], albeit in the context of task al-
location problems (see [9] for a detailed introduction). Let
A be a finite set of agents and let R be a finite set of in-
divisible resources that cannot be shared. An allocation A
is a partitioning of the resources in R amongst the agents
in A. Each agent i ∈ A is equipped with a utility function
ui : 2R → R. We write ui(A) = ui(A(i)) for the utility
assigned by agent i to the bundle it receives in allocation
A. A deal may involve the reallocation of any number of re-
sources between any number of agents. We therefore spec-
ify deals δ = (A, A′) simply as pairs of allocations (with
A 6= A′). A deal may be accompanied by a monetary side
payment. We write pi for the amount paid by agent i (neg-
ative in case i receives money). The sum of side payments
associated with any given deal has to add up to 0. A deal
δ = (A, A′) with side payments p is called individually ra-
tional iff ui(A

′) − ui(A) − pi > 0 for each agent i involved
in the deal (and pi = 0 otherwise). Agents are assumed to
only negotiate such individually rational deals.

To assess the overall quality of an allocation, we use
the concept of (utilitarian) social welfare [1]: sw(A) =P

i∈A ui(A). It is well-known that a deal is individually
rational iff it increases social welfare [9]. It is also known
that any sequence of individually rational deals will eventu-
ally result in an allocation with maximal social welfare [18].
However, this convergence result only applies in case agents
can negotiate deals involving any number of agents and re-
sources. A recent result has identified the class of k-deals
(involving at most k resources each) as sufficient to guaran-
tee convergence to an optimal allocation in case all agents
use additively k-separable utility functions to model their
preferences, i.e. in case R can be divided into several pref-
erentially independent bundles of at most k items each [4].

2. NUMBER OF BOUNDED DEALS
Results that identify conditions under which the conver-
gence to a socially optimal allocation remains possible when
agents only negotiate deals involving at most k items each
significantly reduce the complexity of negotiation (at least
in cases where k is small). In particular, the restriction to
k-deals significantly reduces the number of deals to be con-
sidered at any given stage. In this sense, the quoted result
on additively k-separable domains [4] is a first step towards
a realistic multilateral negotiation system. However, even
in such favourable cases it may be infeasible for agents to
identify a k-deal that is acceptable to all parties involved.
In this section, we are going to demonstrate this problem
by analysing the number of bounded deals that could be
implemented in a given allocation.

Recall that |A| is the number of agents and |R| is the
number of resources in the system. This means that there
are |A||R| possible allocations overall (for each resource, we
can choose which agent to give it to). Hence, in any given

situation there are |A||R|−1 potential deals to consider (we

could move to any alternative allocation). This number can,
of course, be somewhat reduced, for instance by discount-
ing any previous allocations, but the remaining number of
potential deals that need to be checked for their mutual ac-
ceptability would still be prohibitively high.

Bounded Number of Resources
The situation improves significantly if we restrict ourselves
to bounded deals involving at most k distinct resources.
There are

`|R|
k

´
ways of selecting k items from the full set

R. Then each of the chosen k items can be moved to any of
the |A| agents in the system. If the agent receiving a given
item is the same agent where that item resided before the
deal, then we take this as an encoding for the item not being
moved at all, i.e. we are also capturing those deals that in-
volve fewer than k resources. Only one of these cases needs
to be excluded, namely the case where not a single of the
k chosen resources gets moved (as this would not count as
a valid deal). Hence, we end up with the following overall
number of possible k-deals for any given allocation A: 

|R|
k

!
· (|A|k − 1) (1)

This is polynomial in both the number of agents and the
number of resources, while it has been exponential in the
number of resources for deals without structural restrictions.
In the case of k = 1, for instance, we only have to consider
|R| · (|A| − 1) potential deals from any given allocation.

Bounded Number of Agents
In case we restrict the number of agents involved in a deal,
the number of possible deals is not constant anymore, but
varies depending on the current distribution of goods. To see
this, we first compute the number of deals that are possible
within a subgroup S ⊆ A of agents for a given allocation
A. For any given agent i ∈ S, and any resource r ∈ A(i)
currently held by i, i can choose to which agent within the
group S the item r should go (or whether it should remain

with i). This makes |S||A(i)| choices for agent i. The same
is true for every agent in S (and in the end we still need to
subtract 1 to account for the case were not a single resource
is moving). We end up with the following formula:

|S|
P

i∈S |A(i)| − 1 (2)

This number is constant as long as we do not change the
overall number of resources held by the agents in S. For
a group of two agents S = {i, j}, for instance, the above

formula simplifies to 2|A(i)|+|A(j)| − 1. Hence, the number
of bilateral deals (involving only two agents) that are imple-
mentable given allocation A can be computed as follows:X

i6=j∈A

(2|A(i)|+|A(j)| − 1) (3)

Now this number is not constant anymore; it depends on
the distribution of resources in allocation A. Take a sce-
nario with 3 agents and 9 resources. If each agent holds
3 resources, then the above formula shows that there are
3 · (23+3 − 1) = 189 potential bilateral deals. If, on the
other hand, we start with an allocation where one of the
agents holds all 9 resources to begin with, then there are
2 · (29+0−1)+(20+0−1) = 1022 bilateral deals. Indeed, for-
mula (3) shows that the number of possible deals increases as



resources become less evenly distributed amongst the agents
in the system. It also shows that, even if we only allow for
bilateral deals, the number of deals to be considered is ex-
ponential in |R|, the overall number of resources, in case the
distribution of resources is highly unbalanced. If the distri-
bution of resources is reasonably well balanced, on the other
hand, then the number of possible bilateral deals is “only”

exponential in |R|
|A| , which may be manageable in cases where

the number of resources is of a similar order of magnitude
as the number of agents.

In conclusion, our discussion in this section has given some
insight into the factors that determine the number of deals
to be considered in each negotiation round and we have seen
that the restriction to deals involving only a limited number
of resources can result in a significant reduction in complex-
ity. If we restrict deals to those between a bounded number
of agents, the positive effect is considerably less significant.
In either case, the number of deals to be considered typically
remains very high and makes the design of general strategies
for multilateral negotiation particularly challenging.

3. TREE-STRUCTURED DOMAINS
In this section, we are going to introduce a restriction on
utility functions which we call tree-structured utilities. This
is a natural restriction for many applications, which will
allow us to drastically reduce the search space without losing
the convergence properties.

The k-additive Form
An important parameter in the specification of any multia-
gent resource allocation problem is the way we represent the
preferences of individual agents over alternative bundles of
resources. A natural and compact language is the so-called
k-additive form of representing utility functions. A utility
function ui is k-additive iff there exists a set of coefficients
{αT

i |T ⊆ R} such that αT
i = 0 whenever |T | > k, and the

following equality holds for all bundles R ⊆ R:

ui(R) =
X
T⊆R

αT
i (4)

That is, agent i enjoys an increase in utility of αT
i when

it owns all the items in T together, i.e. αT
i represents the

synergetic value of this bundle. If a utility function is defined
in terms of such coefficients, we say that it is given in k-
additive form. When describing examples, we are going to
use a simplified notation. For instance, ui = 5.r1 + 3.r2.r3

represents a 2-additive utility function with two non-zero

coefficients: α
{r1}
i = 5 and α

{r2,r3}
i = 3.

The k-additive form goes back to the work of Grabisch [11]
in fuzzy measure theory and has recently been advocated as
a useful preference representation language in the context of
both combinatorial auctions [5] and distributed negotiation
schemes [3]. Similar preference languages have been used
in Artificial Intelligence for some time [2]; what is special
about the k-additive form is that it parametrises the degree
of synergies in a natural manner. If k can be chosen freely,
then any utility function can be written in k-additive form,
and the k-additive form is typically significantly more con-
cise than simply enumerating the utilities for all bundles [3].
For ease of presentation, we are going to assume that the co-

efficient for the empty bundle α
{ }
i = 0 for all agents i ∈ A

(but the applicability of our results is not affected by this
assumption).

Terms and Trees
To define tree-structured domains, we require utilities to be
represented in k-additive form. The set of terms of a utility
function ui is the set of bundles T with a non-zero coefficient
αT

i in the k-additive form. For instance, the utility function
ui = 16.r2 + 5.r1.r2.r4 − 2.r1.r3 uses the terms r2, r1.r2.r4,
and r1.r3. Let {u1, . . . , un} be the set of utility functions
of the agents in the system. T will denote the set of all
terms appearing in the representation of any of the utility
functions u1, . . . , un, and αT

i will denote the coefficient of
term T in ui. Finally, T l denotes the set of terms in T
consisting of exactly l resources, while T ≤l denotes the set
of terms in T with at most l resources each.

Intuitively, tree-structured utilities are k-additive func-
tions in which there are no “overlapping” terms.

Definition 1. A set of utility functions {u1, . . . , un} is
called tree-structured iff, when represented in k-additive
form, it is the case that for all terms T1, T2 ∈ T we have
either T1 ⊆ T2, or T1 ⊇ T2, or T1 ∩ T2 = { }.
It is also helpful to note that a set of utility functions is tree-
structured iff the terms of T can be represented by a tree,
in which R is the root, and each term is a node. Branches
of the tree represent the ⊂ relation. The following example
illustrates this representation.

Example 1. Consider the set {u1, u2, u3} of utility func-
tions defined as follows:

u1 = r2 + 3.r5

u2 = 3.r1 + 10.r1.r2.r3.r4 + 8.r5 + 4.r6

u3 = r6 − r4 + 8.r3.r4

These functions are 4-additive as well as tree-structured.
The set of terms T = {r1, r2, r4, r5, r6, r3.r4, r1.r2.r3.r4} can
also be represented by the following tree:

R

r5 r6 r1.r2.r3.r4

r1 r2 r3.r4

r4

wwooooooo
�� ''OOOOOO

wwoooooo
�� ''OOOOO

��

The idea of tree-structured domains has also been used by
Rothkopf et al. [17] in the context of combinatorial auctions.
In their work, bids are restricted to bundles that belong
to a given tree structure. They show that this restriction
makes the winner determination problem tractable. We are
going to exploit this reduced level of complexity as well,
although by designing a negotiation protocol rather than an
optimisation algorithm.

We note here that any set of k-additive tree-structured
utilities is also additively k-separable. Hence, the conver-
gence towards an allocation with maximal social welfare in
case agents only negotiate individually rational k-deals is
guaranteed by the aforementioned result [4].

T -deals
Still, as argued in Section 2, even finding a rational k-deal
can often be computationally infeasible. Our aim is there-
fore to exploit this new restriction on utility functions to



come up with a new type of deal that is less complex, while
still ensuring the same convergence properties.

Definition 2. Let T be a set of terms. A T -deal is a
deal involving the reallocation of the resources of a single
term in T from any number of senders to a single receiver.

For our example above, for instance, moving all of r1, r2,
r3 and r4 from whichever agent currently holds them to,
say, agent 1 would be a valid T -deal. Only moving r3, on
the other hand, would not constitute a T -deal (because r3

does not occur as a term in the representation of the utility
function any of our three agents).

How many T -deals are possible from a given allocation?
The exact number will depend on the particular allocation
in question, but |T | · |A| will certainly be an upper bound:
for any term in T we can choose which of the agents in A
should receive that term in its entirety. How many terms
can we have in T in the worst case? Firstly, the number of

non-overlapping terms of size k is bound by d |R|
k
e. Secondly,

given a set of k resources, we can use these to construct a
subtree with at most 2k−1 nodes (to see this, consider that
splitting each term/node into two balanced subnodes will
give a tree exhibiting the maximal number of nodes). Hence,
we end up with the following upper bound for the number
of terms in T for any set of k-additive tree-structured utility
functions:

|T | ≤ (2k − 1) ·
‰
|R|
k

ı
(5)

Hence, even if we do not put any restrictions on k (i.e. in case
k = |R|), we end up with an upper bound for the number of
possible T -deals of (2 · |R| − 1) · |A|. This number is of the
same order of magnitude as the number of 1-deals available
from any given allocation, and significantly lower than the
number of possible k-deals for any k > 1. In other words,
the complexity of finding rational T -deals is also very low
compared to that of finding rational k-deals.

However, as illustrated by our next example, simply re-
stricting negotiation to individually rational T -deals will not
be sufficient to guarantee that an allocation with maximal
social welfare will be reached eventually in all cases.

Example 2. Consider the following utility functions:

u1 = 10.r1

u2 = 10.r2

u3 = 11.r1.r2

Furthermore, let the initial allocation be the allocation as-
signing all items to agent 3. Then the (only) optimal alloca-
tion gives r1 to agent 1 and r2 to agent 2. Clearly, there are
no rational T -deals allowing the system to reach this opti-
mal allocation. For any of these deals, the utility of agent 3
would drop from 11 to 0, while the receiving agent (either
1 or 2) would only gain 10 utility points. Hence, it would
not be possible to arrange for suitable side payments making
such a deal beneficial for everyone involved.

In order to restore the desired convergence properties of
the framework, we will need to investigate more complex
protocols restricting the negotiation process and exploiting,
through T -deals, the properties of tree-structured utilities.

4. TREE-CLIMBING PROTOCOLS
The basic idea of tree-climbing protocols is to allow T -deals
involving only the smallest bundles first, then to incremen-
tally allow bigger bundles, until all possible T -deals have
been tried. The Naive Tree-Climbing Protocol is a simple
implementation of this principle.

Algorithm 1 Naive Tree-Climbing Protocol

Require: n agents with tree-structured utilities u1, . . . , un

(with T the set of all terms)
1: l← 1.
2: repeat
3: Restrict allowed deals to T l-deals.
4: Let agents negotiate individually rational T l-deals.
5: if no more deal can be conducted then
6: l← l + 1
7: end if
8: until l > |R|

Clearly, this protocol is more restrictive than the liberal
“protocol” consisting of allowing any T -deals, i.e. it can-
not guarantee an optimal outcome either (see Example 2).
By inspecting more carefully the scenario described in Ex-
ample 2, however, we find clues indicating possible improve-
ments of this protocol: During the first step of the protocol
(where l = 1, and only T 1-deals are allowed), the term r1.r2

in u3 prevents the resources from moving away from agent
3. If, during this first step, terms containing more than one
resource were to be removed from the utility functions, then
the resources would be able to move towards agents 1 and 2.

4.1 An Intrusive Tree-Climbing Protocol
Based on this idea, we design a new protocol which, dur-
ing round l, removes from all utility functions any terms
involving more than l resources. This protocol is called the
Intrusive Tree-Climbing Protocol (ITCP). It is intrusive in
the sense that it modifies the utility functions of each agent
during each round of the protocol. In the specification of
the ITCP, u≤l

i denotes the utility function ui with all terms
of size greater than l having been removed. For instance, if
ui = 12.r1 + 3.r1.r2 + r1.r3 − 2.r1.r2.r4, then u≤1

i = 12.r1,

u≤2
i = 12.r1 + 3.r1.r2 + r1.r3, and u≤3

i = ui.

Algorithm 2 Intrusive Tree-Climbing Protocol (ITCP)

Require: n agents with tree-structured utilities u1, . . . , un

(with T the set of all terms)
1: l← 1.
2: repeat
3: Restrict allowed deals to T l-deals,
4: Enforce all agents i to change their utilities to u≤l

i .
5: Let agents negotiate individually rational T l-deals.
6: if no more deal can be conducted then
7: l← l + 1
8: end if
9: until l > |R|

Convergence
As we shall see, the ITCP guarantees convergence to an al-
location with maximal social welfare, provided the utility
functions of all agents are tree-structured with positive co-
efficients. We are first going to show that each round of the



protocol will lead to an allocation deemed optimal wrt. the
truncated utility functions of agents populating the system.
The social welfare of an allocation A wrt. truncated utility
functions in round l is denoted by sw≤l(A) =

P
i∈A u≤l

i (A).

Lemma 1. For any set of tree-structured utilities with
positive coefficients, if at the end of round l of the ITCP
an optimal allocation wrt. sw≤l has been reached, then at
the end of round l+1 an optimal allocation wrt. sw≤l+1 will
be reached.

Proof. Assume after round l the allocation Al has been
reached and that allocation is optimal wrt. sw≤l. Let Al+1

be (any of) the allocation(s) that are optimal wrt. sw≤l+1.
Because of the tree structure, we can consider the optimal
allocation of resources belonging to distinct terms in T l+1

separately. Let T ∈ T l+1. We can distinguish three cases:
(1) If T is owned by a single agent in Al+1, then we are
done, because this can be achieved using a T l+1-deal. (2) If
not, and if T is also not owned by a single agent in Al,
then we are done, because the optimal allocation will be the
same as in Al. (3) If it were the case that T is owned by a
single agent in Al but not in Al+1, then that would pose a
problem, because the necessary reallocation would not be a
T l+1-deal. However, this situation is impossible due to our
restriction to positive coefficients.

We are now in a position to prove that the ITCP does indeed
guarantee the intended convergence property.

Theorem 1. For any set of tree-structured utilities with
positive coefficients, following the ITCP will result in an al-
location of resources with maximal social welfare.

Proof. The proof is by induction over the number of
rounds. In the first round, all agents have additive utility
functions, and it has been shown elsewhere that negotia-
tion with individually rational deals involving only a single
resource each will converge to an optimal allocation in ad-
ditive domains [9]. Lemma 1 shows that the property of
having maximal social welfare wrt. truncated utility func-
tions persists from one round to the next. Hence, after the
final round, the allocation reached will have maximal social
welfare wrt. the full utility functions.

Negative Coefficients
Observe that our proof of Lemma 1 shows why we need to
restrict ourselves to k-additive functions with positive coeffi-
cients. If there are negative coefficients, then also deals that
“destroy” an existing term can increase utility. This is also
demonstrated by the following example.

Example 3. Consider the following utilities:

u1 = 2.r1.r2 + 10.r3 − 100.r1.r2.r3

u2 = 5.r3

After round 2 of the ITCP, agent 1 would own all three re-
sources, and the social welfare relative to terms of length
≤ 2 would be 12. In round 3, the only individually ratio-
nal deal involving a term with exactly 3 resources would be
to move r1.r2.r3 from agent 1 to agent 2 (increasing social
welfare from −88 to 5). But then the deal of moving r3

back to agent 1 would increase social welfare even further,
namely from 5 to 10 (which is the maximal social welfare at-
tainable for this resource allocation problem). However, this
deal would not be admissible in the ITCP during round 3.

A potential way around this problem would be to widen
the class of T -deals, and to also allow for deals that involve
a term from T being removed from a single sender (while
our actual definition of T -deal foresees a single receiver).
With that extension, the ITCP could be proved to converge
to an allocation with maximal social welfare also for tree-
structured utilities with arbitrary coefficients, although it
would also lose much of its appeal by increasing the range
of available deals at each stage significantly.

Note that in the work of Rothkopf et al. [17] this problem
does not occur, because the standard bidding language for
combinatorial auctions (the so-called “OR language”) can
only express superadditive preferences in the first place [14].

Communication Complexity
The communication complexity of a negotiation scheme as-
sesses the length of negotiation processes and the amount of
information that agents exchange. The “first level” of com-
munication complexity is concerned with the number of deals
required to reach an optimal allocation [8]. Here we can dis-
tinguish two types of upper bounds, namely the length of
the longest and that of the shortest path to the optimum.
For the ITCP we obtain the following bounds:

• The ITCP requires agents to implement a maximum
of |T | · (|A| − 1) deals (longest path), after which the
optimal allocation will be reached.

• In the ITCP, agents can always reach an optimal allo-
cation by negotiating at most |T | deals (shortest path).

The shortest path applies if agents always implement the
“ideal” deal for every term in T . The longest path applies
if utility functions are such that we can move each term to
every agent before it finally reaches its eventual owner.

Discussion
A possible interpretation of the ITCP would be that it works
with a sequence of progressively more fine-grained approx-
imations to the real utility functions in such a way that
structurally simple deals become individually rational (wrt.
these approximations). Of course, these are approximations
wrt. the representation of utility functions (in k-additive
form), but not necessarily wrt. the values that utility func-
tions assign to bundles of resources.

These two dimensions may, however, coincide in many
practical cases. If we assume that the synergetic effect of a
bundle of resources reduces as the cardinality of that bun-
dle increases, then the sequence of auxiliary utility functions
used in the ITCP will indeed be progressively more accurate
in terms of the values they assign to bundles as negotiation
develops. In other words, if the coefficients in the k-additive
form are high for single resources, and if they get smaller
as the size of the respective term increases, then the utility
functions used in the ITCP become more accurate in each
round. This is a very reasonable assumption to make: the
larger a bundle of resources is, the more difficult would it be
for an agent to estimate the additional benefit incurred by
owning all the resources in that bundle together (beyond the
benefit incurred by the relevant subsets). Indeed, the very
same (cognitive) argument is one of the main reasons why
k-additive utilities with low values of k are not only compu-
tationally attractive but also highly relevant in practice.

Nevertheless, the ITCP does violate the postulate of full
individual rationality for all stages of a negotiation process.



Also, because of its “intrusive” aspect, this protocol is not
completely satisfactory: it cannot be applied when agents
are not under the control of the designer or when they are
not willing to temporarily manipulate their own preferences
in order to implement the protocol correctly. Clearly, such
a protocol would be of little use when agents are humans,
or simply when privacy issues prevent the designer from di-
rectly accessing the agents’ preferences.

4.2 A Non-Intrusive Protocol
To overcome the drawbacks of our intrusive protocol, we de-
sign a third protocol in which utilities are not modified, but
where a special payment function influences the rationality
considerations of each agent. In addition, the system itself
also participates in the side payments, by giving money to
or taking money from the negotiating agents. For this pur-
pose, we introduce a so-called system agent. The trick here
is that these side payments have exactly the same effect as
truncating the utility functions, but without being intru-
sive (as shown in Theorem 2). Thus, this protocol could be
used in real applications, even with human agents as long
as utilities have been elicited.

This new protocol is called the Omniscient ε-Altruistic
Tree-Climbing Protocol (OATCP). In this protocol the sys-
tem actively mediates the negotiation process. The protocol
is called omniscient, because the system needs to know the
utility functions of all agents. It is called ε-altruistic, because
the system must be prepared to share its money with the
agents in order to reach an allocation with maximal social
welfare, and because the amount of money it shares depends
on a parameter ε. For the specification of the OATCP, we
define ∆≤l

(A,A′) = sw≤l(A′)−sw≤l(A). This is the increase in

social welfare for the deal δ = (A, A′) wrt. truncated utilities
considering only terms of size ≤ l.

Algorithm 3 Omniscient-Altruistic Tree-Cl. Pr. (OATCP)

Require: n agents with tree-structured utilities u1, . . . , un

and a parameter ε ∈ (0, 1] (with T the set of all terms)
1: All agents transmit their utility functions to the system

agent.
2: l← 1.
3: repeat
4: Restrict allowed deals to T l-deals.

The side payment for agent i for a T l-deal δ = (A, A′)
involving n′ agents is computed as follows:
pi = ui(A

′)− ui(A)− ε
n′ ·∆

≤l
(A′,A).

For the system agent, psys = −
P

pi.
5: Let agents negotiate individually rational deals.
6: if no more deal can be conducted then
7: l← l + 1
8: end if
9: until l >| R |

Role of the System Agent
Note that in the OATCP the system agent could be viewed
as a kind of bank giving or receiving money from agents. The
amount of money shared with other agents depends on the
difference of satisfaction enjoyed by the whole society before
and after the deal and on the value of the parameter ε.

• When ε is close to 1, the system agent in not guaran-
teed to earn any money in the long run. In that case,

the system agent is said to be altruistic, because the
other agents will benefit from this by earning a lot.

• When ε is close to 0, then during each deal, the system
agent takes from the other agents as much money as
possible. Thus, the negotiating agents will earn the
minimum amount of money necessary to reach the op-
timal allocation, and the system agent will earn a lot
more (not altruistic at all in that case).

The protocol could be extended in such a way that the
money earned by the system agent would later be redis-
tributed. One option would be to simply divide the money
equally amongst all agents, but how to best set up this redis-
tribution in view of both fairness considerations and strate-
gic issues is a question that warrants further investigation.

Convergence
The following results show that this protocol also converges
to an allocation with maximal social welfare, just as the
ITCP does. We first establish that a deal is “rational” with
the special payment function (i.e. utility gains outweigh pay-
ments for each of the agents except the system agent) iff it
increases social welfare wrt. truncated utilities.

Lemma 2. During round l of the OATCP, a given deal
δ = (A, A′) is rational iff sw≤l(A) < sw≤l(A′).

Proof. ‘⇒’: Suppose the deal is rational. That is, for
each agent i involved, ui(A

′)− ui(A)− pi > 0. Thus,

sw≤l(A′)− sw≤l(A) =
1

ε
·
X

(ui(A
′)− ui(A)− pi) > 0

‘⇐’: Now suppose sw≤l(A′) > sw≤l(A). Then for each
agent i involved in the deal, the rationality criterion is met:

ui(A
′)− ui(A)− pi =

ε

n′
·∆≤l

(A′,A) > 0

This completes our proof of Lemma 2.

This directly leads to the convergence result.

Theorem 2. For any set of tree-structured utilities with
positive coefficients, following the OATCP will result in an
allocation of resources with maximal social welfare.

Proof. We show that the deals accepted in this proto-
col are the same as those accepted in the ITCP protocol.
Clearly, during round l, a deal δ = (A, A′) is accepted in
the ITCP iff sw≤l(A) < sw≤l(A′). Lemma 2 shows that the
OATCP behaves in exactly the same way. The claim then
follows from Theorem 1.

Given this operational equivalence between the two proto-
cols, the communication complexity of the OATCP (i.e. the
number of deals required to reach an optimal allocation fol-
lowing the protocol) is the same as for the ITCP.

Money Earned by the System Agent
A critical point of the OATCP is that it requires an external
provider of money. However, the following result shows that
the system agent will actually earn money over the entire
duration of the protocol, as long as we choose a sufficiently
small value for ε.

Theorem 3. If ε is sufficiently small, then the system
agent will have earned a positive amount of money by the
end of any OATCP negotiation.



Proof. Let us first compute how much is earned by the
system agent each time a deal is conducted. Suppose at step
l, a deal δ = (A, A′) is conducted by n′ agents. The system
agent makes the following payment:

psys = −
X“

ui(A
′)− ui(A)− ε

n′
·∆≤l

(A′,A)

”
= −(sw(A′)− sw(A)) + ε ·∆≤l

(A′,A)

Now let d be the number of deals conducted during the
whole of the negotiation process. Furthermore, let Ainit be
the initial allocation and let Afin be the final allocation If
ptotal
sys denotes the total amount of money the system agent

pays out during the whole negotiation process, then −ptotal
sys

is the money earned by the system. We get:

−ptotal
sys =

X
δ=(A,A′)

“
sw(A′)− sw(A)− ε ·∆≤l

(A′,A)

”
≥ sw(Afin)− sw(Ainit)− ε · d · max

A,A′,l
∆≤l

(A′,A)

Clearly, we can see that−ptotal
sys converges to the overall social

surplus as ε decreases:

lim
ε→0

(−ptotal
sys ) = sw(Afin)− sw(Ainit)

Hence, as long ε is chosen small enough, the system agent
can always earn during negotiation.

The central idea in the OATCP is that the system agent (i.e.
the mechanism) can give a “loan” to agents to allow them
to accept otherwise disadvantageous deals, but that these
agents repay this loan later on when they arrange deals that
are overly beneficial for themselves. This general idea would
also be applicable in other scenarios than we have considered
here, where agents do not necessarily have tree-structured
utility functions. As long a the final allocation has higher
utilitarian social welfare than the initial allocation and as
long as the system agent has sufficient funds to temporar-
ily sustain allocations with very low social welfare, any se-
quence of deals can be made individually rational from the
viewpoint of the negotiating agents and would still result in
an eventual surplus for the system agent.

4.3 Experimental Analysis
We have shown that both the ITCP and the OATCP per-
form optimally in case all agents model their preferences us-
ing tree-structured utilities with positive coefficients. While
this is a reasonably wide class of utility functions that are
relevant to real application domains, it is also clear that it
will not always be possible to meet these constraints. Still,
the ideas implemented in our protocols seem to have a gen-
eral appeal and may also be useful (albeit not to the degree
of guaranteeing optimal outcomes in all cases) in domains
that are not tree-structured.

To test this intuition, we have carried out a number of
experiments with agents that do not have tree-structured
utilities. Figure 1 shows an example. The graph relates the
performance of the ITCP/OATCP and of a protocol only
implementing 1-deals to the maximal social welfare attain-
able. In each run, we have generated the utility functions of
4 agents over 10 resources in k-additive form by randomly
choosing 8 terms and coefficients each. The size of terms is
drawn from {1..kmax} and the size of coefficients is drawn
from {1..100} (uniform distribution). The horizontal axis

Figure 1: Performance of different protocols

shows the value of kmax and the vertical shows the social
welfare of the final allocation (averaged over 20 runs). The
experiment shows that the ITCP/OATCP clearly outper-
forms the 1-deal protocol for larger values of kmax, and that
it typically manages to reach an allocation with over 95%
of the maximal social welfare. We have run similar experi-
ments with other distributions (not reported here for lack of
space). The ITCP/OATCP generally performs well and is
preferable to a 1-deal protocol whenever the agents’ utilities
include a significant number of terms of size greater than 1.

5. CONCLUSION
We have further analysed a negotiation framework previ-
ously studied by several authors [7, 8, 9, 18]. While most
work on negotiation in multiagent systems has addressed
either bilateral negotiation [16] or auctions [6], this frame-
work is multilateral, i.e. deals may involve any number of
agents and any number of resources. The requirement for
full multilateral negotiation stems from the fact that agents
are assumed to be both rational and myopic. Recent re-
sults have identified situations in which deals involving only
a limited number of resources each are required to reach
allocations that are optimal from a social point of view [4].

However, the task of identifying rational deals, i.e. deals
that are beneficial for all participants remains highly com-
plex. In this paper, we have shown that if all agents model
their preferences by means of tree-structured utility func-
tions, then finding an allocation with maximal social welfare
does become feasible by implementing adequate protocols.
Two protocols, clearly designed to exploit the specific struc-
ture of these functions, have been proposed in this paper.
The crucial contribution in our proposal, we believe, is the
combination of two ideas:

• The central idea in the ITCP has been to provide a pro-
tocol that guides negotiation. In each round, there are
only a relatively small number of options as to which
deal to choose (and the complexity of these deals in-
creases stepwise, from round to round). The particular
choices made in the definition of the ITCP mean that
deals are not too far from truly rational deals (cer-
tainly if we make some additional assumptions on the
nature of utility functions, as discussed earlier).



• The additional idea in the OATCP has been to intro-
duce a system agent that can compensate for a tem-
porary loss in social welfare (provided that such a loss
is due to a deal sanctioned by the guidelines imple-
mented in the ITCP). It thereby allows for a wider
range of deal sequences leading to the optimal alloca-
tion, including sequences of structurally simple deals.

This combination of guidance and social compensation
makes our approach work. While our formal results are
restricted to tree-structured domains, we believe that the
central ideas are general enough to be applied to other sce-
narios as well. This view is supported by our experimental
results with utility functions that are not tree-structured.

Our proposal may be considered a hybrid between dis-
tributed and centralised approaches to resource allocation.
On the one hand, allocations emerge in a distributed man-
ner as a result of a sequence of local negotiation steps. On
the other hand, the concept of the system agent introduces
a centralised element. One of the main arguments usually
given in favour of distributed approaches over centralised
ones (such as combinatorial auctions), is that it may not
always be possible to find an agent that could act as the
central authority (the auctioneer) executing the allocation
procedure.1 To some degree, the same reservations may be
made against our proposal. However, we believe that there
is at least one important difference. In a combinatorial auc-
tion, the auctioneer is endowed with the (significant) com-
putational burden of deciding the final allocation (the so-
called winner determination problem [6]). In our approach,
on the other hand, there are no computationally hard tasks
associated with the role of the system agent. Of course, in
the context of the tree-structured domains studied here, the
centralised task is not prohibitively hard in itself. Still, our
work shows that it can also be distributed safely amongst
agents by employing our protocols. Importantly, our exper-
iments suggest that the ideas underlying the design of these
protocols also have a more general appeal.

A potential problem with our approach is that agents
could stop participating in negotiation before the optimal
allocation has been reached. Indeed, it may be rational for
them to do so, because our protocols allow certain agents
to temporarily enjoy higher utility than they would en-
joy in the socially optimal allocation. In this sense, the
framework loses the “anytime character” of the original sys-
tem [18], where every new allocation would be guaranteed
to have higher social welfare than its predecessor. This any-
time character is particularly important because of the pro-
hibitively high complexity of the general framework [3, 7,
8]. If optimal allocations cannot be guaranteed to be found
within a reasonable amount of time, then the original frame-
work does at least guarantee some improvement over the
initial allocation when time runs out. In our proposal, the
anytime character of the framework is far less important,
because it dramatically reduces the complexity of negotia-
tion and thereby makes convergence to an optimal allocation
within a reasonable amount of time a realistic option. Nev-
ertheless, the issue of incentive compatibility in the OATCP
protocol remains an interesting topic for future work.

1Such arguments for distributed negotiation schemes are
similar to those often given to motivate the interest in dis-
tributed constraint optimisation problems [10]. It would be
interesting to explore whether algorithms developed in this
area could be applied to our negotiation setting as well.
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strategy in a competitive multi-agent transportation
setting. In AMEC V. Springer-Verlag, 2004.
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