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Abstract
Voting theory can provide useful insights for mul-
tiagent preference aggregation. However, the stan-
dard setting assumes voters with preferences that
are total orders, as well as a ballot language that co-
incides with the preference language. In typical AI
scenarios, these assumptions do not hold: certain
alternatives may be incomparable for some agents,
and others may have their preferences encoded in
a format that is different from how the preference
aggregation mechanism wants them. We study
the consequences of dropping these assumptions.
In particular, we investigate the consequences for
the important notion of strategy-proofness. While
strategy-proofness cannot be guaranteed in the
classical setting, we are able to show that there are
situations in our more general framework where
this is possible. We also consider computational
aspects of the problem.

1 Introduction
Many AI scenarios involve dealing with several agents that
declare their preferences over a set of possible decisions,
and choosing the decision that satisfies such preferences in
the best way [Wooldridge, 2002; Walsh, 2007]. Examples
can be found in several domains, such as recommender sys-
tems, configuration, combinatorial auctions, distributed plan-
ning or scheduling, automated assistants, catalogue search,
timetabling, and assistive technology.

When considering the preferences and deciding which de-
cision to take, the setting is in principle similar to what vot-
ing theory considers: several voters express, via a ballot, their
preferences over a set of candidates, and a candidate is cho-
sen in one of many possible ways (via a voting rule) to decide
who the winning candidate is. Thus it is natural to explore
the application of classical and more recent results in voting
theory to such AI settings. The following are three classical
voting procedures [Brams and Fishburn, 2002]:

• Plurality: Each voter votes for exactly one candidate and
the candidate receiving the most votes wins.

• Borda: Each voter submits a complete ranking of all m
candidates. If a candidate is ranked highest by some

voter, he receives m−1 points; if he is ranked second,
he receives m−2 points, and so on. The candidate re-
ceiving the most points wins the election.

• Approval: Each voter approves of as many candidates as
he wishes by submitting a set of candidate names. The
candidate receiving the most approvals wins.

While originally defined for political and social use, such pro-
cedures can also be used in scenarios where autonomous soft-
ware agents express their preferences.

Many results in voting theory rest, among other things,
on two important assumptions: First, voters have preferences
that are total orders over the set of candidates. That is, they
are expected to be able to strictly rank all candidates. Second,
voters are supposed to vote by reporting their preferences to
the election chair (and they may or may not do so truthfully).
That is, the ballots used to communicate a voter’s input to
the mechanism entrusted with computing the winner(s) of an
election are the same kind of structure as those used to repre-
sent actual preferences (both are total orders).

As an example, consider the well-known Gibbard-
Satterthwaite Theorem [Gibbard, 1973; Satterthwaite, 1975].
It states that there can be no voting rule for three or more can-
didates that is both non-dictatorial (i.e., that does not always
elect the preferred candidate of some distinguished voter, the
dictator) and strategy-proof (i.e., that never gives a voter
an incentive to manipulate by misrepresenting their prefer-
ences). Here a voting rule is taken to be a function mapping
any given profile of total orders (the ballots) to a winning can-
didate. Whether or not a voter has an incentive to manipulate
is evaluated with respect to his actual preference, which is
also assumed to be a total order.

In typical AI scenarios, above assumptions often do not
hold: some alternatives may be incomparable [Pini et al.,
2007], and agents may have their preferences encoded in a
way that is not how the preference aggregation mechanism
wants them. For example, agents may model their prefer-
ences as preorders (thus with possible indifferences and/or
incomparabilities), while the ballot language may only allow
for total orders, as in the Borda rule. Even if agents use total
orders, they may wish to declare only a portion of it, due to,
say, privacy reasons or elicitation costs, or they may be forced
to give a more restrictive structure, as in approval voting.

Hence, a voter may sometimes be unable to vote truthfully



in the classical sense, as reporting their true preferences may
simply not be allowed given the ballot language in place. If
reporting one’s true preference is impossible, the definition
of strategy-proofness should be relaxed so as not to label as
manipulators those voters that submit a ballot that is admit-
ted by the language and that is “as close as possible” to their
true preference. To formalise this idea we shall give a (in fact
several) definition(s) of what constitutes a sincere ballot in
our generic framework and we then define strategy-proofness
in terms of sincerity rather than truthfulness. In the special
case where expressing one’s true preferences in the ballot lan-
guage is possible (as in the classical setting, among others),
our notion of sincerity will reduce to simple truthfulness and
we arrive at the standard definition of strategy-proofness.

While in the classical setting strategy-proofness is un-
achievable (for non-dictatorial rules), we will show that this is
not the case in our more general setting: it is possible, in some
cases, to define and use preference aggregation mechanisms
that never give an agent an incentive to vote insincerely.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces the general framework and basic notation,
and Section 3 shows how to define a voting procedure in this
framework. Section 4 defines three notions of sincerity and
establishes relationships between them. Section 5 introduces
our generalised definition of strategy-proofness and proves
positive results for two types of voting scenarios. Section 6
discusses computational aspects of these results. (For lack of
space, some proofs are only sketched.)

2 Orders, Preferences, and Ballots
Throughout this paper, P denotes the set of all possible pref-
erence orders and B the set of all valid ballots (or the ballot
language). The classical setting is obtained when P is the set
of all total orders and B = P . Moreover, let C be the set of
candidates and m = |C| the number of candidates. Further,
let N be the set of voters and n = |N | the number of voters.

2.1 Orders
We use standard terminology to talk about different types of
orders [Roberts, 1979]. A preorder is a binary relation that is
reflexive and transitive. A partial order is a preorder that is
antisymmetric. A weak order is a preorder that is complete.
A total order is a partial order that is complete. That is, a pre-
order will either strictly rank a pair of elements, declare them
indifferent, or consider them incomparable. Partial orders ex-
clude the case of indifference, while weak orders do not allow
for incomparabilities. Finally, a total order will strictly rank
any two (distinct) elements. The set of all preorders includes
all of the other aforementioned classes of relations.

Any preorder p over C induces a partition of C2 into four
sets R≺

p (“strictly worse”), R�
p (“strictly better”), R∼

p (“indif-
ferent”), and R./

p (“incomparable”), defined as follows:

(1) R≺
p = {(x, y) ∈ C2 | (x, y) ∈ p and (y, x) 6∈ p}

(2) R�
p = {(x, y) ∈ C2 | (x, y) 6∈ p and (y, x) ∈ p}

(3) R∼
p = {(x, y) ∈ C2 | (x, y) ∈ p and (y, x) ∈ p}

(4) R./
p = {(x, y) ∈ C2 | (x, y) 6∈ p and (y, x) 66∈ p}

2.2 Preferences
The set P of preferences that are considered possible as true
preferences for the voters will always be a non-empty set of
preorders. This is the only general constraint we impose.

Of special interest is the case when P is the set of all total
orders, as in the classical setting. Another special setting that
we are going to analyse is what we call “2-level preorders”:
p is a 2-level preorder if it divides C into (at most) two levels,
and each candidate in the top level is preferred to each can-
didate in the bottom level. Between candidates at the same
level we may have either indifference or incomparability.

2.3 Ballot Languages
The set B of valid ballots also has to be a non-empty set of
preorders. In addition, we require B to satisfy the follow-
ing condition: for all total orders p over C there must exists
a b ∈ B such that (x, y) ∈ R≺

p implies (x, y) 6∈ R�
b for

all x, y ∈ C. This condition is satisfied, for instance, if B
includes a ballot that declares any two candidates incompara-
ble (or indifferent). The reason for this condition is that we do
not want to force a particular strict ordering between any two
candidates a priori. However, we do allow ballot languages
to enforce indifferences or incomparabilities; and we also al-
low them to enforce some strict ordering (only the direction
of this ordering must always be left to the voter). We will
sometimes refer to the following special ballot languages:

(1) Borda ballots: A Borda ballot b is a total order over C.
The name derives from the fact that this kind of ballot is
what is needed to apply the Borda rule.

(2) Plurality ballots: A plurality ballot b is a partial order
over C with exactly one undominated candidate domi-
nating all other candidates, which in turn are mutually
incomparable. That is, a plurality ballot has the form
of a tree with only leaf nodes and a root. This kind of
ballot best reflects the information requirements for plu-
rality voting: a voter has to single out one top candidate
and does not make any further value judgements.

(3) Approval ballots: An approval ballot b is a 2-level par-
tial order over C (so the candidates at the same level are
mutually incomparable). This directly corresponds to
the standard form of balloting in approval voting: vot-
ers can distinguish approved and non-approved voters,
but do not make any value judgements beyond that. We
call b an abstention ballot if it has only a single level
(i.e., if all candidates are undominated).

We call a ballot language neutral if permuting the candidate
names on a valid ballot will never render that ballot invalid.

3 A Generic Voting Procedure
Our aim now is to define a generic voting rule over preorders
that reduces to the well-known rules of plurality, Borda, and
approval in case the ballot language is restricted to the cor-
responding types of ballots. The first method that comes to
mind is to give each candidate as many points as they dom-
inate other candidates in the ballots submitted. This method
works for Borda and plurality, but not for approval voting.



The generic voting rule defined next solves this problem.
It computes the score of voter i awarded to candidate c as the
length of the longest path from c down to some candidate at
the bottom of the ballot of i. The candidate with the highest
sum of such scores wins.

Definition 1 (Path below candidate) Given a ballot b, a
path below candidate c ∈ C is a set C ⊂ C with some c⊥ ∈ C
such that (c, c′) ∈ R�

b and (c′, c⊥) ∈ R�
b ∪R∼

b for all c′ ∈ C.
The length of path C below c is |C|.
Definition 2 (Longest-path voting) Given a ballot b ∈ B,
the score of a candidate c ∈ C with respect to b is the length of
the longest path below c. For a set of ballots, the score of c is
the sum of the scores with respect to the ballots in the set. The
longest-path voting procedure declares the candidates with
maximal longest-path score the winners.

It is not hard to see that this satisfies our requirements:

Theorem 1 The longest-path voting procedure reduces to the
Borda rule if applied to Borda ballots, to the plurality rule if
applied to plurality ballots, and to the approval voting rule if
applied to approval ballots.

In this paper we will focus on Borda, approval, and plurality,
which are instances of the longest-path voting procedure just
defined, even if the idea of voting with ballots that are pre-
orders can also be extended to other voting rules, such as the
family of Condorcet-consistent rules [Brams and Fishburn,
2002], including the Copeland rule and the Dodgson rule.

4 Three Notions of Sincerity
In some cases we have clear intuitions what constitutes a sin-
cere vote. Certainly, when P = B, as in most work in classi-
cal voting theory, we would consider a ballot sincere only if it
is equal to the voter’s true preference. However, when we re-
lax the assumption that P = B, different notions of sincerity
may be reasonable. For approval voting, the standard defini-
tion of sincerity says that a ballot (a set of approved candidate
names) is sincere with respect to a given true preference p if
p ranks each approved candidate at least as high as any of the
non-approved candidates [Brams and Fishburn, 2002].

Here we propose three definitions of sincerity. The first of
these only imposes minimal constraints on a sincere ballot.
All we require is that there is no explicit contradiction as far
as pairs of strictly ordered candidates are concerned.

Definition 3 (Minimal sincerity) Let p be a preorder and B
a ballot language. A ballot b ∈ B is minimally sincere wrt. p
if R≺

b ∩R�
p = ∅. We write b ∈ SINmin

B (p).

Our second definition furthermore requires that the ballot and
the true preference agree as much as possible, where “as
much as possible” is interpreted as maximality with respect
to set-inclusion. For the next two definitions, let AGRp(b) be
(R≺

b ∩R≺
p ) ∪ (R�

b ∩R�
p ) ∪ (R∼

b ∩R∼
p ) ∪ (R./

b ∩R./
p ).

Definition 4 (Qualitative sincerity) Let p be a preorder and
B a ballot language. A ballot b ∈ B is qualitatively sincere
wrt. p if b ∈ SINmin

B (p) and there is no b′ ∈ SINmin
B (p) such

that AGRp(b) ⊂ AGRp(b′). We write b ∈ SINqual
B (p).

Our third proposal is similar, but now we require maximality
with respect to the number of agreements.

Definition 5 (Quantitative sincerity) Let p be a preorder
and B a ballot language. A ballot b ∈ B is quantitatively sin-
cere wrt. p if b ∈ SINmin

B (p) and there is no b′ ∈ SINmin
B (p)

such that |AGRp(b)| < |AGRp(b′)|. We write b ∈ SINquan
B (p).

Let us now give an example that shows that each of our three
definitions can yield a different set of sincere ballots. Suppose
there are four candidates and our voter’s true preferences are
A � B � C � D. If we restrict attention to approval ballots,
there are 15 syntactically valid ballots (our voter may approve
of any non-empty subset of the set of four candidates). Five
of these are depicted below:
(1) A (2) A B (3) ABC (4) ABCD (5) A C

| | | |
BCD C D D B D

Candidates shown on the same level are understood to be in-
comparable. Ballots (1)–(4) are the four sincere ballots ac-
cording to the standard definition of sincerity in the approval
voting literature. These four ballots are also minimally sin-
cere, while ballot (5) is not. (1)–(3) are furthermore qualita-
tively sincere: for none of them we would be able to add a
further strict comparability relation without violating the or-
dering of the true preference. Ballot (4), which corresponds to
the voter abstaining, is not qualitatively sincere, because this
ballot could be further refined, e.g., by moving to (3) instead.
Ballot (2) is the only quantitatively sincere ballot. It includes
four of the strictly ordered pairs of the true preference, while
(1) and (3) only include three strictly ordered pairs each.

Next, we establish some basic properties of our three no-
tions of sincerity. We first show that there is a natural order
over these notions in terms of how restrictive they are:

Theorem 2 Let p be a preorder and let B be a ballot lan-
guage. Then SINmin

B (p) ⊇ SINqual
B (p) ⊇ SINquan

B (p) ⊃ ∅.

Proof. (1) SINmin
B (p) ⊇ SINqual

B (p) is immediate from
the definition of qualitative sincerity. (2) SINqual

B (p) ⊇
SINquan

B (p) follows from the fact that any set that is maximal
with respect to cardinality must certainly be maximal with
respect to set-inclusion. (3) SINquan

B (p) ⊃ ∅ is a direct conse-
quence of our constraint on B requiring that a ballot language
may not be so restrictive so as to force one particular strict
ordering on a pair of candidates. Hence, there must always
be at least one ballot b that does not violate R≺

b ∩R�
p = ∅. 2

Whenever the ballot language can express a voter’s true pref-
erence, then that will be the only sincere ballot according to
both the qualitative and the quantitative definition:

Theorem 3 If B ⊇ P , then SINqual
B (p) = SINquan

B (p) = {p}
for all p ∈ P .

Proof. Clearly, AGRp(b) ⊆ AGRp(p) for any ballot b. Hence,
no b different from p could possibly be maximal with respect
to set-inclusion and p must be the only element of SINqual

B (p).
Equality with SINquan

B (p) then follows from Theorem 2. 2

When the range of allowed ballots are the total orders, then
all three notions of sincerity coincide:



Theorem 4 If B is the set of all total orders, then we have
SINmin

B (p) = SINqual
B (p) = SINquan

B (p) for all preorders p.

Proof. We only need to show SINmin
B (p) ⊆ SINquan

B (p); the
rest then follows from Theorem 2. Let b ∈ SINmin

B (p). As b
is a total order and minimally sincere, we must have R≺

b ⊇
R≺

p and R�
b ⊇ R�

p . Because b has to strictly rank all pairs
of candidates, we also get R∼

b = R./
b = ∅. It follows that

AGRp(b) = R≺
p ∪ R�

p . Hence, no other ballot can achieve
a higher number of agreements, and b must be quantitatively
sincere, i.e., b ∈ SINquan

B (p). 2

Additional properties hold when we consider approval bal-
lots, which are partial orders with at most two levels:
Theorem 5 Let P be the set of total orders and let B be the
set of approval ballots. Then the following hold:
(a) Minimal sincerity coincides with the standard notion of

sincerity in approval voting.

(b) For all p ∈ P , SINqual
B (p) = SINmin

B (p) \ {ABS}, where
ABS is the abstention ballot in approval voting.

(c) For all p ∈ P , the number of quantitatively sincere bal-
lots |SINquan

B (p)| is 2 if m is odd (approving of the m−1
2

and m+1
2 top candidates, respectively) and 1 if m is even

(approving of exactly the top half of C).

The proof is omitted for lack of space, but the example given
earlier illustrates the intuitions.

5 Generalised Strategy-Proofness
As argued in the introduction, in the context of elections
where voting by means of one’s true preference may be im-
possible due to restrictions to the ballot language, a gener-
alised definition of strategy-proofness is required.

A voting correspondence f : Bn → 2C is a function map-
ping a ballot profile to a (non-empty) set of winning can-
didates (so far we have used the less technical term “vot-
ing procedure”). Roughly speaking, the standard definition
of strategy-proofness says that a voting correspondence is
strategy-proof if it never gives any voter an incentive to vote
differently from reporting their true preference to the election
chair. In our more general model, where we distinguish pref-
erences from ballots, this (“reporting their true preference”) is
not a meaningful notion. Instead, we define a generalised no-
tion of strategy-proofness that requires that a voter will never
have an incentive to not vote by means of a sincere ballot.

To be able to make “having an incentive” precise a notion
we need to be able to talk about a voter i who prefers one set
of winners over another. This is not possible by means of that
voter’s preference p ∈ P alone, because p is defined over C
rather than over 2C . That is, we need to lift i’s preferences
over individual candidates to preferences over sets of candi-
dates. There are different ways of doing this [Barberà et al.,
2004]. Denote by �p the result of lifting p to a relation de-
clared over non-empty sets of candidates. This will be one
of the parameters of our definition of strategy-proofness. A
widely followed approach is to define �p as the smallest par-
tial order over 2C\{∅} that satisfies the so-called Gärdenfors
axioms [Barberà et al., 2004]:

• S ∪ {x}�p S whenever (x, y) ∈ R≺
p for all y ∈ S

• S �p S ∪ {y} whenever (x, y) ∈ R≺
p for all x ∈ S

(Here, S is any non-empty set of candidates, and x and y rep-
resent candidates.) That is, under the Gärdenfors lifting, we
say that a voter with a given preference relation over individ-
ual candidates will prefer the set of candidates Y over the set
X (denoted X �p Y ) if and only if Y can be obtained from
X by a sequence of operations consisting of either removing
the (strictly) least preferred candidate (except when only one
candidate is left in the set) or adding a (strictly) more pre-
ferred candidate. Any other pairs of sets of candidates are
considered incomparable. For example, if I like A more than
B more than C, then {A, C} is worse than {A} (first axiom),
while {A, C} and {B} are incomparable. Note that while the
specific results given later on assume the Gärdenfors axioms,
our definition of generalised strategy-proofness can be instan-
tiated to any other notion of lifting as well.

A second parameter in our definition of strategy-proofness
is the notion of sincerity used. We state the definition in
its full generality and then discuss various instantiations for
these parameters. In the next definition, let N be a set of vot-
ers, C a set of candidates, P a set of preference orders over
C, B a set of ballots over C, SINB : P → 2B a notion of sin-
cerity, and �pi a lifting of preferences pi ∈ P to preferences
over sets of candidates.

Definition 6 (Generalised strategy-proofness) A voting
correspondence f : Bn → 2C is g-strategy-proof if, for all
voters i ∈ N with true preference pi ∈ P and for all ballot
vectors b ∈ Bn, there exists a sincere ballot b′i ∈ SINB(pi)
such that f(b−i, b

′
i) �pi f(b) does not hold.1

In other words, f is g-strategy-proof if no voter will ever do
worse by voting sincerely rather than insincerely—at least for
one of the sincere ballots available to him. As �pi need not
be a total order, requiring f(b−i, b

′
i) �pi f(b) not to hold is

not the same as requiring f(b−i, b
′
i) �pi f(b). Arguably, ei-

ther option could be used to define strategy-proofness. The
former means that voters may manipulate only if they have
positive reason to do so. The latter means that voters may
manipulate unless they have positive reason for not doing so.
While Definition 6 uses the former option, the latter is the
(implicit) choice made in [Endriss, 2007], discussing sincer-
ity and manipulation in approval voting. Our choice is appro-
priate when incomparabilities in a voter’s (lifted) preference
are interpreted as the inability to compare alternatives; the
other (more “pessimistic”) approach is appropriate when in-
comparabilities are interpreted as uncertainty on behalf of the
mechanism designer. As a consequence of this difference, the
results on strategy-proofness reported below differ (are more
positive) than those given in [Endriss, 2007].

Whether or not a particular voting procedure will be found
to be g-strategy-proof will depend on several factors, besides
the definition of the procedure itself. In particular, g-strategy-
proofness will be more likely to hold when we use
• a smaller set of potential preferences P; or
• a smaller set of valid ballots B; or
1(b−i, b

′
i) is the vector we obtain when we replace bi in b by b′i.



• a less restrictive notion of sincerity; or

• a definition of lifted preferences �pi
that leaves more

pairs of sets of candidates incomparable.

For example, if f is a voting rule (producing a single win-
ner, i.e., the only reasonable definition of �pi is to iden-
tify it with pi), P is the set of all total orders, B = P ,
and SINB(p) = {p}, then Definition 6 reduces to the stan-
dard definition of strategy-proofness usually given in the con-
text of the Gibbard-Satterthwaite Theorem [Gibbard, 1973;
Satterthwaite, 1975]. In other words, under these circum-
stances only a dictatorial rule will be g-strategy-proof.

We now review several voting scenarios (procedures, de-
fined over ballots, together with assumptions on preferences)
and check whether generalised strategy-proofness is satisfied
or violated. Throughout, we assume that lifted preferences
are defined in terms of the Gärdenfors axioms.

Recall that the Gibbard-Satterthwaite Theorem does not
apply to the case of two candidates. It can also be circum-
vented for larger numbers of candidates when voters are as-
sumed to have dichotomous preferences. Our next result
shows that in fact any voting procedure that can be mod-
elled in terms of the longest-path procedure of Definition 2
and a neutral ballot language (which includes plurality, Borda
and approval voting) is strategy-proof when each voter is as-
sumed to have preferences allowing them to only distinguish
between “good” and “bad” candidates.

Theorem 6 For 2-level preferences, longest-path voting is g-
strategy-proof wrt. minimal sincerity for any neutral ballot
language.

Proof. Given the longest-path procedure f , for a particular
choice of ballot language, and a ballot vector b, we need to
show how to construct a sincere ballot b′i for voter i (with
true 2-level preferences pi) such that f(b−i, b

′
i) is no worse

for i than f(b) according to the Gärdenfors lifting. If bi is
itself sincere, then we are done. Now suppose bi is not mini-
mally sincere. Then there exist candidates c and c′ such that
(c, c′) ∈ R≺

bi
∩R�

pi
. Define a new ballot b∗i as the result of ex-

changing the position of c and c′ in ballot bi (this is possible,
because the ballot language is assumed to be neutral).

The points awarded to c and c′ by voter i will be swapped,
and the new points given to c are > 0. Hence, c may drop out
of the set of winners (if it has been in in the first place), and
c′ may enter the set of winners (if it has not been in already)
or it may even become the sole winner. Furthermore, as i is
assumed to have 2-level preferences, c must be one of its top
candidates and c′ one of its bottom candidates.

We can iterate the operation that lead from bi to b∗i until we
arrive at a minimally sincere ballot b′i. At each step, we may
remove one of the bottom candidates from the set of winners
and/or we may add one of the top candidates, we may replace
the entire set with a singleton consisting of a top candidate, or
there may be no change at all. Inspection of the Gärdenfors
axioms shows that for any concatenation of such operations,
the outcome f(b−i, b

′
i) will be no worse than f(b). 2

Theorem 6 does not hold for quantitative sincerity.2 However,

2Here is a counterexample: Suppose there are four candidates

for the special cases of plurality, Borda, and approval ballots
we do obtain g-strategy-proofness even wrt. quantitative sin-
cerity: for plurality and Borda ballots, the notions of minimal
and quantitative sincerity coincide; for approval voting, the
optimal ballot is the true (2-level) preference structure.

For the next theorem, “approval voting” is understood to
refer to the scenario where P is the set of total orders, B is
the set of approval ballots, and longest-path voting is used.

Theorem 7 Approval voting is g-strategy-proof wrt. qualita-
tive sincerity (and thus also wrt. minimal sincerity).

Proof. A qualitatively sincere ballot b′i that is not worse than
the current ballot bi can be obtained by considering the voter’s
preferred candidate among the winners, and by approving this
candidate and all those above him in the voter’s preference
ordering. (If there is just one winner and that winner is the
least-preferred candidate for the voter, then we can choose
any qualitatively sincere ballot.) 2

Theorem 7 cannot be extended to quantitative sincerity. Sup-
pose our voter’s preferences are A � B � C � D. Then the
only quantitatively sincere ballot would be to approve of A
and B. But if A and B receive the same number of points from
the other voters (and C and D receive no points), then only
approving of A would be a better strategy for our voter.

We should stress that for many other voting scenarios, g-
strategy-proofness cannot be established. For instance, if the
Borda rule is used and voters have preferences with more than
two levels, g-strategy-proofness is easily violated. Given the
overwhelming prevalence of impossibility results in (classi-
cal) voting theory, this is not surprising.

6 Computational Analysis
In the absence of strategy-proofness, protection against ma-
nipulation can sometimes be obtained by computational in-
tractability of determining a manipulating ballot [Bartholdi
et al., 1989]. Computational complexity also plays a role in
our setting. Under a g-strategy-proof voting procedure, there
always exists a sincere ballot that is optimal for each voter,
but this does not necessarily mean that the voter will actually
vote by means of a sincere ballot, because it may be com-
putationally hard to find. It is thus preferable to use voting
procedures that are g-strategy-proof and in which it is easy to
find an optimal sincere ballot.

Suppose a given voting procedure has been found to be g-
strategy-proof for a particular choice of parameters. We can
define three degrees of g-strategy-proofness in view of how
hard it is for a voter to identify a ballot that is both sincere
and in their own best interest (knowing that the existence of
such a ballot is guaranteed):
(1) Blind g-strategy-proofness: Our voter can play opti-

mally and sincerely without requiring any information
about the ballots submitted by the other voters (i.e., he
can compute his optimal sincere ballot in constant time.)

and the ballot language only allows ballots of the form ∼ �
∼ and � ∼ � . If my true preferences are A ∼ B � C ∼ D,
then submitting that true preference would be the only quantitatively
sincere ballot, while submitting A� B∼ C� D would yield a better
outcome in case D was leading by 2 points over A.



(2) Tractable g-strategy-proofness: Our voter needs to
know (part of) the ballots of the other voters, but can
compute an optimal sincere ballot in polynomial time.

(3) Intractable g-strategy-proofness: Our voter needs to
know the other ballots and the problem of finding an op-
timal sincere ballot is computationally intractable.

As a general observation, we note that whenever g-strategy-
proofness is known for some notion of sincerity, the number
of sincere ballots is polynomial, and winners can be com-
puted in polynomial time, then we get at least tractable (and
possibly blind) g-strategy-proofness. A brute-force algorithm
could then simply compute the outcome for each sincere bal-
lot and choose the best.

For elections with only two candidates, it is easy to see that
the plurality rule is blindly strategy-proof: you should always
vote for your preferred candidate, whatever the other ballots
are. The same is true for Borda and approval voting. For
2-level preferences over arbitrary numbers of candidates, we
can still guarantee tractable strategy-proofness:

Theorem 8 For 2-level preferences, plurality, Borda and ap-
proval voting are all tractably g-strategy-proof wrt. minimal,
qualitative, and quantitative sincerity.

Proof. As shown in the text after Theorem 6, all three rules
are g-strategy-proof wrt. all three forms of sincerity. For plu-
rality and approval voting the claim then follows from the fact
that the number of sincere ballots is polynomial (for any of
the three notions of sincerity). For Borda, the number of sin-
cere ballots is exponential. However, we just need to compute
the Borda score of all candidates by the other voters, and then
build a Borda ballot (that is, a total order) where all the top
level candidates are listed in decreasing order of Borda score,
and then the bottom level candidates are listed in increasing
order of their score. This ballot is sincere and optimal, and
can be found in polynomial time. 2

Finally, we refine Theorem 7:

Theorem 9 Approval voting is tractably g-strategy-proof
wrt. minimal and qualitative sincerity.

Proof. The number of sincere ballots is linear in the number
of candidates, so we can simply try them all. 2

7 Conclusions and Future Work
We have generalised the traditional setting of voting theory to
allow for incomparability and indifference in the preference
ordering, as well as for using different languages to model
actual preferences and ballots cast in an election. As a gen-
eralisation of the concept of truthfulness, we have proposed
and analysed three alternative definitions of sincerity. We
have then defined a generalised notion of strategy-proofness,
and we have proved that some voting procedures are strategy-
proof in this more general sense: there is a sincere way of
voting which is no worse, for the voter, than any other way of
voting. Specifically, we have seen that the classical system of
approval voting can be modelled appropriately in our frame-
work and that it is strategy-proof in the generalised sense.

Moreover, we have seen several cases where it is computa-
tionally easy for voters to both act sincerely and in their own
best interest.

It is likely that our analysis can also be extended to other
voting procedures that cannot be modelled as instances of the
longest-path voting procedure. An interesting case is STV
(single transferable vote), for which manipulation is possible
but known to be computationally hard in the classical setting
[Bartholdi and Orlin, 1991]. It would be interesting to see
whether there are scenarios in which a variant of STV is gen-
eralised strategy-proof and, if so, to study the complexity of
computing an optimal sincere STV ballot.

While strategy-proofness in the classical setting is not pos-
sible for non-dictatorial voting procedures, there are some
positive results that rely on the restriction of the class of re-
ported preferences. For example, voting with single-peaked
preferences is strategy-proof in the classical sense [Black,
1958]. Integrating this kind of restriction (defined over pref-
erence profiles rather than individual preferences) with the
simple structural restrictions studied here constitutes another
interesting direction for future work.

References
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