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ABSTRACT
We simulate voting rules for multiwinner elections in a model of

judgment aggregation that distinguishes between rationality and

feasibility constraints. These constraints restrict the structure of

the individual judgments and of the collective outcome computed

by the rule, respectively. We extend known results regarding the

simulation of single-winner voting rules to the multiwinner setting,

both for elections with ordinal preferences and for elections with

approval-based preferences. This not only provides us with a new

tool to analyse multiwinner elections, but it also suggests the defi-

nition of new judgment aggregation rules, by generalising some of

the principles at the core of well-knownmultiwinner voting rules to

this richer setting. We explore this opportunity with regards to the

principle of proportionality. Finally, in view of the computational

difficulty associated with many judgment aggregation rules, we

investigate the computational complexity of our embeddings and

of the new judgment aggregation rules we put forward.
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1 INTRODUCTION
A wide variety of formal frameworks have been proposed in the

literature to both perform and analyse collective decision mak-

ing. Here several agents report an individual view and we need

to determine a single collective view that presents a reasonable

compromise. Examples for collective decision making by groups

of human agents include voting [41], participatory budgeting [5],

and judgment aggregation in a court of law [28]. But also many

problems long studied in AI—such as belief merging [13], collective

argumentation [7], and consensus clustering [24]—can be seen in

this vein [17]. To improve our understanding of the mechanisms

that have been proposed for different settings and to enable us to

transfer some of the knowledge gained in one domain to another

domain of collective decision making, it is important to isolate fun-

damental building blocks that are common to different solutions.

In this paper, we contribute to this broad research agenda by

investigating the extent to which it is possible to simulate so-called

multiwinner voting rules, i.e., voting rules to elect a committee of

representatives based on the preferences expressed by a group of
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voters [19], within the framework of logic-based judgment aggrega-
tion (JA) [15, 25, 30]. Regarding the input to an election, we consider
both rules in which voters express ordinal preferences (by provid-

ing a ranking of the candidates) and rules in which they express

approval-based preferences (by indicating which candidates they

do and do not approve of). Regarding the output, we focus on the

standard scenario where a committee of fixed size is to be elected.
For our embeddings of multiwinner voting rules, we use the frame-

work of JA with rationality and feasibility constraints [16]. The
former constrains the range of admissible inputs to an aggregation

problem, and the latter constrains its possible outputs. This leads

to particularly simple and natural embeddings.

Embedding a multiwinner voting rule into JA, which is much

more expressive than most voting frameworks, makes it very natu-

ral to study refinements of standard rules in a principled manner,

e.g., by imposing additional constraints on outcomes or by varying

the types of preferences voters can report. This not only permits

us to clarify the commonalities (and differences) between rules

originally developed for different purposes, but also allows for the

development of new rules with particular properties. Finally, our

approach can also be used to import ideas from multiwinner voting

into JA, and we shall do so for the concept of proportionality, which
has received significant attention in multiwinner voting but not

JA. Importantly though, the increased expressive power of JA does

not come for free: JA is a framework that, generally speaking, is

computationally much more demanding than voting. To address

this challenge, we analyse the extent to which the feasibility con-

straints featuring in our embeddings can be encoded as Boolean

circuits in decomposable negation normal form, which by a recent

result allows for the design of tractable aggregation rules [26].

Related work. The idea of modelling problems of preference ag-

gregation within the framework of JA by means of a so-called

preference agenda goes back to, at least, the work of Dietrich and

List [12]. While a number of authors, such as Miller and Osherson

[32] and Dietrich [11], have discussed parallels between specific

voting rules and specific JA rules, Lang and Slavkovik [29] were the

first to systematically investigate the question of how to translate

common voting rules into JA. Endriss [16] refined their approach

and showed that explicitly distinguishing between rationality and

feasibility constraints in JA greatly simplifies the task of arriving

at principled embeddings. We use the same basic approach also

here. Our results regarding the tractability of JA rules build on the

approach for identifying tractable fragments of JA developed by

de Haan [26]. Recently, this technique has also been used to obtain

tractable embeddings of participatory budgeting into JA [38].

Contribution.We simulate the 𝑘-Borda, 𝑘-Copeland, and simple

Approval Voting multiwinner voting rules in JA and show how

to use some of the additive majority rules to produce outcomes

that correspond to Gehrlein-stable committees. We propose JA

rules aimed at transferring the proportionality notion found in



multiwinner voting. We also analyse the complexity of the relevant

JA rules, obtaining both tractability and intractability results.

Outline. The remainder of this paper is structured as follows. In

Section 2, we recall basic definitions regarding both multiwinner

voting and JA. Section 3 presents our results for both the simulation

of multiwinner voting rules in JA, and a complexity analysis of the

resulting embeddings. In Section 4, we study proportionality in and

analyse the complexity of our new JA rules for proportionality.

2 PRELIMINARIES
In this section, we recall the standard models of both multiwinner

voting and JA. Throughout, for any given set 𝑈 , we use P(𝑈 )
to represent its powerset, P+ (𝑈 ) the set of all of its nonenmpty

subsets, and P𝑘 (𝑈 ) the set of all of its subsets of size 𝑘 .

2.1 Multiwinner Voting
Let 𝑋 be a finite set of alternatives and let 𝑁 = {1, . . . , 𝑛} be a

set of agents. Each agent 𝑖 ∈ 𝑁 has a weak preference order ≽𝑖
on 𝑋 , with ≻𝑖 denoting the strict part of ≽𝑖 and 𝑅 being the set of

all possible weak preference orders. We use weak preferences as

this allows us to consider the two scenarios considered in much

of the literature on multiwinner voting—namely (strict) ordinal
preferences and approval-based preferences [19]—as special cases.

In the former, each voter 𝑖 provides a strict ranking of alternatives,

such as 𝑎 ≻𝑖 𝑏 ≻𝑖 𝑐 . The latter requires a voter 𝑖 to simply provide

a set of alternatives 𝐴𝑖 ⊆ 𝑋 she approves of. This can be modelled

with a dichotomous preference order.
A profile is a vector (≻1, . . . , ≻𝑛) of preferences, one for each

voter. A voting rule is a function 𝐹 : 𝑅𝑛 → P+ (𝑋 ) mapping any

such profile to a set of winning committees. Ideally, there will be a

single winning committee, but in general 𝐹 may be irresolute. So

in practice, a tie-breaking rule may have to be used post-election.

When we refer to a fixed target committee size, we denote it as 𝑘 .

First, let us recall two rules for ordinal ballots ≻𝑖 . The 𝑘-Borda
rule elects the committee/s of the 𝑘 alternatives with the highest

Borda scores, defined as 𝐵(𝑥) =
∑
𝑖∈𝑁 |{𝑦 ∈ 𝑋 | 𝑥 ≻𝑖 𝑦}| for

alternative 𝑥 . The 𝑘-Copeland rule selects the committee/s that

consist of the 𝑘 alternatives with the highest Copeland scores. The

Copeland score of a single alternative 𝑥 is defined as 𝐶 (𝑥) = |{𝑦 ∈
𝑋 | 𝑥 ≻𝑀 𝑦}| − |{𝑦 ∈ 𝑋 | 𝑦 ≻𝑀 𝑥}|, where ≻𝑀 is the strict majority

relation (𝑥 ≻𝑀 𝑦 if and only if |{𝑖 ∈ 𝑁 | 𝑥 ≻𝑖 𝑦}| > 𝑛/2).
Next, let us review some of the most important proposals for

approval-based rules from the literature on multiwinner voting.

Several of these rules belong to the family of Thiele rules [40].
Suppose we want to elect a committee of size 𝑘 . For a given vec-

tor of numbers 𝒘 (𝑘) = (𝑤1, . . . ,𝑤𝑘 ), called the scoring vector,
the corresponding Thiele rule elects the following committee/s

when presented with a profile of approval ballots (𝐴1, . . . , 𝐴𝑛):
argmax𝐶∈P𝑘 (𝑋 )

∑
𝑖∈𝑁

∑ |𝐶∩𝐴𝑖 |
𝑗=1

𝑤 𝑗 . Given this general template, we

adjust the scoring vector to vary the rules. For instance, (simple) Ap-
proval Voting (AV) uses (1, 1, 1, . . . , 1) as the scoring vector. Thus, AV
outputs the 𝑘 alternatives that appear in the approval ballots most

often. Two important rules often advocated when we require some

form of proportional representation are Proportional Approval Voting
(PAV) and the Approval-Based Chamberlin-Courant rule 𝛼-CC, with
the vectors (1, 1/2, 1/3, . . . , 1/𝑘) and (1, 0, 0, . . . , 0), respectively.

2.2 Judgment Aggregation
Again, let 𝑁 = {1, . . . , 𝑛} be a set of agents. For the purposes of this
paper, we shall assume by default that 𝑛 is odd, unless explicitly

stated otherwise, so as to avoid considerations of tied majorities.

We ask each agent to either accept or reject each of the issues in

the agenda Φ, a finite set of propositional atoms which we refer

to as propositions. A judgment is a function 𝐽 : Φ → {0, 1}, where
acceptance of an agenda item is represented by 1 and rejection by 0.

For any two judgments 𝐽 and 𝐽 ′, we use Agr(𝐽 , 𝐽 ′) = {𝜑 ∈ Φ |
𝐽 (𝜑) = 𝐽 ′(𝜑)} to refer to the set of agenda items that they agree on

and Dis(𝐽 , 𝐽 ′) = {𝜑 ∈ Φ | 𝐽 (𝜑) ≠ 𝐽 ′(𝜑)} to refer to the set of those

they disagree on. We extend both of these definitions to versions

where we only count (dis)agreements in case the first judgment

accepts the proposition in question: Agr(𝐽 , 𝐽 ′)+ = Agr(𝐽 , 𝐽 ′)∩{𝜑 ∈
Φ | 𝐽 (𝜑) = 1} and Dis(𝐽 , 𝐽 ′)+ = Dis(𝐽 , 𝐽 ′) ∩ {𝜑 ∈ Φ | 𝐽 (𝜑) = 1}. A
profile is a vector 𝑱 = (𝐽1, . . . , 𝐽𝑛) ∈ ({0, 1}Φ)𝑛 of judgments, one

for each agent. The intensity of the support of an issue 𝜑 ∈ Φ in a

profile 𝑱 is denoted as 𝑛 (𝑱 ,𝜑) = |{𝑖 ∈ 𝑁 | 𝐽𝑖 (𝜑) = 1}|. Given 𝑱 , we
can define the (strict) majority judgment for each 𝜑 ∈ Φ as follows:

Maj(𝑱 ) (𝜑) = 1 if 𝑛 (𝑱 ,𝜑) > 𝑛/2 and Maj(𝑱 ) (𝜑) = 0 otherwise.

An aggregation rule is a function 𝐹 that takes as input a profile

and outputs a judgment that is meant to represent a reasonable

choice for a collective judgment. Although, ideally, this rule returns

a single judgment, most rules allow for a tie between judgments,

thereby possibly returning a set of judgments. Thus, formally, an

aggregation rule is a function 𝐹 : ({0, 1}Φ)𝑛 → P+ ({0, 1}Φ) that
maps any given profile to a nonempty set of judgments. An example

of such a function is the majority rule 𝐹 : 𝑱 ↦→ {Maj(𝑱 )}. Let L(Φ)
denote the propositional language with the set of agenda items in Φ
taking the role of propositional variables. We use formulas in this

language to express constraints Γ regarding judgments: 𝐽 |= Γ holds
if Γ is true under the truth assignment corresponding to 𝐽 . The set

of all judgments that satisfy a given constraint Γ is Mod(Γ) = {𝐽 ∈
{0, 1}Φ | 𝐽 |= Γ}. Following Endriss [16], we use such constraints

both to express rationality constraints, i.e., constraints indicating an

acceptable input to an aggregation rule, and feasibility constraints,

i.e., constraints indicating an acceptable output. We then say that

an aggregation rule 𝐹 guarantees Γ′-feasible outcomes on Γ-rational
profiles, if 𝐹 (𝑱 ) ⊆ Mod(Γ′) holds for every profile 𝑱 ∈ Mod(Γ)𝑛 .

2.3 Majoritarian Rules
We will make use of well-known JA rules, all of which guarantee by

definition that the outputwill satisfy a given feasibility constraint Γ′.
We adopt the naming conventions used by Endriss [16] but also

mention alternatives used in the literature.

The max-num rule, also known as the endpoint rule [32] and the

generalised Slater rule [34], selects judgments for which the number

of agreements with the majority outcome is maximal:

max-num(𝑱 , Γ′) = argmax

𝐽 ∈Mod(Γ′)
|Agr(𝐽 ,Maj(𝑱 )) |

Themax-sum rule, also known as the prototype rule [32], themedian
rule [34], and the generalised Kemeny rule [11], maximises the sum

of agreements with the profile:

max-sum(𝑱 , Γ′) = argmax

𝐽 ∈Mod(Γ′)

∑
𝑖∈𝑁

|Agr(𝐽 , 𝐽𝑖 ) |



Note that both of these two rules really constitutes an entire family

of aggregation rules, one for each feasibility constraint Γ′. To refer

to the aggregation rule from a family of aggregation rules 𝐹 , for a

given feasibility constraint Γ′, we write 𝐹 (·, Γ′).

3 SIMULATION OF MULTIWINNER RULES
We begin this section by detailing a preference agenda for our JA

model. We then define our method of simulation, before presenting

simulations for specific multiwinner voting rules. Finally, we inves-

tigate the computational efficiency of the outcome determination

problem in JA for the constraints featuring in these simulations.

3.1 Preference Agenda and Constraints
When voting, every agent reports a preference, as either a strict

ranking or an approval set. The outcome of an election can also

be viewed as a preference: all of the alternatives elected are (col-

lectively) preferred to all those not elected. Next, we prepare the

grounds for our embeddings of multiwinner voting rules into JA by

defining a number of constraints that can be used to model relevant

properties of such preferences.

Given a set of alternatives 𝑋 , we let Φ𝑋≽ = {𝑝𝑥≽𝑦 | 𝑥, 𝑦 ∈ 𝑋 } be
the preference agenda [12, 15]. Now we can think of accepting the

proposition 𝑝𝑥≽𝑦 as expressing a (weak) preference of 𝑥 over 𝑦. We

furthermore write 𝑝𝑥≻𝑦 as a shorthand for 𝑝𝑥≽𝑦 ∧ ¬𝑝𝑦≽𝑥 .
We now can express properties of binary relations as constraints

in our logical language. Each constraint is defined for some set 𝐴 ⊆
𝑋 . This includes, in particular, common properties of preference

relations such as completeness, antisymmetry, and transitivity:

complete𝐴 =

∧
𝑥,𝑦∈𝐴 (𝑝𝑥≽𝑦 ∨ 𝑝𝑦≽𝑥 )

anti-sym𝐴 =

∧
𝑥,𝑦∈𝐴 s.t. 𝑥≠𝑦 ¬(𝑝𝑥≽𝑦 ∧ 𝑝𝑦≽𝑥 )

transitive𝐴 =

∧
𝑥,𝑦,𝑧∈𝐴 (𝑝𝑥≽𝑦 ∧ 𝑝𝑦≽𝑧 → 𝑝𝑥≽𝑧)

We can now formulate a constraint that is satisfied by a judgment

on Φ𝑋≽ that corresponds to a strict ranking of all alternatives in 𝑋 :

ranking = complete𝑋 ∧ anti-sym𝑋 ∧ transitive𝑋

For two alternatives, for which it is not the case that you strictly

prefer one over the other, there are two possibilities: you either

are indifferent between them or you consider them incomparable.
The next two constraints express indifference and incomparability,

respectively, between all the alternatives in 𝐴:

indiff𝐴 =

∧
𝑥,𝑦∈𝐴 (𝑝𝑥≽𝑦 ∧ 𝑝𝑦≽𝑥 )

incomp𝐴 =

∧
𝑥,𝑦∈𝐴 ¬(𝑝𝑥≽𝑦 ∨ 𝑝𝑦≽𝑥 )

Again for a given set 𝐴 ⊆ 𝑋 , the following constraint expresses a

strict preference for all alternatives in 𝐴 over all those not in 𝐴 :

top𝐴 =

∧
𝑥 ∈𝐴

∧
𝑦∈𝑋\𝐴 (𝑝𝑥≻𝑦)

This property is satisfied, for instance, by an agent’s approval ballot

in case the agent approves of exactly the alternatives in 𝐴. But it

also holds for the collective preference returned by a multiwinner

voting rule in case 𝐴 is the set of winning alternatives.

We are going to require constraints to describe both that (𝑖) there
exists such a set 𝐴 of most preferred alternatives and that (𝑖𝑖) there
exists such a set and that this set has size 𝑘 . In both cases, we may

assume either indifference between all the alternatives within the

same set, or all of these alternatives being incomparable. We focus

on five such constraints. For the first two of them, the first part of

the name indicates the structure of the top set, while the second part

indicates that of the bottom set. The remaining three constraints

follow the same naming convention, while also being prefixed with

a number 𝑘 to indicate that the top set has size 𝑘 .

indiff-indiff =
∨

𝐴∈P+ (𝑋 ) (top𝐴 ∧ indiff𝐴 ∧ indiff𝑋\𝐴)
indiff-incomp =

∨
𝐴∈P+ (𝑋 ) (top𝐴 ∧ indiff𝐴 ∧ incomp𝑋\𝐴)

𝑘-indiff-indiff =
∨

𝐴∈P𝑘 (𝑋 ) (top𝐴 ∧ indiff𝐴 ∧ indiff𝑋\𝐴)
𝑘-indiff-incomp =

∨
𝐴∈P𝑘 (𝑋 ) (top𝐴 ∧ indiff𝐴 ∧ incomp𝑋\𝐴)

𝑘-incomp-incomp =
∨

𝐴∈P𝑘 (𝑋 ) (top𝐴 ∧ incomp𝐴 ∧ incomp𝑋\𝐴)

3.2 Extracting Election Winners
To simulate a multiwinner voting rule, the agents’ preferences are

turned into judgments that satisfy a suitable rationality constraint Γ.
In the case of ordinal preferences, this is ranking. In the case of

approval-based preferences, we are going to use indiff-incomp,

i.e., we are going to assume that an agent who approves of the

set 𝐴 does not share any views regarding the relative desirability

of the alternatives she does not approve of (rather than to declare

indifference between them). We consider this the most natural

interpretation of an approval ballot (and it is an interpretation that

will turn out to be technically convenient as well).

We can then apply a JA rule to the preferences thus encoded,

obtaining a collective judgment. In case that collective judgment

satisfies the constraint top𝐴 for some set 𝐴 ⊆ 𝑋 , we can declare

the alternatives in 𝐴 the winners of the original election. With

this in mind, we are now ready to present our central definition

relating multiwinner voting rules and JA rules, which is similar to

the definition given by Endriss [16] for single-winner voting rules.

Definition 1 (Simulation). Given a set 𝑋 of alternatives, a JA
rule 𝐹 for the preference agenda Φ𝑋≽ , and a multiwinner voting rule 𝐹 ′

for 𝑋 , let Γ = ranking in case 𝐹 ′ uses ordinal preferences and Γ =

indiff-incomp in case it uses approval-based preferences. Then we
say that 𝐹 simulates 𝐹 ′ if, for every preference profile (≽1, . . . , ≽𝑛) ∈
Mod(Γ)𝑛 and corresponding judgment profile 𝑱 = (𝐽1, . . . , 𝐽𝑛), we
have that 𝐹 ′(≽1, . . . , ≽𝑛) =

⋃
𝐽 ∈𝐹 (𝑱 ) {𝐴 ⊆ 𝑋 | 𝐽 |= top𝐴}.

Observe that 𝐹 can simulate 𝐹 ′ only if 𝐹 satisfies a feasibility con-

straint Γ′ that ensures that all outcomes 𝐽 ∈ 𝐹 (𝑱 ) satisfy top𝐴 for

some𝐴 ⊆ 𝑋 . Furthermore, for 𝐹 to simulate a rule that returns com-

mittees of size 𝑘 , the constraint Γ′ needs to ensure that these sets𝐴
indeed always have size 𝑘 . So constraints such as 𝑘-indiff-indiff

and 𝑘-indiff-incomp are natural candidates for Γ′.

3.3 Simulation Results
With all the relevant definitions in place, we now present our simu-

lation results for specific multiwinner voting rules. We start with

results for two ordinal-based rules that may be regarded as the

multiwinner counterparts of corresponding results by Endriss [16]

for single-winner voting rules. The first concerns the 𝑘-Borda rule.

Theorem 1. When restricted to ranking-rational profiles, the
max-sum(·, 𝑘-indiff-incomp) rule simulates k-Borda.

Proof. For any given set𝐴 ⊆ 𝑋 , let 𝐽𝐴 be defined as the unique

judgment such that, for any given 𝑥,𝑦 ∈ 𝑋 , we have 𝐽𝐴 (𝑝𝑥≽𝑦) = 1

if and only if 𝑥 ∈ 𝐴. Observe that the judgments 𝐽𝐴 for sets 𝐴 with



|𝐴| = 𝑘 , are precisely the judgments that satisfy 𝑘-indiff-incomp:

Mod(𝑘-indiff-incomp) = { 𝐽𝐴 | 𝐴 ∈ P𝑘 (𝑋 ) }.
Now consider any profile 𝑱 ∈ Mod(ranking)𝑛 . The max-

sum rule induced by 𝑘-indiff-incomp, acting on the profile 𝑱 , re-
turns argmax𝐽 ∈Mod(k-indiff-incomp)

∑
𝑖∈𝑁 |Agr(𝐽 , 𝐽𝑖 ) |. This is equal

to argmax𝐽𝐴 s.t. 𝐴∈P𝑘 (𝑋 )
∑
𝑖∈𝑁 |{𝜑 ∈ Φ𝑋≽ | 𝐽𝐴 (𝜑) = 𝐽𝑖 (𝜑)}|. To de-

termine the outcome, we need to compute a score that is obtained

by summing over the elements 𝜑 of the preference agenda Φ𝑋≽ . For
any given 𝐴 ⊆ 𝑋 , we can separate this agenda into the following

five disjoint parts: {𝑝𝑥≽𝑦 | 𝑥 = 𝑦}, {𝑝𝑥≽𝑦 | 𝑥 ≠ 𝑦 and𝑥,𝑦 ∉ 𝐴},
{𝑝𝑥≽𝑦 | 𝑥 ≠ 𝑦 and𝑥,𝑦 ∈ 𝐴} , {𝑝𝑥≽𝑦 | 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴}, and
{𝑝𝑥≽𝑦 | 𝑥 ∉ 𝐴, 𝑦 ∈ 𝐴}. We need to count the propositions 𝜑 in Φ𝑋≽
on which the two judgments, namely 𝐽𝐴 and 𝐽𝑖 ∈ Mod(ranking)
representing voter 𝑖’s judgment, agree.

First, for propositions in {𝑝𝑥≽𝑦 | 𝑥 = 𝑦}, the judgments agree

when 𝑥 ∈ 𝐴. This number remains the same regardless on the

selection of 𝐴 so omit it from the final count. Second, 𝐽𝐴 rejects

all propositions in {𝑝𝑥≽𝑦 | 𝑥 ≠ 𝑦 and𝑥,𝑦 ∉ 𝐴}, while 𝐽𝑖 , by virtue

of denoting a strict ranking, accepts exactly half of them (indepen-

dently of the specific preference reported by 𝑖). Since this number

also does not depend on the choice of 𝐴, we omit it going forward.

The same is true for {𝑝𝑥≽𝑦 | 𝑥 ≠ 𝑦 and𝑥,𝑦 ∈ 𝐴}: 𝐽𝐴 again accepts

all propositions, while 𝐽𝑖 accepts exactly half of them, namely those

propositions 𝑝𝑥≽𝑦 for which 𝑥 ≻𝑖 𝑦. However, as will become clear

shortly, in this case it will be convenient to explicitly include this

number in our count. For the remaining two parts of the agenda,

{𝑝𝑥≽𝑦 | 𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴} and {𝑝𝑥≽𝑦 | 𝑥 ∉ 𝐴, 𝑦 ∈ 𝐴}, the judgment

𝐽𝐴 accepts all propositions in the former and rejects all those in

the latter. If 𝐽𝑖 accepts a proposition 𝑝𝑥≽𝑦 in the former, it rejects

𝑝𝑦≽𝑥 in the latter. So 𝐽𝑖 is in agreement with 𝐽𝐴 , in both parts of

the agenda, for exactly those pairs (𝑥,𝑦) for which 𝑥 ≻𝑖 𝑦. So these
judgments agree on the same number for both parts of the agenda,

meaning that we need to consider only one.

To summarise, omitting the terms we can ignore, we ob-

tain that the max-sum rule induced by 𝑘-indiff-incomp maps

any given preference profile (≻1, . . . , ≻𝑛) to the outcome

argmax𝐽𝐴 s.t. 𝐴∈P𝑘 (𝑋 )
∑
𝑖∈𝑁 |{(𝑥,𝑦) | 𝑥 ≻𝑖 𝑦 and𝑥 ∈ 𝐴, 𝑦 ∉ 𝐴}|

+ |{(𝑥,𝑦) | 𝑥 ≻𝑖 𝑦 and𝑥,𝑦 ∈ 𝐴}|. The latter can be further simpli-

fied to argmax𝐽𝐴 s.t. 𝐴∈P𝑘 (𝑋 )
∑
𝑖∈𝑁 |{𝑦 ∈ 𝑋 | 𝑥 ≻𝑖 𝑦 and𝑥 ∈ 𝐴}|.

Hence, the elected 𝑘-sized committee/s clearly maximise the Borda

scores of the winning alternatives; so this is the 𝑘-Borda rule. □

As feasibility constraint we used 𝑘-indiff-incomp to capture the in-

tuition of collective incomparability within the losing set. However,

there is also another intuitive route, namely the one where we as-

sume indifference between the non-winners. Indeed, when counting

agreements, as agents provide strict relations between alternative

pairs, one can freely choose between indifference and incompara-

bility amongst alternatives grouped together in the outcome. We

demonstrate this with the following result using 𝑘-indiff-indiff.

Proposition 2. When restricted to ranking-rational profiles, the
max-sum(·, 𝑘-indiff-indiff) rule simulates k-Borda.

Proof (sketch). We define the judgment 𝐽𝐴 as accepting a

proposition 𝑝𝑥≽𝑦 for 𝑥,𝑦 ∈ 𝑋 , if and only if one of the follow-

ing three conditions are satisfied: (𝑖) 𝑥,𝑦 ∈ 𝐴, (𝑖𝑖) 𝑥 ∈ 𝐴 but 𝑦 ∉ 𝐴,

or (𝑖𝑖𝑖) 𝑥,𝑦 ∉ 𝐴. This ensures that Mod(𝑘-indiff-indiff) = { 𝐽𝐴 |
𝐴 ∈ P𝑘 (𝑋 ) }. The proof now proceeds along the same lines as that

of Theorem 1. Regarding agreements, both judgments accept all of

{𝑝𝑥≽𝑦 | 𝑥 = 𝑦} and agree on half of {𝑝𝑥≽𝑦 | 𝑥 ≠ 𝑦 and𝑥,𝑦 ∉ 𝐴}
with 𝐽𝐴 accepting all them. The other agreements are as in Theo-

rem 1. The same holds for the final count. □

We return to 𝑘-indiff-incomp and apply the constraint to max-

num instead of max-sum as we transition to simulating 𝑘-Copeland.

Theorem 3. When restricted to ranking-rational profiles, the
max-num(·, 𝑘-indiff-incomp) rule simulates k-Copeland.

Proof (sketch). Take the same judgment 𝐽𝐴 and agenda de-

composition from Theorem 1. We proceed to assess the agreements

between 𝐽𝐴 and the Maj(𝑱 ) judgment. Notice that when checking

for the agreements, for the case with an odd number of agents, that

Maj(𝑱 ) sets, for any pair of distinct alternatives 𝑥,𝑦 ∈ 𝑋 , exactly

one of 𝑝𝑥≽𝑦 and 𝑝𝑦≽𝑥 to true. This is much like the considered judg-

ment 𝐽𝑖 from Theorem 1. Hence, it is clear that the rule is equivalent

to argmax𝐽𝐴 s.t. 𝐴∈P𝑘 (𝑋 ) |{𝑝𝑥≽𝑦 | Maj(𝑱 ) (𝑝𝑥≽𝑦) = 1 and𝑥 ∈ 𝐴}|.
The returned 𝑘-sized committee/s maximise the pairwise majority

wins of the committee members and thus, this is 𝑘-Copeland. □

As with 𝑘-Borda, 𝑘-Copeland has an alternative simulation using

𝑘-indiff-indiff. The (omitted) proof of this fact is analogous to

that of Proposition 2.

Proposition 4. When restricted to ranking-rational profiles, the
max-num(·, 𝑘-indiff-indiff) rule simulates k-Copeland.

Having simulated 𝑘-Borda and 𝑘-Copeland with varying feasibility

constraints, let us now consider the simulation of rules that exhibit

different qualities to the two aforementioned rules. In the multiwin-

ner voting literature, 𝑘-Borda and 𝑘-Copeland have been proposed

as suitable candidates to perform tasks such as shortlisting, as they

satisfy the axiom of committee monotonicity. This property ensures

that winning alternatives in a 𝑘-sized committee will remain win-

ners if the target committee size is increased [3, 6, 14, 19]. Barberà

and Coelho [6] showed this property to be incompatible with an-

other well-studied property, namely the Condorcet-related notion

of Gehrlein stability [3, 6, 23, 37]. We recall its definition below.

Definition 2 (Gehrlein stability). Take a set of alternatives 𝑋 ,
a target committee size 𝑘 , and a set of agents 𝑁 with each 𝑖 ∈ 𝑁

providing a strict ranking ≻𝑖 . A committee 𝐴 ⊆ P𝑘 (𝑋 ) is (weakly)
Gehrlein-stable if for any 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝑋 \ 𝐴, it is the case that
|{𝑖 ∈ 𝑁 | 𝑥 ≻𝑖 𝑦}| ⩾ |{𝑖 ∈ 𝑁 | 𝑦 ≻𝑖 𝑥}|.

SinceweworkwithweakGehrlein stability, we can allow for evenly-

sized 𝑁 . And note that for some 𝑋 , 𝑁 , 𝑘 , and strict preference

profiles, a Gehrlein-stable committee may not exist.

As we aim at simulating rules that output stable committees,

the incompatibility with committee monotonicity leads us away

from the 𝑘-indiff-incomp and 𝑘-indiff-indiff constraints.1 We

now show that, when certain members of the class of additive ma-
jority rules (AMRs) are induced by 𝑘-incomp-incomp on ranking-

rational profiles, the resultant JA rule returns judgments that corre-

spond to𝑘-sized Gehrlein-stable committees given such committees

1
Aziz et al. [3] showed this incompatibility does not occur for strict Gehrlein stability.



exist for the given profiles. We now recall the definition of AMRs,

which include max-sum and max-num [8, 33].
2

Definition 3 (Additive majority rule). A JA rule 𝐹 is an
additive majority rule (AMR) if there exists a non-decreasing gain
function 𝑔 : [0, 𝑛] → R such that 𝑔(𝑡) < 𝑔(𝑡 ′) for 𝑡 < 𝑛

2
⩽ 𝑡 ′, and

for every feasibility constraint Γ′ and JA profile 𝑱 , it holds that:

𝐹 (𝑱 , Γ′) = argmax𝐽 ∈Mod(Γ′)
∑
𝜑 ∈𝐽 𝑔(𝑛 (𝑱 ,𝜑) )

We obtain the following simulation result:

Theorem 5. When restricted to ranking-rational profiles, every
JA outcome 𝐽 ∈ 𝐹 (·, 𝑘-incomp-incomp) for an AMR 𝐹 that is based
on a gain function 𝑔 with the property that 𝑔(𝑡) = 𝑔(𝑡 ′) for any
two 𝑡, 𝑡 ′ ⩾ 𝑛

2
corresponds to a weakly Gehrlein-stable committee,

provided such a stable committee exists at all.

Proof. Take an𝑚-sized set of alternatives 𝑋 and suppose that

a weakly Gehrlein-stable committee 𝑆 ⊆ P𝑘 (𝑋 ) exists. More-

over, to derive a contradiction, suppose that there is some judg-

ment 𝐽𝐴 ∈ 𝐹 (𝑱 , 𝑘-incomp-incomp) that corresponds to a commit-

tee 𝐴 ⊆ P𝑘 (𝑋 ) that is not weakly Gehrlein-stable.

Since𝐴 is not weakly Gehrlein-stable, there must be some 𝑥 ∈ 𝐴

and some 𝑦 ∈ 𝑋 \ 𝐴 such that |{𝑖 ∈ 𝑁 | 𝑥 ≻𝑖 𝑦}| < |{𝑖 ∈ 𝑁 | 𝑦 ≻𝑖
𝑥}|. Then the score

∑
𝜑 ∈𝐽𝐴 𝑔(𝑛 (𝑱 ,𝜑) ) achieved by 𝐽𝐴 is strictly less

than 𝑘 (𝑚 − 𝑘)𝑔max, where 𝑔max = 𝑔(⌈𝑛/2⌉) = · · · = 𝑔(𝑛).
However, the judgment 𝐽𝑆 that corresponds to the committee 𝑆

achieves the score

∑
𝜑 ∈𝐽 𝑆 𝑔(𝑛 (𝑱 ,𝜑) ) = 𝑘 (𝑚 − 𝑘)𝑔max, and thus

achieves a strictly higher score than 𝐽𝐴 . This is a contradiction

with our assumption that 𝐽𝐴 ∈ 𝐹 (𝑱 , 𝑘-incomp-incomp). There-
fore we can conclude that all judgments in 𝐹 (𝑱 , 𝑘-incomp-incomp)
correspond to a weakly Gehrlein-stable committee. □

This result makes a large selection from the AMR class available

to those interested in committee stability with tools to easily de-

fine novel Gehrlein-stable rules. In fact, the subclass of AMRs to

which Theorem 5 applies includes some rules that correspond to

multiwinner voting rules that have been studied in the literature.

For example, consider the AMR based on the gain function 𝑔

with 𝑔(𝑡) = 1 when 𝑡 ⩾ 𝑛
2
and 𝑔(𝑡) = 0 otherwise—which coincides

with the max-num rule. When restricted to ranking-rational pro-

files, using 𝑘-incomp-incomp as the feasibility constraint, this rule

simulates the rule known as Number of External Defeats [3, 19].
Another example is the AMR based on the gain function 𝑔 with

𝑔(𝑡) = 0 when 𝑡 ⩾ 𝑛
2
and 𝑔(𝑡) = 2𝑡 −𝑛 otherwise, or put differently,

𝑔(𝑡) = max{0, 2𝑡 − 𝑛}. When restricted to ranking-rational pro-

files, using 𝑘-incomp-incomp as constraint, this rule simulates the

𝑘-Kemeny multiwinner voting rule [6, 37]. This correspondence

revolves around the fact that for each pair (𝑥,𝑦), if 𝑥 is selected in

the outcome and𝑦 is not, a score ofmax{0, |{𝑖 ∈ 𝑁 | 𝑦 ≻𝑖 𝑥}|− |{𝑖 ∈
𝑁 | 𝑥 ≻𝑖 𝑦}|} is added for 𝑝𝑥≽𝑦 to the total score.

We now transition to approval-based rules, with a natural start-

ing point being the simple AV rule. As previously mentioned, the

rationality constraint for these rules will be indiff-incomp, which

allows agents to have approval ballots of arbitrary size.

2
We obtain the max-sum rule for 𝑔 (𝑡 ) = 𝑡 , while max-num has 𝑔 (𝑡 ) = 1 when 𝑡 ⩾ 𝑛

2

and 𝑔 (𝑡 ) = 0 otherwise.

Theorem 6. When restricted to indiff-incomp-rational profiles,
the max-sum(·, 𝑘-indiff-incomp) rule simulates AV.

Proof (sketch). Take 𝐽𝐴 from Proposition 2 and the usual

agenda decomposition. With indiff-incomp-rational profiles,

each voter sets indifference between her most-preferred al-

ternatives. We fix an approval set 𝑃𝑖 for voter 𝑖 such that

𝐽𝑖 (𝑝𝑥≽𝑦) = 1 if and only if 𝑥 ∈ 𝑃𝑖 . It is easy to verify

through counting relevant agreements that the max-sum rule in-

duced by 𝑘-indiff-incomp on indiff-incomp-rational profiles is

argmax𝐽𝐴 s.t. 𝐴∈P𝑘 (𝑋 )
∑
𝑖∈𝑁 |{𝑥 | 𝑥 ∈ 𝐴 ∩ 𝑃𝑖 }|. The elected com-

mittee/s of size 𝑘 maximise the approval of the committee members

which gives us a simulation of AV. □

We now extend the AV simulation to other Thiele rules. Let us

adjust max-sum by incorporating a scoring vector. For any scor-

ing vector 𝒘 (𝑘)
and number ℓ ⩾ 0, let 𝑓𝒘 (𝑘 ) (ℓ) =

∑ℓ
𝑖=0𝑤𝑖 . This

function allows us to refine max-sum to 𝑓 -max-sum(𝑱 , Γ′,𝒘 (𝑘)
)

= argmax𝐽 ∈Mod(Γ′)
∑
𝑖∈𝑁 𝑓𝒘 (𝑘 ) ( |Agr(𝐽 , 𝐽𝑖 ) |). That the 𝑓 -max-sum

rule facilitates the simulation of PAV and 𝛼-CC is immediate from

its definition and our proof sketch for Theorem 6, so we present

the next result without proof.

Proposition 7. When restricted to indiff-incomp-rational pro-
files, the 𝑓 -max-sum rule induced by 𝑘-indiff-incomp simulates
PAV and 𝜶 -CC when using the scoring vectors (1, 1/2, 1/3, . . . , 1/𝑘)
and (1, 0, . . . , 0), respectively.

3.4 Constraints as Circuits
Worst-case intractability has been shown for many JA rules. Specif-

ically, computing outcomes under max-sum and max-num is Θ
p

2
-

hard [18]. Thus, when simulating multiwinner rules in JA, we en-

counter the paradox that ordinarily easy-to-compute rules, such

as 𝑘-Borda and AV [4, 14], now seem computationally difficult to

implement. To address this mismatch, we employ the approach

proposed by de Haan [26] who showed that JA rules can be used

efficiently when the integrity constraint is represented as a circuit

in decomposable negation normal form, or a DNNF circuit. We begin

with the circuit definition given by Darwiche and Marquis [10].

Definition 4 (DNNF circuits). A Boolean circuit in negation
normal form (NNF) is a directed acyclic graph with a single root where
each internal node is labelled with ∨ or ∧, and every leaf is labelled
with ⊤, ⊥, 𝑥 or ¬𝑥 for a propositional variable 𝑥 . A DNNF circuit
is an NNF circuit that satisfies decomposability: for each conjunction
in the circuit, no two conjuncts share a propositional variable.

The results of de Haan [26] cover certain members in the class of

scoring rules [11], including max-sum and max-num. Scoring rules

select those constraint-satisfying JA outcomes that maximise the

score of an associated scoring function. Such a function attaches

a score to each issue with respect to an agent’s judgment. Before

restating the relevant result in Theorem 8, we define the outcome
determination problem Outcome(𝐹 ) for a given JA rule 𝐹 .

Outcome(𝐹 )

Given: A judgment profile 𝑱 for an agenda Φ, an integrity

constraint Γ′, and a partial judgment 𝑑 on Φ.

Question: Is there a 𝐽 ∈ 𝐹 (𝑱 , Γ′) that agrees with 𝑑?



Theorem 8 (De Haan, 2018). When the integrity constraint Γ′ is
represented as a DNNF circuit, then both Outcome(max-sum) and
Outcome(max-num) are polynomial-time solvable.3

3.5 Encoding and Complexity Results
We now show that the 𝑘-indiff-incomp constraint can be repre-

sented as a DNNF circuit. Recall that this constraint sets indifference

amongst the top alternatives and incomparability between those

in the bottom set. Observe that for any alternative 𝑥 in the top set,

the proposition 𝑝𝑥≽𝑦 is true for all 𝑦 ∈ 𝑋 . On the other hand, if 𝑥

is in the bottom set, the proposition 𝑝𝑥≽𝑦 is false for all 𝑦 ∈ 𝑋 .

Theorem 9. Given a finite set 𝑋 of alternatives and a correspond-
ing preference agenda Φ𝑋≽ , the 𝑘-indiff-incomp constraint can be
encoded into a DNNF circuit in polynomial time.

Proof. Given the set of alternatives 𝑋 = {𝑥1, . . . , 𝑥𝑚}, we con-
struct the circuit according to the (arbitrary) ordering 𝑥1, . . . , 𝑥𝑚
of 𝑋 . An ordering of propositions such as 𝑝𝑥≽𝑥 for each 𝑥 ∈ 𝑋

is then set. We say 𝑥𝑖 is the 𝑖th alternative in 𝑋 while 𝑝𝑥𝑖≽𝑥𝑖 is

the corresponding proposition in Φ𝑋≽ . We also use the counting

variables 𝑖 and 𝑗 during the circuit construction, both starting at 0.

The circuit contains nodes 𝑁𝑖, 𝑗 , each of which denoting that we

have assessed the propositions in the sequence up to (and including)

index 𝑖 − 1 with 𝑗 the current size of the winning set. We set 𝑁0,0

to be the root of the circuit. If 𝑖 = |𝑋 | + 1 and 𝑗 = 𝑘 , then 𝑁𝑖, 𝑗 = ⊤.
If 𝑖 = |𝑋 | + 1 and 𝑗 ≠ 𝑘 , then 𝑁𝑖, 𝑗 = ⊥. Now if 𝑖 < |𝑋 | + 1, we either

have (𝑖) 𝑝𝑥𝑖≽𝑥𝑖 is true or (𝑖𝑖) 𝑝𝑥𝑖≽𝑥𝑖 is false. We set the node 𝑁𝑖, 𝑗 to

be the disjunction 𝛼 ∨ 𝛽 , where 𝛼 = (𝑁 (𝑖 + 1, 𝑗 + 1) ∧∧
𝑦∈𝑋 𝑝𝑥𝑖≽𝑦)

and 𝛽 = (𝑁 (𝑖 + 1, 𝑗) ∧ ∧
𝑦∈𝑋 ¬𝑝𝑥𝑖≽𝑦). We have that every leaf

is either ⊤, ⊥ or 𝑝𝑥≽𝑦 for some 𝑥 and 𝑦. Thus, we have a NNF

circuit. Each proposition appears exactly once in the circuit so

we also have that it is decomposable. The circuit is only satisfied

by a preference agenda Φ𝑋≽ if the agenda has a 𝑘-sized top set

of alternatives with indifference between them while the bottom

set’s alternatives are incomparable. So we have that the circuit

corresponds to our constraint. This circuit can also be constructed

in polynomial time as the process terminates once each alternative

in 𝑋 has been assessed exactly once. □

Corollary 10. Given a finite set 𝑋 of alternatives and a corre-
sponding preference agenda Φ𝑋≽ , the indiff-incomp constraint can
be encoded into a DNNF circuit in polynomial time.4

These results ensure that for max-sum and max-num when using

𝑘-indiff-incomp as the feasibility constraint, such as in our simu-

lations, computing the outcomes can still be done in polynomial

time. We continue with this approach to analyse 𝑘-indiff-indiff.

Recall that 𝑘-indiff-indiff sets indifference within both the 𝑘-

sized top set and the bottom set. We now show that this constraint

cannot be constructed as a DNNF circuit in polynomial time. The

claim is that, given a set of alternatives 𝑋 , computing the max-sum

rule induced by 𝑘-indiff-indiff with the rationality constraint

⊤, i.e., when the ballots are unconstrained, is a computationally

3
Rey et al. [38] extend this result to the general class of additive rules, which includes

both the scoring rules and the AMRs.

4
The proof of the circuit encoding for indiff-incomp works as in Theorem 9 except

the tracking of the winning set’s size is omitted.

difficult problem. This implies that we cannot construct a DNNF

circuit representing 𝑘-indiff-indiff in polynomial time (assuming

that P ≠ NP). We show that this problem is NP-hard by giving a

reduction from the following problem.

NAE-3SAT

Given: A formula 𝜑 in 3CNF.

Question: Is there a truth assignment satisfying 𝜑 that

falsifies at least one literal in each clause of 𝜑?

Theorem 11. Given a finite set𝑋 of alternatives and a correspond-
ing preference agenda Φ𝑋≽ , computing any outcome of the max-sum

rule induced by 𝑘-indiff-indiff on ⊤-restricted ballots is NP-hard.

Proof (sketch). We reduce from NAE-3SAT. Let 𝜑 be an arbi-

trary instance of NAE-3SAT, where 𝑥1, . . . , 𝑥𝑚 are the variables

in 𝜑 and 𝑐1, . . . , 𝑐𝑢 are the clauses in 𝜑 . For each variable 𝑥𝑖 in 𝜑 ,

we create an alternative 𝑎𝑥𝑖 for each literal of the variable 𝑥𝑖 . This

produces 2𝑚 alternatives. The profile on Φ𝑋≽ , is as follows: for each
variable 𝑥𝑖 , we add 10𝑢 agents, each of which has a judgment set

that sets every preference issue to true except for 𝑝𝑎𝑥𝑖 ≽𝑎¬𝑥𝑖 and

𝑝𝑎¬𝑥𝑖 ≽𝑎𝑥𝑖 . For each clause 𝑐 𝑗 , and each pair of literals (ℓ1, ℓ2) within
𝑐 𝑗 , we create an individual that has the judgment set that sets every

issue in the agenda to true except for 𝑝𝑎ℓ
1
≽𝑎ℓ

2

and 𝑝𝑎ℓ
2
≽𝑎ℓ

1

. We

claim that there exists a truth assignment that both satisfies and

falsifies at least one literal in each clause of 𝜑 if and only if the trans-

lated outcome, given by max-sum induced by𝑚-indiff-indiff, has

a score of at least (10𝑚𝑢+3𝑢) · (4
(𝑚
2

)
+𝑚2)−10𝑚𝑢−4𝑢. Verifying the

claim is straightforward. For space reasons, we omit the details. □

So in general, we cannot efficiently use the 𝑘-indiff-indiff-

induced max-sum rule. However, when used on ranking-restricted

profiles, it simulates 𝑘-Borda (Proposition 2). So in this particular

case, we obtain computational efficiency. This highlights the care

required in JA constraint selection.

4 AIMING FOR PROPORTIONAL JA RULES
So far, we have shown simulations of existing multiwinner voting

rules using existing JA rules (or, in one case, rules that are very close

to existing JA rules). But our embedding approach also suggests

itself as a tool for porting ideas from multiwinner voting to JA that

have so far not been considered in the latter field. An example is

the notion of proportional representation, which plays a central role

in multiwinner voting [2, 39].
5
While the simulation of PAV and

𝛼-CC represents an initial step towards introducing this notion into

JA, in this section we explore this direction more systematically.

We start by introducing a proportionality axiom for JA as well

as two concrete aggregation rules designed to satisfy this axiom (at

least under certain conditions). We then proceed to studying the

computational complexity of our rules.

4.1 Proportional JA Rules
While PAV and 𝛼-CC ensure some form of proportionality when

electing a committee of fixed size, it is much less clear how to design

5
Recent work by Haret et al. [27] on importing proportionality into belief merging, a

formalism that is conceptually similar to JA, has similar motivations and underlines

the relevance of this idea. We note that despite this conceptual similarity, the technical

results obtained by the authors are technically unrelated to ours.



such a proportional rule for electing variable-sized committees

(because the trivial solution of electing all alternatives to maximise

voter approval is clearly not attractive). But for more general JA

applications, a rule that does not force us to accept a fixed number

of propositions seems more relevant. Also, such a rule must be

measured against some criteria to determine the extent to which its

outcomes are proportional. To this end, we adapt the multiwinner

axiom of proportional justified representation (PJR) [39].

Definition 5 (Sánchez-Fernández et al., 2017). Given an
approval ballot profile 𝑨 = (𝐴1, . . . , 𝐴𝑛) over a set of alternatives 𝑋
and a fixed committee size 𝑘 ⩽ |𝑋 |, a group of voters is ℓ-cohesive
for some ℓ ∈ [𝑘], if |𝑁 ∗ | ⩾ ℓ · 𝑛

𝑘
and |⋂𝑖∈𝑁 ∗ 𝐴𝑖 | ⩾ ℓ . A committee

𝐶 ∈ P𝑘 (𝑋 ) satisfies proportional justified representation (PJR)
for 𝑨 and 𝑘 , if for every ℓ ∈ [𝑘] and every ℓ-cohesive group of voters
𝑁 ∗ ⊆ 𝑁 , it is the case that |𝐶∩(⋃𝑖∈𝑁 ∗ 𝐴𝑖 ) | ⩾ ℓ .6 An approval-based
voting rule satisfies PJR if for every profile 𝑨 and every committee
size 𝑘 , it outputs a committee that satisfies PJR for 𝑨 and 𝑘 .

For our JA axiom, we cannot rely on a fixed size 𝑘 to identify

cohesive groups, as a variable number of issues may be accepted by

a JA outcome. So we use this number of accepted issues as if it were

the committee target size to begin with, which differs from other

approaches to variable-sizedmultiwinner proportionality [22]. Also,

to account for logical dependencies between JA issues, we focus

on the issues that groups agree on that are, in a sense, logically

independent of the agenda. This approach may lead to a weaker

notion that is less compatible with restrictive constraints, but it is

clear that complex constraints may rule out proportionality.

We provide extra notation for our axiom. For an integrity con-

straint Γ, an issue 𝜑 is logically independent of another issue𝜓 if

both Γ ̸ |= 𝜓 → 𝜑 and Γ ̸ |= 𝜓 → ¬𝜑 are the case. We say an issue

is logically independent of some set 𝑆 if Γ ̸ |= (∧𝜓 ∈𝑆 𝜓 ) → 𝜑 and

Γ ̸ |= (∧𝜓 ∈𝑆 𝜓 ) → ¬𝜑 . The set of issues accepted by a judgment 𝐽

is denoted as 𝐽+ = {𝜑 ∈ Φ | 𝐽 (𝜑) = 1}. For an agent group 𝑁 ∗ ⊆ 𝑁 ,

we define a judgment 𝑈𝑱 (𝑁 ∗) such that, for every 𝜑 ∈ Φ, it is the
case that𝑈𝑱 (𝑁 ∗) (𝜑) = 1 if 𝐽𝑖 (𝜑) = 1 for some agent 𝑖 in 𝑁 ∗

; other-

wise, 𝑈𝑱 (𝑁 ∗) (𝜑) = 0. The judgment 𝐼𝑱 (𝑁 ∗) requires every agent

𝑖 in 𝑁 ∗
to be accepting of 𝜑 for 𝐼𝑱 (𝑁 ∗) (𝜑) = 1 to hold; otherwise,

𝐼𝑱 (𝑁 ∗) (𝜑) = 0. We now define our JA proportionality axiom.

Definition 6 (ℓ-JA-PJR). Consider some ℓ ∈ [|𝐽+ |] for a judg-
ment 𝐽 over an agenda Φ accepting |𝐽+ | issues. We say a group
of agents 𝑁 ∗ ⊆ 𝑁 is (𝐽 , Γ, ℓ)-cohesive if |𝑁 ∗ | ⩾ ℓ · 𝑛

| 𝐽 + | and
|{𝜑 ∈ 𝐼𝑱 (𝑁 ∗)+ | 𝜑 is logically independent of Φ \ {𝜑}}| ⩾ ℓ . Given
a judgment profile J and an integrity constraint Γ, we say that an
outcome 𝐽 provides ℓ-JA proportional justified representation
(ℓ-JA-PJR), if for every (𝐽 , Γ, ℓ)-cohesive group of agents 𝑁 ∗ ⊆ 𝑁 , it
is the case that |Agr(𝐽 , 𝑈𝑱 (𝑁 ∗))+ | ⩾ ℓ . We say a JA rule 𝐹 satisfies
ℓ-JA-PJR if every JA outcome 𝐽 ∈ 𝐹 (𝑱 , Γ) provides ℓ-JA-PJR.

Next, we are going to propose new JA rules geared towards pro-

portionality. In the variable-sized multiwinner literature, there is

a class of rules that take both approvals and disapprovals into

account when scoring a committee [9, 20]. We adopt this approval-

disapproval dynamic and apply it to a JA outcome’s accepted issues.

6
For ℓ = 1, this axiom reduces to justified representation, as defined by Aziz et al. [2].

Let 𝑓𝒘 (𝑚) (ℓ) =
∑ℓ
𝑖=0𝑤𝑖 for any given scoring vector𝒘 (𝑚)

. The gen-

eral form of our rules is the following variant of max-sum, but now

using two separate scoring vectors, 𝒖 (𝑚)
and 𝒗 (𝑚)

, for approvals

and disapprovals, respectively:

(𝑎-𝑑)-max-sum(𝑱 , Γ)
= argmax

𝐽 ∈Mod(Γ′)

∑
𝑖∈𝑁

𝑓𝒖 (𝑚) ( |Agr(𝐽 , 𝐽𝑖 )+ |) − 𝑓𝒗 (𝑚) ( |Dis(𝐽 , 𝐽𝑖 )+ |)

Through varying the scoring vectors, we now define candidates for

new JA rules. The first attaches standard AV scoring to agreed-upon

accepted issues, and ‘penalises’ disagreed-with accepted issues with

an ‘inverted’ PAV scoring.

Definition 7 (PAV-JA). Given an agenda Φ with𝑚 issues and an
integrity constraint Γ, the PAV-JA rule is defined as the (𝑎-𝑑)-max-

sum rule with the scoring functions induced by following scoring
vectors 𝒖 (𝑚) = (1, 1, . . . , 1) and 𝒗 (𝑚) = (1/𝑚, . . . , 1/2, 1).

For the second rule, an agent awards points to an outcome as with

𝛼-CC scoring, but subtracts a point if the majority threshold, a

commonly-used threshold [1, 20, 21], of rejected issues is crossed.

Definition 8 (CC-JA). Given an agenda Φ with𝑚 issues and an
integrity constraint Γ, the CC-JA rule is defined as the (𝑎-𝑑)-max-

sum rule with the scoring functions induced by the scoring vectors
𝒖 (𝑚) = (1, 0, . . . , 0) and 𝒗 (𝑚) = (0, . . . , 0, 1, 0, . . . , 0). In 𝒗 (𝑚) we set
the scoring vector’s ‘threshold’ at position ⌈𝑚/2⌉ + 1.

Having proposed two JA rules based on well-known proportional

approaches, we assess whether these rules satisfy our ℓ-JA-PJR

axiom, beginning with PAV-JA.

Theorem 12. The rule PAV-JA(𝑱 , Γ) satisfies the ℓ-JA-PJR axiom
for every value ℓ ⩾ | 𝐽 + | / (𝑚−| 𝐽 + |+1).

Proof (sketch). Take a 𝐽 ∈ PAV-JA(𝑱 , Γ) and assume there is

a (𝐽 , Γ, ℓ)-cohesive group 𝑁 ∗
such that |Agr(𝐽 , 𝑈𝑱 (𝑁 ∗))+ | < ℓ . We

can show that a judgment 𝐽 ′ that accepts a currently-rejected issue
in 𝐼𝑱 (𝑁 ∗)+, all else being equal, yields a strictly higher PAV-JA

score. We now detail the change in score which occurs with the

acceptance of 𝜑 . The group 𝑁 ∗
adds at least ℓ · (𝑛/| 𝐽 + |) to the score.

At least one agent is already satisfied by 𝐽 and this agent deducts

at most 1/(𝑚−| 𝐽 + |+1) while at most 𝑛 − |𝑁 ∗ | − 1 agents will each

deduct at most 1/(𝑚−| 𝐽 + |). So the score strictly increases when we

have: |𝑁 ∗ | ⩾ ℓ · (𝑛/| 𝐽 + |) > (𝑛−|𝑁 ∗ |−1)/(𝑚−| 𝐽 + |) + 1/(𝑚−| 𝐽 + |+1) <

(𝑛 ( | 𝐽 + |−ℓ))/( | 𝐽 + | (𝑚−| 𝐽 + |)). To conclude, observe that the score is

strictly positive when ℓ ⩾ | 𝐽 + |/(𝑚−| 𝐽 + |+1). □

Next, we establish that CC-JA generally fails ℓ-JA-PJR; but with a

stronger independence assumption, CC-JA satisfies 1-JA-PJR.

Theorem 13. Assuming logical independence between all agenda
items, CC-JA satisfies ℓ-JA-PJR for ℓ = 1 and fails it for every ℓ > 1.

Proof (sketch). Our claim is that, for any ℓ > 1, we can con-

struct an agenda Φ and a profile 𝑱 such that, for Γ = ⊤, there
is a 𝐽 ∈ CC-JA(𝑱 , Γ) that does not provide ℓ-JA-PJR. Consider

an arbitrary ℓ > 1. We choose an agenda with an odd number

𝑚 ⩾ 5 of issues such that ℓ = ⌊𝑚/2⌋. We fix a set of agents

𝑁 with |𝑁 | = 𝑚 + 1 and an agent subset 𝑁 ℓ ⊂ 𝑁 such that

|𝑁 ℓ | = ( |𝑁 | · ⌊𝑚/2⌋)/⌈𝑚/2⌉ = |𝑁 | −2. This ensures the existence of two

agents 𝑖, 𝑗 ∉ 𝑁 ℓ
. Given this agent population, we can define the



judgment profile 𝑱 . In this profile, the agents in𝑁 ℓ
uniformly accept

the same ℓ issues, so we have |𝐼𝑱 (𝑁 ℓ )+ | = |𝑈𝑱 (𝑁 ℓ )+ | = ℓ . For the

judgments of agents 𝑖, 𝑗 ∉ 𝑁 ℓ
, we have two issues 𝜑,𝜓 ∉ 𝐼𝑱 (𝑁 ℓ )+,

i.e., neither 𝜑 nor 𝜓 are accepted by agents in 𝑁 ℓ
, such that

𝑈𝑱 ({𝑖})+ = {𝜑} and 𝑈𝑱 ({ 𝑗})+ = {𝜓 }. This completes the con-

struction of the profile. Note that |𝑈𝑱 (𝑁 )+ | = ⌈𝑚/2⌉ + 1. Now we

assess the issues accepted by CC-JA for 𝑱 . Once 𝑁 ℓ
is represented

by ℓ − 1 issues, observe that (due to ℓ > 1) accepting the issue 𝜑 for

agent 𝑖 ∉ 𝑁 ℓ
gives a greater score than accepting an ℓ-th issue in

𝐼𝑱 (𝑁 ℓ )+. The same holds for𝜓 and agent 𝑗 ∉ 𝑁 ℓ
. After 𝜑 and𝜓 are

accepted, accepting an ℓ-th issue in 𝐼𝑱 (𝑁 ℓ )+ decreases the score as

the majority threshold is crossed. Notice that CC-JA accepts exactly

⌈𝑚/2⌉ issues and thus, from the definition of 𝑁 ℓ
’s size, it follows

that 𝑁 ℓ
is a (𝐽 , Γ, ℓ)-cohesive group. So we have an outcome where

a (𝐽 , Γ, ℓ)-cohesive group is only represented by ℓ − 1 issues.

Next, we show that every 𝐽 ∈ CC-JA(𝑱 , Γ) provides ℓ-JA-PJR for

ℓ = 1, assuming logical independence throughout the agenda. The

argument is that any rejected issue in 𝐼𝑱 (𝑁 ∗)+ for an unrepresented
(𝐽 , Γ, ℓ)-cohesive group 𝑁 ∗

can be ‘swapped’ for some accepted

issue in an outcome 𝐽 . This only decreases the CC-JA score if every

already-accepted issue represents a unique group that is at least

as large as 𝑁 ∗
. Thus, any such issue would at least match the

contribution to the score of an issue accepted by 𝑁 ∗
. However, this

cannot be the case for all |𝐽+ | issues as this would imply that at least

|𝐽+ | · 𝑛
| 𝐽 + | = 𝑛 agents have been represented thus far, contradicting

our assumption of the existence of this unrepresented group𝑁 ∗
. □

Beyond defining ℓ-JA-PJR, we established some values of ℓ for which

our new rules satisfy the JA axiom. Hence, despite ℓ-JA-PJR being

restrictive, the axiom can be used to study JA rules, as those that

fail it outright may be ill-suited for JA proportionality.

4.2 Hardness of JA Rules for Proportionality
We end by showing computational intractability of the PAV-JA and

CC-JA rules, beginning with an NP-hardness result for the former.

Theorem 14. Outcome(PAV-JA) is NP-hard.

Proof (sketch). We show NP-hardness by reducing from the

following problem. Take a positive integer 𝑡 ∈ N and an approval-

based multiwinner election. Moreover, we know that there exists

some 𝑏 ∈ N such that: (𝑖) the maximum PAV score of any commit-

tee of size 𝑡 equals 𝑏 · 𝑡 , and this can only be achieved by getting a

score of 1 from𝑏 ·𝑡 different voters, (𝑖𝑖) there exists at least one such
committee of size 𝑡 , and (𝑖𝑖𝑖) each voter approves of exactly 2 can-

didates. The problem is to decide, for a given candidate 𝑐 , whether

it is part of a committee of size 𝑡 with maximum PAV score.

This problem can straightforwardly be shown to be NP-hard, by

adapting the proof of a known result for multiwinner PAV voting

[4, Theorem 1], which uses a reduction from the classical problem

of independent set. By instead considering a suitable variant of

independent set—where the size of the maximum independent set is

known in advance, and the question is whether there is a maximum

independent set that contains a given vertex—this proof directly

yields NP-hardness of the problem that we will reduce from.

In the restricted setting where conditions (𝑖)–(𝑖𝑖𝑖) hold, the sim-

ulation of multiwinner PAV that we used to establish Proposition 7

also works if we consider PAV-JA instead. Therefore, we can use

this simulation to construct a reduction to Outcome(PAV-JA). □

Moving on to CC-JA, we see that, not only is 𝛼-CC NP-hard [31, 36],

but computing outcomes for CC-JA is also hard.We give a reduction

from a variant of the well-known problem MaxSAT [35]—one can

straightforwardly prove that this variant is Θ
p

2
-complete as well. In

this variant of the problem, we are given a set L of literals, two sets

𝜑1 and 𝜑2 of clauses, with clauses in both being of size at most 3,

and some variable 𝑥∗ occurring in 𝜑2. The question is to decide

whether—among the truth assignments that satisfy all clauses in 𝜑1
and that satisfy a maximum number of clauses in 𝜑2—there is a

truth assignment that sets 𝑥∗ to true.

Theorem 15. Outcome(CC-JA) is Θp

2
-complete.

Proof (sketch). We describeΘ
p

2
-hardness by reducing from the

MaxSAT-variant described above. For space reasons, we omit the

straightforward proof of membership in Θ
p

2
.

We introduce an agenda item 𝑦ℓ for each literal ℓ over the vari-

ables in 𝜑1 and 𝜑2. Hence, we have issues such as 𝑦𝑥1 and 𝑦¬𝑥1
in the agenda Φ. For each clause 𝑣𝑖 appearing in 𝜑2, we create a

voter 𝑖 . These voters accept those issues which correspond to liter-

als appearing in their associated clause. We construct an integrity

constraint that expresses that one of two cases must hold: (𝑖) at
most three issues are set to true, or (𝑖𝑖) exactly one of each pairs of

issues, 𝑦𝑥𝑖 or 𝑦¬𝑥𝑖 , is set to true in a way that satisfies all clauses in

𝜑1. Finally, we construct a partial ballot 𝑑 that only sets 𝑦𝑥∗ to true.

We claim that the outcomes of the CC-JA rule over the constructed

profile correspond to the truth assignments that satisfy all of 𝜑1
and that maximise the number of satisfied clauses in 𝜑2. Therefore,

there is an outcome that agrees with the partial ballot 𝑑 if and only

if the original instance is a yes-instance. For reasons of space, we

omit a detailed proof of this claim. □

5 CONCLUSION
We illustrated how the JA model with rationality and feasibility

constraints enables us to simulation important multiwinner voting

rules in JA. We subsequently showed, by encoding the constraints

as DNNF circuits, that some of these simulations retain the compu-

tational efficiency of their multiwinner counterparts. On the other

hand, for one specific feasibility constraint, this efficiency cannot

be retained in general. Also, we demonstrated how a class of JA

rules can help produce Gehrlein-stable multiwinner voting rules.

Finally, we suggested an axiom and two aggregation rules for JA

intended to reflect and satisfy as suitable notion of proportionality,

and we briefly analysed the complexity of using these rules.

For future research, the JA simulation of more sophisticated mul-

tiwinner voting rules, such as sequential rules, should be explored.

Our brief excursion into JA proportionality suggests multiple re-

search paths, such as adapting ℓ-JA-PJR to handle complex logical

constraints. And for the newly-proposed JA rules, the development

of approximate versions of the rules can be pursued. Also, JA rules

could aid the enrichment of multiwinner voting with new rules

satisfying notions other than committee stability.
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