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Abstract

We report on a new modal logic that is suitable to model complex systems
evolving over time in a modular fashion. This logic may be regarded as
the result of extending propositional linear temporal logic by a second
dimension that allows us to “zoom” into states and thereby to further
refine the specification of events associated with these states. In this
sense, our logic may be considered an extended temporal logic. From a
more abstract point of view, our logic is best described as a modal logic
based on frames that are ordered trees.

1 Zooming in

Despite their success in the area of systems specification, a drawback of standard
point-based temporal logics is that they do not support the notion of refinement
in a natural manner [4]. There is no simple way to extend a given specification in,
say, propositional linear temporal logic by the specification of a new subsystem.
To overcome this problem, we propose to add a zoom to linear temporal logic by
explicitly relating the state to be refined to another time line which represents
the course of events taking place during that “state” (or rather the time interval
associated with that state), at the next lower level of abstraction. The new states
may themselves be refined, i.e. we may also zoom into the states on the second
level of abstraction, and so forth. This idea is illustrated in Figure 1.

In this paper, we discuss an extended temporal logic that is appropriate to
speak about this kind of structure. Figure 1 also shows some of the modal op-
erators included into our new temporal language. The horizontal operators are
those of linear temporal logic (albeit without an until -operator). For instance,
we write 3ϕ to say that ϕ is true at some future state (at the same level of
abstraction), while eϕ expresses that ϕ is true at the next state (again at the
∗This paper summarises the main results of the author’s PhD thesis, written under the

supervision of Dov Gabbay at King’s College London [3].



•
root

•
3ϕ

•
e eϕ

•
3+ψ

•
ϕ

• •
3ψ

•

•
χ

•
χ

•
2χ

• • •

• •e3ϕ • •
ψ

• •
ψ
• •

3 eϕtime

le
ve

l
of

ab
st

ra
ct

io
n

zz
�� ��

$$

�� ��		  �� ��

�� ���� ��

�� �� �� ��

// // // // // ////

// // // // //

// // //

// // ////

OO

Figure 1: Zooming in

same level of abstraction). There are similar operators available to speak about
the past. As for the vertical operators, we write 3ϕ to say that ϕ is true at
some state belonging to the next lower level of abstraction, and 3+ϕ if ϕ is
true at some state of some lower level of abstraction. To be able to move back
up again in the hierarchy of states, we may use either e (to refer to the next
higher level of abstraction) or 3 (to refer to some higher level).

2 Ordered tree logics

If we add a “first level of abstraction” consisting of only a single state (marked
as root in Figure 1) to the kind of model we have described before, we end
up with a tree-like structure where the children of each node are ordered; that
is, our logic can be characterised as a modal logic of ordered trees. Here, the
horizontal order declared over sibling nodes may be discrete (or even finite) as
in Figure 1, but in general we admit any strict linear order over sibling nodes
(which distinguishes our logic from that of Blackburn and Meyer-Viol [2]).

We call our logic OTL. The set of well-formed formulas of OTL is defined
as follows (P denotes propositional letters):

A ::= P | ¬A | A ∧A | eA | eA | eA | 3A | 3A | 3A | 3A | 3+A

Further propositional connectives are defined as syntactical abbreviations in the
usual way. Also, for each of the diamond-operators in our language we intro-



duce a corresponding box-operator, e.g. 2ϕ = ¬3¬ϕ. Each group of modal
operators corresponds to one of the four dimensions in an ordered tree. The
diamond-operator 3 is used to refer to the lefthand siblings of a given node.
The corresponding next-operator epoints to the immediate lefthand sibling (or
neighbour), where such a node exists. The operators to refer to righthand sib-
lings and neighbours are 3 and e, respectively. The upward diamond-operator
3 is used to speak about ancestors, while e refers to the immediate ancestor,
i.e. the parent of a node. When moving down a tree there is no concept of a
“next” node, which is why we need two kinds of diamond-operators here: 3 for
the children of a node and 3+ for its descendants.

OTL is a modal logic with frames that are ordered trees, i.e. a Kripke-style
semantics can be given in the usual manner [1]. For instance, given a modelM
and a node t in the ordered tree underlying that model, we have M, t |= 3ϕ iff
there exists a righthand sibling t′ of t such that M, t′ |= ϕ holds. Similarly, we
have M, t |= 2ϕ iff ϕ is true at all righthand siblings of t, and M, t |= eϕ iff t
has got a righthand neighbour that satisfies ϕ.

3 Axiomatisation

An axiom system that is complete for the fragment of OTL excluding the tran-
sitive descendent modality 3+ (as well as its dual) is given in [3]. The system
includes distributivity axioms (K) for all box- and next-operators, axioms en-
coding the fact that operators such as eand eare inverse to each other, “func-
tionality” axioms (for the next-operators), as well as “mixing” axioms such as
3A↔ ( eA∨ e3A). Most interestingly, we require only two axioms to charac-
terise the interactions between the vertical and the horizontal modalities:

(X1) 3A→ e3A
(X2) e3A→ (A ∨3A ∨3A)

We hope to address the issue of extending this axiomatisation to the full logic in
our future work. The difficulties with proving completeness for full OTL stem
from the fact that this logic incorporates three “problematic” features: (i) the
descendant operator 3+ refers to the transitive closure of the child operator 3;
(ii) the child relation itself is required to be irreflexive (which means that the
usual filtration-based approach is not immediately applicable); and (iii) due to
the interaction of vertical and horizontal modalities, we cannot freely transform
an ordered tree model (via bulldozing, for example) in order to overcome the
difficulties associated with the irreflexivity requirement. This is not to say
that it is impossible to prove completeness for OTL using some combination of
standard techniques, but for the time being this remains an open question.

4 Decidability

OTL is a decidable logic. The proof uses a reduction to Rabin’s Theorem on
the decidability of S2S, the monadic second-order theory of two successor func-



tions [8]. This reduction builds on the well-known construction used to prove
the decidability of propositional linear temporal logic over the rationals [5, 8].
An important intermediate lemma establishes that every formula with any or-
dered tree model at all will also have a model based on an ordered tree with (at
most) a countable number of nodes. This allows us to lift the decidability result
obtained using reduction (which applies only to OTL over countable trees) to
the general case. Using similar arguments, we can show that OTL restricted to
certain classes of ordered trees (such as those where sequences of siblings are
required to be discrete orders) is also decidable.

One may argue that, given Rabin’s Theorem, the decidability of a modal
logic based on some class of trees is not that surprising a result. On the other
hand, two-dimensional modal logics with interacting modalities can often be
undecidable [6]. Another reason why we consider the decidability of OTL an
important result is the fact that OTL may be considered an (albeit restricted)
interval logic (rather than just a point-based temporal logic); and modal interval
logics, such as the logic of Halpern and Shoham [7] for instance, are also often
found to be undecidable.

5 Conclusion

We have introduced OTL, a new modal logic based on ordered trees, and argued
that this logic is suitable to model complex systems evolving over time in a
modular fashion. For further information on OTL, proofs of the results reported
here, and a discussion of related work we refer to [3].
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