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Résumé :
Cet article aborde l’allocation de ressources multiagent
par la négociation. Un des problèmes majeurs de cette ap-
proche, qui rend difficile la mise en pratique des résul-
tats théoriques, est qu’il s’avère très complexe d’identi-
fier les échanges potentiellement acceptables pour un en-
semble donné d’agents. La solution que nous envisageons
ici est d’utiliser différents protocoles conçus afin d’ex-
ploiter certaines propriétés des fonctions d’utilités utili-
sées par les agents pour modéliser leurs préférences. Nous
considérons spécifiquement les domaines où les fonctions
d’utilité sont k-additives (c’est-à-dire que les synergies
entre les ressources sont restreintes aux lots d’au plusk
ressources), et structurées sous forme d’arbre, au sens où
les lots pour lesquels il existe une synergie ne se “chevau-
chent” pas.

Mots-clés :Négociation, Allocation de ressources

Abstract:
Negotiation over resources in multiagent systems is a ti-
mely and fruitful area of ongoing research. However, the
prohibitively high complexity of the task of identifying
rational deals,i.e. deals that are beneficial for all partici-
pants, currently hinders the successful transfer of theoreti-
cal results to practical applications. To address this issue,
we propose several protocols designed to tame the com-
plexity of negotiation by exploting structurual properties
of the utility functions used by agents to model their pre-
ferences over alternative bundles of resources. In parti-
cular, we consider domains where utility functions are
k-additive (that is, synergies between different resources
are restricted to bundles of at mostk items) and “tree-
structured” in the sense that the bundles for which there
are synergies do not overlap. We show how protocols ex-
ploiting these properties can enable drastically simplified
negotiation processes.

Keywords: Negotiation, Resource Allocation

1 Introduction

Negotiation in general, and the allocation of re-
sources by means of negotiation in particular,
are widely regarded as important topics in mul-
tiagent systems research. In this paper, we study
a multilateral negotiation framework where au-
tonomous agents agree on a sequence of deals to
exchange sets of discrete (i.e. non-divisible) re-
sources. While, at the local level, agents arrange
deals to further their own individual goals, at the
global level (say, from a system designer’s point

of view) we are interested in negotiation pro-
cesses that lead to allocations of resources that
aresocially optimal. In this paper, we are only
concerned with maximisingutilitarian [12, 15]
social welfare (this concept will be defined in
Section 2).

Previous work has addressed the emergence of
states that are optimal from a social point of
view, depending on the kinds of acceptability
criteria used by individual agents when deciding
whether or not to agree to a proposed exchange
of resources [7, 14]. A first analysis of the com-
plexity of certain aspects of this framework has
recently been given by Dunneet al. [5]. In a dif-
ferent perspective, a certain kind ofcommuni-
cation complexityof this framework (analysing,
for instance, the length of negotiation processes)
has also been investigated recently [6]. Howe-
ver, the prohibitively high complexity of the task
of identifying rational deals,i.e. deals that are
beneficial for all participants, currently hinders
the successful transfer of theoretical results to
practical applications. To address this issue, we
propose several protocols designed to tame the
complexity of negotiation by exploting structu-
rual properties of the utility functions used by
agents to model their preferences over alterna-
tive bundles of resources. We propose two pro-
tocols that restrict negotiation to deals involving
only the smallest bundles first, and then incre-
mentally bigger bundles. However, these gui-
ded negotiation processes are not guaranted to
converge to an allocation with optimal social
welfare,i.e. protocols need to be enhanced fur-
ther. The first proposed protocol is madeintru-
sive in the sense that it modifies the structure
of agents’ utility functions. The second protocol
has a centralised flavour and introduces a sys-
tem agent that cancompensatefor a temporary
loss in social welfare. This combination ofgui-
danceandsocial compensationallows to restore
the convergence properties of the framework.

The remainder of this paper is structured as fol-
lows. In Section 2 we review the multilateral



trading framework of [7]. Section 3 recalls dif-
ferent aspects of the complexity of trading re-
sources due to [6]. A compact representation of
preferences based on the notion ofk-additivity
(where synergies between different resources
are restricted to bundles of at mostk items) is
introduced in Section 4. Section 5 introduces a
further structural constraint on utility functions
(namely, the fact that they aretree-structuredin
the sense that the bundles for which there are
synergies do not overlap). Section 6 presents a
number of protocols exploiting these structurual
properties of utility functions, and shows how
they drastically reduce the complexity of the ne-
gotiation process. Section 7 concludes with a
discussion of the benefits and drawbacks of the
approach advocated in this paper.

2 Resource Allocation by Negotia-
tion

In this section, we introduce the framework of
resource allocation by negotiationput forward
in [7] and recall some of the results presented
there.

2.1 The Negotiation Framework

An instance of our negotiation framework
consists of a finite set of (at least two)agentsA
and a finite set of non-divisibleresourcesR. A
resourceallocationA is a partitioning of the set
R amongst the agents inA. For instance, given
an allocationA with A(i) = {r3, r7}, agenti
would own resourcesr3 andr7. Given a particu-
lar allocation of resources, agents may agree on
a (multilateral)dealto exchange some of the re-
sources they currently hold. In general, a single
deal may involve any number of resources and
any number of agents. It transforms an alloca-
tion of resourcesA into a new allocationA′ ;
that is, we can define a deal as a pairδ = (A, A′)
of allocations (withA 6= A′).

A deal may be coupled with a number of mo-
netary side payments to compensate some of
the agents involved for an otherwise disadvanta-
geous deal. Rather than specifying for each pair
of agents how much the former is supposed to
pay to the latter, we simply say how much mo-
ney each and every agent either pays out or re-
ceives. This can be modelled using apayment
functionp mapping agents inA to real numbers.
Such a function has to satisfy the side constraint∑

i∈A p(i) = 0, i.e. the overall amount of money

in the system remains constant. Ifp(i) > 0, then
agenti paysthe amount ofp(i), while p(i) < 0
means that itreceivesthe amount of−p(i).

2.2 Individual Rationality and Social Wel-
fare

To measure their individual welfare, every agent
i ∈ A is equipped with autility function ui

mapping sets of resources (subsets ofR) to real
numbers. We abbreviateui(A) = ui(A(i)) for
the utility value assigned by agenti to the set of
resources it holds for allocationA.

An agent may or may not find a particular deal
acceptable. In this paper, we assume that agents
are rational in the sense of never accepting
a deal that would not improve their personal
welfare (see [14] for a justification of this ap-
proach). For deals with money, this “myopic”
notion of individual rationality may be formali-
sed as follows :

Definition 1 (Individual rationality) A deal
δ = (A, A′) with money is rational iff
there exists a payment functionp such that
ui(A

′)−ui(A) > p(i) for all i ∈ A, except pos-
siblyp(i) = 0 for agentsi with A(i) = A′(i).

The notion of rationality provides alocal cri-
terion that ensures that negotiation is beneficial
for all individual participants. For aglobalpers-
pective, welfare economics (see e.g. [12]) pro-
vides tools to analyse how the reallocation of
resources affects the well-being of a society of
agents as a whole. Here we are going to be parti-
cularly interested in maximisingsocial welfare :

Definition 2 (Social welfare) The social wel-
fare sw(A) of an allocation of resourcesA is
defined as follows :

sw(A) =
∑
i∈A

ui(A)

We should stress that this is theutilitarian view
of social welfare ; other notions of social wel-
fare have been developed as well [12, 15] and
may be usefully exploited in the context of mul-
tiagent systems [8].

Before we move on to discuss previous results
for this framework, we should stress that, while
the most widely studied mechanisms for the



reallocation of resources in multiagent systems
areauctions, our scenario of resource allocation
by negotiation isnot an auction. Auctions are
centralised mechanisms to help agents agree on
a price at which an item (or a set of items) is to
be sold [11]. In our work, on the other hand, we
are not concerned with this aspect of negotia-
tion, but only with the patterns of resource ex-
changes that agents actually carry out in a truly
distributed manner.

2.3 Convergence Results

We recall in this section the main convergence
result of the framework [7], which is essentially
equivalent to a result on sufficient contract types
for optimal task allocations by Sandholm [14].
This result links individual rationality at the lo-
cal level with the global concept of social wel-
fare :

Theorem 1 (Maximising social welfare)Any
sequence of rational deals with money will
eventually result in an allocation of resources
with maximal social welfare.

This means that (1) there can be no infinite se-
quence of deals all of which are rational, and
(2) once no more rational deals are possible the
agent society must have reached an allocation
that has maximal social welfare. The crucial as-
pect of Theorem 1 (and the next three theo-
rems) is thatany sequence of deals satisfying
the rationality condition will cause the system to
converge to an optimal allocation. That is, wha-
tever deals are agreed on in the early stages of
the negotiation, the system will never get stuck
in a local optimum and finding an optimal allo-
cation remains an option throughout.

A drawback of the general frameworks, to
which Theorem 1 applies, is that these results
only hold if deals involving any number of re-
sources and agents are admissible [7, 14]. In
some cases this problem can be alleviated by
putting suitable restrictions on the utility func-
tions agents may use to model their preferences.
For instance, a utility function is calledadditive
iff the value ascribed to a set of resources is al-
ways the sum of the values of its members. In
scenarios where utility functions may be assu-
med to be additive, it is possible to guarantee
optimal outcomes even when agents only nego-
tiate deals involving a single resource and a pair

of agents at a time (so-calledone-resource-at-a-
time deals). More generally, one may be inter-
ested ink-deals. A k-deal is a deal involving at
mostk resources,i.e. a dealδ = (A, A′) such
that :

|R \
⋃
i∈A

(A(i) ∩ A′(i))| ≤ k

We are now going to inspect what different as-
pects of complexity should be considered in the
context of a negotiation framework such as ours.

3 Aspects of Complexity

The aim of this paper is to tame the complexity
of negotiation within the multiagent resource
allocation framework lined out in the previous
section. In fact, there are at least four different
aspects of complexityto consider in this context.
Our discussion of these closely follows [6]. The
four different aspects of complexity we can
identify are epitomised by the following ques-
tions :
(1) How many deals are required to reach an

optimal allocation of resources ?
(2) How many dialogue moves need to be ex-

changed to agree on one such deal ?
(3) How expressive a communication language

do we require ?
(4) How complex is the reasoning task faced by

an agent when deciding on its next dialogue
move ?

The first type of complexity takes individual
deals as primitives, abstracting from their in-
herent complexity, and evaluates the length of
a negotiation process as a whole. Following a
top-downapproach, this is the first aspect of
complexity to consider. At the next lower le-
vel, we have to consider the complexity of ne-
gotiating asingledeal in such a sequence. This
issue is addressed by the second type of com-
plexity identified above. It concerns the num-
ber of messages that need to be sent back and
forth between the agents participating in nego-
tiation before a deal can be agreed upon. At
the next lower level, we have to consider the
complexity of decidingwhat message to send
at any given point in a negotiation process ; this
is the fourth type of complexity. The third type
is somewhat orthogonal to the other points as
it concerns the complexity of alanguage :how
rich a agent communication language do we re-
quire, for instance, to be able to specify propo-
sals and counter-proposals ? The first three of



the four questions at the beginning of the sec-
tion relate to what we may call thecommunica-
tion complexityof our negotiation framework.
The communication complexity of reaching an
optimal allocation of resources is a combination
of the number of deals required and the com-
plexity of arranging an individual deal. Recall
that our negotiation framework makes multila-
teral deals anecessity; this is the price to pay
for the simplicity of our agent model based on
the notion of rationality. If agents only agree
to deals that improve their own welfare (rather
than being prepared to accept a temporary loss
in utility in view of potential future rewards),
then deals involving any number of agents as
well as resources may be required to be able
to guarantee socially optimal outcomes [7, 14].
Truly multilateral trading, i.e. negotiating deals
that involve more than just two agents, however,
is considerably more complex than the more wi-
dely studied bilateral trading. As pointed out by
Feldman [9],
– if the costs of arranging a multilateral deal

were proportional to the number of pairs in
a group of agents, then they would risequa-
dratically with the size of the group (because
there aren · (n−1)/2 pairs in a group ofn
agents) ; and

– if the costs were proportional to the number of
subgroups in a group, then they would riseex-
ponentially(because there are2n subgroups).

These observations directly affect the second
type of complexity, i.e. the number of dialogue
moves that need to be exchanged to agree on a
deal between several agents. Let us consider the
complexity of agreeing on rational deals. In ge-
neral, there may be up to|A||R| − 1 (potentially
rational) deals to consider. Clearly, the problem
of finding rational deals can quickly become in-
tractable. For this reason, we shall put restric-
tions on the structure of utility functions used
by agents to model their preferences, in order
to reduce the number of deals to be conside-
red. Before further detailing these restrictions,
we introduce in the next section thek-additive
form to represent utility functions.

4 Representation of Preferences

The “normal form” of representing utility func-
tions, which involves listing all bundles of re-
sources with non-zero utility, can be problema-
tic as there may be up to2|R| such bundles in the
worst case. The succinctness of the representa-
tion of agent preferences can be improved by

exploiting other structural properties of the uti-
lity functions. For instance, if synergies between
different resources are restricted to bundles of at
mostk items, then the so-calledk-additive form
which specifies for each bundleR the marginal
utility of owning all resources inR can often re-
sult in a more efficient representation [1, 10]. A
utility function is calledk-additive iff the uti-
lity assigned to a bundleR can be represented
as the sum of basic utilities to subsetsR with
cardinality≤ k. In what follows, we shall use
the following notation :

ui(R) =
∑
t⊆R

αi
t

∏
r∈t

r

with αi
t = 0 whenever|t| > k.

Agent i enjoys a utility ofαi
t when owningto-

getherall the itemsr composing the bundle re-
presented by theterm t (that is,αi

t represents
the synergetic value of these items held toge-
ther). When then value ofα is positive, items
are said to becomplementary, when it is nega-
tive, they aresubstituable. Both representations
are equivalent in term of expressive power, in
the sense that they both can represent all uti-
lity functions [1]. As both representations are
equivalent regarding expressiveness, one should
consider whether one is stricly better in terms of
the succinctness of representation. This proves
not to be the case,i.e there are cases where
one representation would be polynomial and the
other exponential, and the other way around [1].
However, thek-additive form is typically more
concise in cases where there are only limited sy-
nergies between different resources.

5 Tree-structured Domains

A first idea to circumvent the complexity of fin-
ding rational deals is to simply restrict the num-
ber of resources involved in each single deal.1

However, finding individually rationalk-deals
is intractable even with reasonable values ofk,
because of the high number of possiblek-deals.
More precisely, considering that a deal involves
at mostk resources among|R|, and that each re-
sources can be transfered ton different agents,
the number of possible deals isnk × |R|!

(|R|−k)!
.

1In a companion paper [2], we study a sufficient condition (to be
met by every agent in the system) guaranteeing socially optimal out-
comes for suchk-deal negotiation. This condition requires utility func-
tions to be “additivelyk-separable”, which is a generalisation of the
“tree-structured” utilities we are going to introduce next.



In this section, we introduce a restriction onk-
additive utilities. This restriction, denoted “tree-
structured utilities”, is a natural restriction for
many applications, which will allow us to re-
duce drastically the search space without losing
the convergence properties.

To formulate this restriction, we require utili-
ties to be represented ink-additive form. Let
R be the set of resourcesr1...rm, andu1 . . . un

a set of utility funtions.T will denote the set
of terms explicitly appearing in utility functions
u1 . . . un, andαi

t will denote the coefficient of
term t in ui. Finally, T l,T ≤l denote the set of
terms inT consisting of, respectively, exactlyl
resources and at mostl resources.

Intuitively, tree-structuredk-additive utilities
are functions in which there are no overlapping
terms.2 By extension, we define the notion of
tree-structured sets of utility functions.

Definition 3 A set of utility functionsu1...un

is tree-structurediff, when represented ink-
additive form, it is the case that∀T1, T2 ∈ T , we
have eitherT1 ⊂ T2 or T1 ⊃ T2 or T1 ∩ T2 = ∅.

Example 1 Consider the set containing only
the following utility function :

u1 = r1 + r2r3 + r3r4

composed of exactly three terms. Then we have
T = {r1, r2r3, r3r4}, and, for instance,T 1 =
{r1}. Becauser2r3 overlaps withr3r4, this func-
tion is not tree-structured, and of course no set
containing this function would ever be.

It is also helpful to notice that a set of utility
functions is tree-structured iff the terms ofT
can be represented by a tree, in whichR is
the root, and each term is a node. Branches of
the tree represent the⊂ relation. The following
example illustrates this representation.

Example 2 Consider the set composed the
three following utility functions :

u1 = r2 + 3r5

u2 = 3r1 + 10r1r2r3r4 + 8r5 + 4r6

u3 = r6 − r4 + 8r3r4

2It is easy to show that if a utility functionu is tree-structured with
positive coefficients, then it is super-additive. However, the converse is
not true.

Clearly, they are 4-additive as well as tree-
structured. Here, the set of termsT =
{r1, r2, r4, r5, r6, r3r4, r1r2r3r4} can also be re-
presented by the following tree :

R
/|\

/ | \
/ | \

{r5} {r6}{r1r2r3r4}
/ | \

/ | \
{r1} {r2}{r3r4}

|
{r4}

Because finding rationalk-deals is in general in-
tractable, our aim is to exploit this new restric-
tion on utility functions to come up with other
types of deals less complex, but insuring the
same convergence properties.

Definition 4 AT -deal is a deal involving an en-
tire term ofT from one or more sender(s) to a
singlereceiver.

First, note that the number of possibleT -deals
to consider shrinks down to (2×n×|R|). (This
is so because, intuitively, the maximum number
of nodes one may observe with such trees would
be obtained by splitting each term in two balan-
ced sub-nodes). In other words, the complexity
of finding rationalT -deals is also very low com-
pared to that of findingk-deals.

However, as illustrated by the example below,
simply allowing anyT -deals will not be suffi-
cient to guarantee us that the optimal social wel-
fare will eventually be reached in all cases.

Example 3 Let us consider the following utility
functions :

u1 = 10r1

u2 = 10r2

u3 = 11r1r2

and let the initial allocation be the allocation
assigning all resources to agent3. The (only)
optimal allocation consists in allocatingr1 to
agent1 andr2 to agent2. Clearly, there are no
rational T -deals allowing the system to reach
this optimal allocation.



In order to restore the desired convergence pro-
perties of the framework, we will need to in-
vestigate more complex protocols restricting the
negotiation process and exploiting throughT -
deals the properties of tree-structured utilities.

6 Tree-Climbing Protocols

The basic idea oftree-climbing protocolsis
to allow T -deals involving only the smallest
bundles first, then to incrementally allow bigger
bundles, until all possibleT -deals have been al-
lowed.

Algorithm 1 Naive Tree-Climbing Protocol
Require: n agents with tree-structured utilities

u1...un (with T the set of all terms).
1: l← 1.
2: repeat
3: Restrict allowed deals toT l-deals.
4: Let agents do all their individually ratio-

nalT l-deals.
5: if no more deal can be conductedthen
6: l← l + 1
7: end if
8: until l >| R |

Clearly, this protocol is more restrictive than the
liberal “protocol” consisting of allowing anyT -
deals, i.e it cannot guarantee an optimal out-
come neither. By inspecting more carefully the
scenario described in Example 3 however, we
find clues indicating possible improvements of
this protocol : during the first step of the proto-
col (wherel = 1, and onlyT 1-deals are allo-
wed), the termr1r2 in u3 prevents the resources
from moving away from agent3. If, during this
first step, terms containing more than one re-
source wereremovedfrom the utility functions,
then the resources would be able to move to-
wards agents1 and2.

6.1 Intrusive Tree-climbing protocol

Based on this idea, we design a new protocol
which (at each step)l removes in each utility
function terms of more thanl resources. We call
the following protocolIntrusive Tree-Climbing
Protocol (ITCP) in the sense that it modifies
the utility functions of each agent at each step.
In the following,u≤l

i is defined asui where all
terms of size greater thanl have been removed.
By extension, we also notesw≤l =

∑
i u

≤l
i for

the social welfare induced by these truncated
utilities.

Algorithm 2 Intrusive Tree-Climbing Protocol.
Require: n agents with utilitiesu1...un iden-

tically tree-structured. LetT the set of all
terms.

1: l← 1.
2: repeat
3: Restrict allowed deals toT l-deals,
4: Enforce all agentsi to change their utili-

ties tou≤l
i .

5: Let agents do all their rationalT l-deals.
6: if no more deal can be conductedthen
7: l← l + 1
8: end if
9: until l >| R |

We first show that each step of the protocol
will indeed lead to an allocation deemed optimal
w.r.t. the truncated utility functions of agents po-
pulating the system.

Lemma 1 If, at stepl of the ITCP, an optimal
allocation forsw≤l is reached, then, at stepl+1,
by allowing onlyT l+1-deals, an optimal alloca-
tion for sw≤l+1 will be reached.

Proof. Suppose at thelth step, an optimal allo-
cationAl has been reached. At stepl + 1, the
negotiation process thus starts fromAl. Let us
show that the optimal allocation w.r.t.sw≤l+1

will be reached. The social welfare can be writ-
tensw≤l(A) =

∑
t∈T ≤l βA

t whereβA
t is defined

as follows :

βA
t =

{
αi

t if an agentai owns the termt in A
0 if t is split among several agents

Also, γA
t =

∑
s⊂t β

A
s . When there is no ambi-

guity, the allocation will be omitted. LetT l+1 ={
r ∈ R | ∀t′ ∈ T l+1, r /∈ t′

}
all resources not

present inT l+1. Note thatT l+1 ∪ {T l+1} is a
partition ofR.

sw≤l+1(A) =
∑

t∈T l+1

(βt + γt) +
∑

t⊆T l+1,t∈T ≤l

βt



Note that the terms of the last equation are all
independent. Thus,

max
A

{
sw≤l+1(A)

}
=

∑
t∈T l+1

max
A
{βt + γt}+

max
A

 ∑
t∈T l+1,t∈T ≤l

βt


First note that the last term of the equation has
already been maximized inAl (which is suppo-
sed maximal w.r.t.sw≤l), and because it cannot
be affected byT l+1-deals, this term will stay
maximal and unaffected during stepl + 1. The-
refore, we only need to show that termsβt + γt

are maximized.

Let us show now that the allocation obtained
after a sequence of individually rationalT l+1-
deals with side-payments starting fromAl will
be Al+1, the optimal allocation w.r.t.sw≤l+1.
For this purpose, let us study the maximal va-
lue ofβt + γt for each termt ∈ T l+1.

max(βt+γt) =

{
maxi ui(t) if βt 6= 0
max{γt | βt = 0} if βt = 0

Clearly, max{γt | βt = 0} = γAl

t . Thus,
this last equation tells that the optimal alloca-
tion for term t w.r.t. sw≤l+1 is either as inAl,
or t is owned by agenti = argmaxiui(t). In
the former case, there will never be any ratio-
nal T l+1-deal involving t, as it is already in
its optimal position inAl. In the latter case,
the deal consisting of movingt towards agent
i = argmaxiui(t) will be rational at any time
during stepl + 1. Thus, allocationAl+1 will be
reached eventually. 2

We are now in a position to prove that the ITCP
indeed meets the intended convergence property
(note that this result still holds when utility func-
tions contain non-positive coefficients).

Theorem 2 For any set of tree-structuredk-
additive utilities, the ITCP will eventually result
in an optimal social welfare.

Proof.It has been proven elsewhere that additive
utilities converge towards local optimum [7].
Thus, the property is true from the first step of

the protocol. Lemma 1 shows that it remains
true for the next steps. 2

A possible perspective on the ITCP would be
that it works with a sequence of progressively
more fine-grainedapproximationsto the real
utility functions in such a way that structurally
simple deals become individually rational (with
respect to these approximations). Of course,
these are approximations with respect to there-
presentationof utility functions (in k-additive
form), but not necessarily with respect to the va-
lues that utility functions assign to bundles of
resources.

These two dimensions may, however, coincide
in many practical cases. If we assume that the
synergetic effect a bundle of resources reduces
as the cardinality of that bundle increases, then
the sequence of auxiliary utility functions used
in the ITCP will indeed be progressively more
accurate in terms of the values they assign to
bundles as negotiation develops. In other words,
if the coefficients in thek-additive form are high
for single resources, and if they get smaller as
the size of the respective term increases, then
the utility functions used in the ITCP become
more accurate in each round. This is a very rea-
sonable assumption to make : the larger a bundle
of resources is, the more difficult would it be for
an agent to estimate the additional benefit incur-
red by owning all the resources in that bundle
together(i.e. beyond the benefit incurred by the
relevant subsets). Indeed the very same (cogni-
tive) argument is one of the main reasons why
k-additive utility functions with low values ofk
are not only computationally attractive but also
highly relevant in practice.

Nevertheless, the ITCPdoesviolate the postu-
late of full individual rationality for all stages
of a negotiation process. Also, because of its
“intrusive” aspect, this protocol is not comple-
tely satisfactory : it cannot be applied when
agents are not under the control of the designer.
Clearly, such a protocol would be of little use
when agents are humans, or simply when pri-
vacy issues prevent the designer to directly ac-
cess the agents’ preferences.

6.2 A Non-Intrusive Protocol

To overcome the drawbacks of intrusive pro-
tocols, we design a third protocol in which
utilities are not modified, but such that for
each deal, a special side-payments function in-
fluences the rationality of each agent. In addi-



tion, the system also participates in the side-
payments, by adding or taking money from the
negotiating agents. The trick here is that these
side-payments have exactly the same effect as
a change of utility, without being intrusive (as
shown in Theorem 3). Thus, this protocol could
be used in real applications, even with human
agents as long as utilities have been elicited.

This protocol is calledOmniscientε-Altruistic
Tree-Climbing Protocol(Oε-ATCP), because
the system actively mediates the negotiation
process. More precisely, this protocol is called
Omniscientbecause the system needs to know
precisely the utility functions of each agent,ε-
Altruistic because the system must be prepared
to share its money with agents in order to reach
optimal social welfare, and that the amount of
money it shares depends onε.

Algorithm 3 Omniscient ε-Altruistic Tree-
Climbing Protocol
Require: n agents with tree-structured utilities

u1...un. A parameterε ∈]0, 1]. T the set of
all terms.

1: All agents transmit to thesystem agenttheir
utility function.

2: l← 1.
3: repeat
4: Restrict allowed deals toT l-deals.
4: For each T l-deal δ = (A, A′), let

∆sw≤l(A′,A) = sw≤l(A′)− sw≤l(A)
The associated side-payment is then, for
all then′ agents involved in the deal :
pi = ui(A

′)− ui(A)− ε
n′
×∆sw≤l(A′,A)

For the system agent,psys = −
∑

pi

5: Let agents do all their rational deals.
6: if no more deal can be conductedthen
7: l← l + 1
8: end if
9: until l >| R |

Note that in the Oε-ATCP protocol, thesys-
tem agentcould be viewed as a kind of bank
giving or receiving money from agents. The
amount of money shared with other agents de-
pends on the difference of satisfaction enjoyed
by the whole society before and after the deal
(that issw≤l(A′)− sw≤l(A), that we shall note
∆sw≤l(A′,A)), and on the value of a parameterε.
– whenε is close to1, the system agent in not

guaranteed to globally earn money. In that
case, the system agent is said to bealtruistic,
because negotiating agents will benefit from
this by earning a lot.

– whenε is close to0, then during each deal,
the system agent takes from other agents as
much money as possible. Thus, the negotia-
ting agents will earn the minimum amount of
money necessary to reach the optimal alloca-
tion, and the system agent will earn a lot more
(not altruistic at all in that case).

For the sake of fairness, this protocol could be
extended in such a way that the money earned
by the system agent would be equally redistri-
buted at the end of the process.

The following results show that this protocol
also converges to an allocation with optimal so-
cial welfare, as the ITCP does.

Lemma 2 In Oε-ATCP at stepl, a deal δ =
(A, A′) is rational iff sw≤l(A′) > sw≤l(A).

Proof. ’⇒’. Suppose the deal is rational. Thus,
for each agentsi involved,ui(A

′)−ui(A)−pi >
0. Thus,∑

i

(ui(A
′)− ui(A))−

∑
i

pi =

ε×∆sw≤l(A′,A) > 0

’⇐’. Supposesw≤l(A′) > sw≤l(A). Let us
show that for each agenti involved in the deal,
the rationality criterion is met.

ui(A
′)− ui(A)− pi =

ε

n′
∆sw≤l(A′,A) > 0

2

This directly leads to the convergence result.

Theorem 3 For any set of tree-structuredk-
additive utilities, the Oε-ATCP will eventually
result in an optimal social welfare ifε ∈]0, 1].

Proof. We show that deals accepted in this pro-
tocol are the same as those accepted in the ITCP
protocol. Clearly, at stepl, a dealδ = (A, A′)
is accepted in ITCP iffsw≤l(A′) > sw≤l(A).
Lemma 2 show that Oε-ATCP behaves the same
way. 2

A critical point of the Oε-ATCP is that it neces-
sitates an external provider of money. However,



the following result shows that the system agent
globally earns money, as long as we choose a
sufficiently small value forε.

Theorem 4 If ε is sufficiently small, the system
agent will globally earn money on any Oε-ATCP
negotiation as a whole.

Proof. Let us compute how much is earned by
the system agent each time a deal is conducted.
Suppose at stepl, a dealδ = (A, A′) is conduc-
ted byn′ agents. The system agent pays

psys = −
∑

i

(ui(A
′)− ui(A)) +

ε

n′
∆sw≤l(A′,A)

= −(sw(A′)− sw(A)) + ε∆sw≤l(A′,A)

Let dmax be the number of deals conducted du-
ring the whole negotiation. Letptotal

sys be the total
amount of money the system agent pays during
the whole negociation process. Thus,−ptotal

sys ,
the money earned by the system, is equal to∑

δ=(A,A′)

(
ui(A

′)− ui(A)− ε

n′
∆sw≤l(A′,A)

)

≥ sw(Aopt)−sw(A0)−ε×dmax×max
A,A′,l

∆sw≤l(A′,A)

Clearly, we can see that

lim
ε→0

(−ptotal
sys ) = sw(Aopt)− sw(A0)

and the system earns as much money as the in-
crease of social welfare. 2

The central idea in the Oε-ATCP is that the sys-
tem agent (i.e. the mechanism) can give a “loan”
to agents to allow them to accept otherwise di-
sadvantageous deals, but that these agents repay
this loan later on when they arrange deals that
are overly beneficial for themselves. This ge-
neral idea would, of course, be applicable also
in other, more general, scenarios than we have
considered here, i.e. scenarios where agents do
not necessarily have tree-structured utility func-
tions. As long a the final allocation has higher
utilitarian social welfare than the initial alloca-
tion and as long as the system agent has suf-
ficient funds to temporarily sustain allocations
with very low social welfare,any sequence of
deals can be made individually rational from the
viewpoint of the negotiating agents and would
still result in an eventual surplus for the system
agent.

7 Conclusion

We have further analysed a negotiation frame-
work previously studied by several authors [1,
4, 5, 6]. While most work on negotiation in
multiagent systems has addressed either bilate-
ral negotiation [13] or auctions [3], this frame-
work is multilateral,i.e. deals may involve any
number of agents and any number of resources.
The requirement for full multilateral negotia-
tion stems from the fact that agents are assu-
med to be both rational and myopic. However,
the task of identifying rational deals,i.e. deals
that are beneficial for all participants remains
highly complex. In this paper, it is shown that if
all agents model their preferences by means of
tree-structuredutility functions, the optimal so-
cial welfare can be reached in linear time by im-
plementing adequate protocols. Two protocols
(clearly designed to exploit the specific struc-
ture of these functions) have been proposed in
this paper.

The crucial contribution in our proposal, we be-
lieve, is thecombinationof two ideas :
– The central idea in the ITCP has been to pro-

vide a protocol thatguides negotiation. In
each round, there are only a relatively small
number of options as to which deal to choose
(and the complexity of these deals increases
stepwise, from round to round). The particu-
lar choices made in the definition of the ITCP
mean that deals are not too far from truly ra-
tional deals (certainly if we make some ad-
ditional assumptions on the nature of utility
functions, as discussed earlier).

– The additional idea in the Oε-ATCP has been
to introduce a system agent that cancompen-
sate for a temporary loss in social welfare
(provided that such a loss is due to a deal
sanctioned by the guidelines implemented in
the ITCP). It thereby allows for a wider range
of deal sequences leading to the optimal al-
location, including sequences of structurally
simple deals.

This combination ofguidanceandsocial com-
pensationmakes our approach work. While our
current results are restricted to tree-structured
domains, we believe that the central ideas are
general enough to be applied to other scenarios
as well.

Our proposal may be considered a hybrid bet-
ween distributed and centralised approaches to
multiagent resource allocation. On the one hand,
allocations emerge in a distributed manner as a
result of a sequence of local negotiation steps.



On the other hand, the introduction of the sys-
tem agent does introduce a centralised element.
One of the main arguments usually given in
favour of distributed approaches over centrali-
sed ones (such as combinatorial auctions), is
that it may not always be possible to find an
agent that could act as the central authority (the
auctioneer) executing the allocation procedure.
To some degree, the same reservations may be
made against our proposal. However, we be-
lieve there is at least one imortant difference.
In a combinatorial auction, the auctioneer is en-
dowed with the (very significant) computatio-
nal burden of deciding the final allocation (the
so-called winner determination problem [3]). In
our approach, on the other hand, there are no
computationally hard tasks associated with the
role of the system agent. The computational bur-
den lies with the system of agents as a whole
and, indeed, this burden is substantially redu-
ced by virtue of the simplifications made in the
ITCP.

A potential problem with our approach is that
individual agents may decide to stop participa-
ting in negotiation before the optimal allocation
has been reached. Indeed, it may be individually
rational for them to do so, because our proto-
cols allow certain agents to temporarily enjoy
higher individual welfare than they would enjoy
in the socially optimal allocation. In this sense,
the framework loses the “anytime character” of
the original system [14], where every new allo-
cation would be guaranteed to have higher so-
cial welfare than its predecessor. This anytime
character is particularly important because of
the prohibitively high complexity of the gene-
ral framework [1, 5, 6]. If optimal allocations
cannot be guaranteed to be found within a rea-
sonable amount of time, then the original fra-
mework does at least guarantee some improve-
ment over the initial allocation when time runs
out. In our present proposal, the anytime charac-
ter of the framework is far less important, be-
cause —as we have argued— it dramatically re-
duces the complexity of negotiation and thereby
makes convergence to an optimal allocation wi-
thin a reasonable amount of time a realistic op-
tion. Nevertheless, the issue of incentive com-
patibility in the Oε-ATCP remains an important
issue that requires further investigation.
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