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Abstract

We investigate the problem of influencing the pref-
erences of players within Boolean gameo that,

if all players act rationally, certain desirable out-
comes will result. The way in which we influence
preferences is by overlaying games wittxation
schemes

In a Boolean game, each player has unique control
of a set of Boolean variables, and the choices avail-
able to the player correspond to the possible assign-
ments that may be made to these variables. Each
player also has a goal, represented by a Boolean
formula, that they desire to see satisfied. Whether
or not a player’s goal is satisfied will depend both
on their own choices and on the choices of others,
which gives Boolean games their strategic charac-
ter. We extend this basic framework by introduc-
ing an external principal who is able to levy a tax-
ation scheme on the game, which imposes a cost
on every possible action that a player can choose.
By designing a taxation scheme appropriately, it is
possible to perturb the preferences of the players,
so that they are incentivised to choose some equi-
librium that would not otherwise be chosen. After
motivating and formally presenting our model, we
explore some issues surrounding it, including the
complexity of finding a taxation scheme that imple-
ments some socially desirable outcome, and then
discuss desirable properties of taxation schemes.

Introduction

them “carrots” and “sticks”. “Carrots” provide positive-in
centives, by rewarding players who act in the desired way,
while “sticks” penalise undesirable behaviour. One of the
most common incentive mechanisms found in human soci-
eties is taxation. Taxation is frequently used to incesévi
behaviours. For example, a government might tax car driv-
ing in order to encourage the use of environmentally frigndl
public transport; or it might tax cigarettes in order to disc

age smoking. Of course, as well as incentivising behaviour,
taxation is also used by governments to raise revenue, typi-
cally with the intention that this revenue is then used tadfun
socially desirable projects (education, healthcare, etc)

In the present paper, we study the design of taxation
schemes for incentivising behaviours in multi-agent syste
The setting for our study is the domainBbolean gamefb;

1; 3]. Boolean games are a natural, expressive, and com-
pact class of games, based on propositional logic. Boolean
games were introduced 5], and their computational and
logical properties have subsequently been studied by alever
researcherfl; 3. In such a game, each agens assumed

to have a goal, represented as a propositional formwaer
some set of variable®. In addition, each agenis allocated
some subse®d; of the variablesb, with the idea being that
the variablesb; are under the unique control of agénfThe
choices, or strategies, available toorrespond to all the pos-
sible allocations of truth or falsity to the variablés. An
agent will try to choose an allocation so as to satisfy it goa
~i. Strategic concerns arise because wheathgoal is in fact
satisfied will depend on the choices made by others.

We introduce the idea of imposing taxation schemes on

Boolean games, so that a player’s possible choices are taxed
in different ways. Taxation schemes are designed by an agent

Our goal is to investigate the possibility of influencing the external to the game known as thencipal. The ability to
behaviour of rational players in a game towards certain outimpose taxation schemes enables the princippetturb the

comes byproviding incentiveor them to act in certain ways.

preferences of the players in certain wayal other things

If we look to the real world, we see two forms of incentives being equal, an agent will prefer to make a choice that min-
that are typically used by governments and other organisdmises taxes. As discussed above, the principal is assumed t
tions in order to influence human behaviour: we can callbe introducing a taxation scheme so as to incentivise ag@nts

*This paper is an invited contribution for the IJCAI-2011 ‘Be
Papers” track. It is an adapted and somewhat simplified wersi
the papemDesigning Incentives for Boolean Gamesich was ac-
cepted for the AAMAS-2011 conference and shortlisted ferlibst
paper prize at this conference. We refer the reader to thisnpa
paper for further technical details, proofs, and discussio

achieve a certain desirable outcome; or to incentivisetagen
to rule out certain undesirable outcomes. We represent the
outcome that the principal desires to achieve via a propo-
sitional formulaY: thus, the idea is that the principal will
impose a taxation scheme so that agents are rationally in-
centivised to make individual choices so as to collectively



satisfy Y. However, a fundamentally important assumptionwithin the game to set the value (eitheror ) of each vari-

in what follows is that taxes do not give us absolute contro
over an agent’s preferences. To assume that we were able

lablep € ®;. We will require thatb, . . ., &, forms a partition
ob @, i.e., every variable is controlled by some agent and no

completely control an agent’s preferences by imposingstaxevariable is controlled by more than one agedt (0 ®; = 0

would be unrealistic: to pick a perhaps rather morbid andor i # j). Wherei € Ag, achoicefor agenti is defined by
slightly tongue in cheek example, no matter how much youa functiony; : ®; — B, i.e., an allocation of truth or falsity
propose to tax me, | would still choose to achieve my goato all the variables undeis control. LetV; denote the set of

of being alive rather than otherwise. If wi@ have complete

choices for agerit The intuitive interpretation we give 13

control over agents’ preferences through taxation, then this that it defines thactionsor strategiesavailable to agerit
problems we consider in this paper would indeed be rathethechoicesavailable to the agent.

trivial. In our setting specifically, it is assumed that nottea
what the level of taxegn agent would still prefer to have its
goal achieved than nofrhis imposes a fundamental limit on

An outcome (Vq,...,Vn) € V1 X -+ X Vy, is a collec-
tion of choices, one for each agent. Clearly, every outcome
uniquely defines a valuation, and we will often think of out-

the extent to which an agent’s preferences can be perturbemes as valuations, for example writifig, . .., V) |E ¢ to

by taxation.

We begin in the following section by introducing the model satisfies formulap € L. Let ¢,

mean that the valuation defined by the outcdme. .., vn)
v, denote the formula

yeeey

of Boolean games that we use throughout the remainder of thiat uniquely characterises the outcofug . . ., vy):

paper. We then introduce taxation schemes andghitentive

design problem- the problem of designing taxation schemes

so that a certain objectiVE is satisfied in equilibrium. After

investigating some issues around the incentive design-prob
lem, we go on to consider possible desirable properties of

Y

taxation schemes (such as minimising the total tax burden
We conclude with a discussion and future work.

2 Boolean Games

Propositional Logic: Throughout the paper, we make use of
classical propositional logic, and for completeness, wes th
begin by recalling the technical framework of this logic.tLe
B = {T,_L} be the set of Boolean truth values, witfi™be-

ing truth and “L” being falsity. We will abuse notation a little
by usingT and L to denote both the syntactic constants for
truth and falsity respectively, as well as their semantignco
terparts (i.e., the respective truth values). et {p,q,...}

be a (finite, fixed, non-empty) vocabulary of Boolean vari-
ables, and letC denote the set of (well-formed) formulae
of propositional logic ovem®, constructed using the conven-
tional Boolean operators {", “V”, “—=", “<«", and “-"),
as well as the truth constant™ and “L”. We assume a
conventional semantic consequence relatigi for propo-
sitional logic. Avaluationis a total functionv : & — B,
assigning truth or falsity to every Boolean variable. Wetevri
vV E ¢ to mean thaty is true under, or satisfied by, valua-
tion v, where the satisfaction relation=" is defined in the
standard way. LeY denote the set of all valuations over

We write = ¢ to mean thatp is a tautology, i.e., is sat-

PV1,...;vn) = /\ p A /\ —-q
pE®: qeP:
(V1) sVn) =P (V1,-.-,Vn) 0
Letsucdvy, ..., vn) denote the set of agents who have their

oal achieved by outcome, ..., vn), i.€.,:

aVn) |:7i}-

Costs: Intuitively, the actions available to agents correspond
to setting variables true or false. We assume that thesanacti
havecosts defined by acost functionc: ® x B — R, so
thatc(p, b) is the marginal cost of assigning the value B

to variablep € ©.

This notion of a cost function represents an obvious gen-
eralisation of previous presentations of Boolean gamestsco
were not considered in the original presentation of Boolean
gamed5; 1], and while costs were introduced [i], it was
assumed that only the action of setting a variablé twould
incur a cost. In fact, as we discuss in the parent paper, costs
are, in a technical sense, not required in our framework; we
can capture the key strategic issues at stake without them.
This is because we can “simulate” marginal costs with taxes.
However, it is natural from the point of view of modelling to
have costs for actions, and to think about costs as being im-
posed from within the game, and taxes, (defined below), as
being imposed from without.

sucqvy,...,Vn) = {i € Ag| (vi,...

Boolean Games: Collecting these components together, a
Boolean gamgG, is a(2n + 3)-tuple:

isfied by every valuation. We denote the fact that formulae

p, € L are logically equivalent by < ; thusp < ¢
means thal= ¢ + 1. Note that =" is a meta-language re-

lation symbol, which should not be confused with the object-

language bi-conditional operato«s”.

Agents, Goals, and Controlled Variables: The games we
consider are populated by a & = {1,...,n} of agents

G= <Agaq)7c7’717"'77naq)la"'7q)n>a

whereAg = {1,...,n} is a set of agent®p = {p,q,...} is

a finite set of Boolean variables,: ® x B — R is a cost
function,y; € L isthe goal of agerite Ag, and®, ..., d,is

a partition of® overAg, with the intended interpretation that
®; is the set of Boolean variables under the unique control of

— the players of the game. Each agent is assumed to have & Ag.

goal, characterised by af-formula: we writey; to denote
the goal of agent € Ag. Each agenit € Ag controlsa (pos-
sibly empty) subse®d; of the overall set of Boolean variables
(cf.[10]). By “control”, we mean thait has the unique ability

When playing a Boolean game, the primary aim of an agent
i will be to choose an assignment of values for the variables
®; under its control so as to satisfy its goal The difficulty
is that~ may contain variables controlled by other agents



j # i, who will also be trying to choose values for their vari- 3 Designing Incentives
ables®; so as to get their goals satisfied; and their goals in
turn may be dependent on the variabligs Note that if an
agent has multiple ways of gettings its goal achieved, theWe can now describe in more detail the overall problem that
it will prefer to choose one that minimises costs; and if anwe consider in the remainder of the paper. Imagine a soci-
agent cannot get its goal achieved, then it simply chooses tety populated by agenisg, with each agenit € Ag having
minimise costs. These considerations are what give Booleas goaly; € £ and actions corresponding to valuationspo
games their strategic character. For the moment, we witlposWe assume an externadincipal has some godl € £ that it
pone the formal definition of the utility functions and prefe wants the society to achieve, and to this end, wants to incen-
ences associated with our games. tivise the agentégto act collectively so as to bring abotit
Incentives in our model are provided taxation schemes
Example 1 Consider a simple example, to illustrate the gen-
eral setup of Boolean games and the problem we consideFaxation Schemes: A taxation scheme defines additional
in this paper. Suppose we have a game with two playergimposed) costs on actions, over and above those given by
Ag = {1,2}. There are just three variables in the gamegp the marginal cost function While the cost functioris fixed
andr,i.e.,® = {p,q,r}. Playerl controls p (so®; = {p}),  and immutable for any given Boolean game, the principal is
while player2 controls g and r (i.e.®> = {q,r}). Allcosts assumed to be at liberty to levy taxes as they see fit. Agents
are 0. Now, suppose the goal formulaggefor our players are  will seek to minimise their overall costs, and so by assign-

defined as follows: ing different levels of taxation to different actions, thenp
cipal can incentivise agents away from performing some ac-
1 = q tions and towards performing others; if the principal dasig
Y2 = QqVr the taxation scheme correctly, then agents are incentivise
choose valuationgry, . .., V) S0 as to satisfil’ (i.e., so that

Notice that playerl is completely dependent on playefor (Vi,...,Vn) E T).

the achievement of his goal, in the sense that, for player ) )

have his goal achieved, playermust set g= T. However, We model a taxation scheme as a functian® xB — R,
player2 is notdependent on playelr. he is in the fortunate Where the intended interpretation is thep, b) is the tax
position of being able to achieve his goal entirely through h that would be levied on the agent controllipgf the value
own actions, irrespective of what others do. He can either se? Was assigned to the Boolean varialple The total tax
g= Torr =T, and his goal will be achieved. What will Paid by an agent in choosing a valuatior; < Vi will be

the players do? Well, in this case, the game can be seen aspea, T(PVi(P))-

having a happy outcome: playercan set = T, and both We letr, denote the taxation scheme that applies no taxes
agents will get their goal satisfied at no cost. Although we;, any choice, i.elyx € ® andb € B, 79(x, b) = 0. Let7(G)
have not yet formally defined the notion, we can informallyyanote the s'et of taxation scherﬁes O’@er We make one
see that this outcome forms an equilibrium, in the sense thatcpnjcal assumption in what follows, relating to the space
neither player has any incentive to do anything else. quirements for taxation schemesTi{G). Unless otherwise
Now let us change the game a little. Suppose the cost fostated explicitly, we will assume that we are restrictingaty
player2 of setting g= T is 10, while the cost of setting& L tention to taxation schemes whose values can be represented
is 0, and that all other costs in the game dreHere, although  \ith a space requirement that is bounded by a polynomial in
player2 canchoose an action that satisfies the goal of playerthe size of the game. This seems a reasonable requirement:
1, he will not rationally choose it, because it is more expen-realistically, taxation schemes requiring space expaaldnt
sive. Player2 would prefer to set = T thanto setg= T,  the size of the game at hand could not be manipulated. It is
because this way he would get his goal achieved at no cosfmportant to note that this requirement relates tospace re-
However, by doing so, playaris left without his goal being  quirements for taxesand not to thesize of taxes themselves
satisfied, and with no way to satisfy his goal. Now, it couldigr g polynomial functiorf : N — N, the value2f("™ can be

be argued that the outcome heresiscially undesirablebe-  represented using only a polynomial number of bits (i)
cause it would be possible fowoth players to get their goal pits).

achieved. Our idea in the present paper is to provide incen-

tives for player2 so that hewill choose the more socially Utilities and Preferences: One important assumption we
desirable outcome in which both players get their goal satmake is that while taxation schemes can influence the de-
isfied. The incentives we study are in the form of taxes: wejsijon making of rational agents, they cannot, ultimately,
tax player2’s actions so that setting g T is cheaper than change the goals of an agent. That s, if an agent has a chance
setting r= T, and so the socially desirable outcome results.to achieve its goal, it will take it, no matter what the tagati

This might seem tough on playgrbut notice that he still gets  jncentives are to do otherwise. To understand this poirt, an
his goal achieved. And in fact, as we will see below, there argg see formally how incentives work, we need to formally de-
limits to the kind of behaviour we can incentivise by taxas. | fine the uti"ty functions for agents’ and for this we require

a formal sense, to be defined below, there is nothing we cagome further auxiliary definitions. First, with a slight aeu

do that would induce player to setbothq and r to L, since  of notation, we extend cost and taxation functions to plartia
this would result in his goal being unsatisfied. valuations as follows:



The following is an obvious decision problem:

G(vi) = Z c(p,vi(p)) NASH OUTCOME VERIFICATION:
= Instance Boolean gamé, taxation scheme, and
outcome(Vvy, . .., Vp).
i ?
nv) = Z (P, Vi(p)) Question Is (vy,...,vy) € NE(G, 7)7
pe®; Proposition 2 NASH OUTCOME VERIFICATION iS CONP-

complete, even for two player games witk= 7y and where

Next, letv® depote the most expensive possible course of acg assigns no costs.
tion for agent:

Incentive Design: We now come to the main problems that
Vi € arg glea;f(ci (Vi) + 7 (vi)). we consider in the remainder of the paper. Suppose we have
an agent, which we will call the principal, who is external
Let u; denote the cost to of its most expensive course of to a gameG. The principal is at liberty to impose taxation

action: schemes on the gant& It will not do this for no reason,
i = G(V) + (V). however: it does it because it wants to provide incentives fo
Given these definitions, we define thality to agent of an  the agents it to choose certain collective outcomes. Specif-
outcome(vs, . .., V), as follows: ically, the principal wants to incentivise the playersGrto
choose rationally a collective outcome that satisfieslgac-
Ui(Vi,...,Vn) = tive, which is represented as a propositional formlilaver
1+ pi— (€M) +71(w) if (vi,...,vn) E¥ the variablesp of G. We refer to this general problem — try-
—(ci(vi) +1(v)) otherwise. ing to find a taxation scheme that will incentivise players to

. i choose rationally a collective outcome that satisfies agsibp
Thus utility for ageni will range from1 + 4; (the best out-  tjonal formulaY - as thémplementation problendt inherits
come fori, where it gets its goal achieved by performing ac-concepts from the theory of Nash implementation in mecha-
tions that have no tax or other cost) down-tgi (Wherei  nism desigri6], although our use of Boolean games, taxation

does not get its goal achieved but makes its most expensiv@nhemes, and propositional formulae to represent obgctiv
choice). This definition has the following properties: is quite different.

e an agent prefers all outcomes that satisfy its goal over al .

thosg tha?do not satisfy it; s J3’-1 Weak Implementation
LetWZ(G, T) denote the set of taxation schemes ds¢hat
atisfy a propositional objectivVE in at least one Nash equi-
brium outcome:

e between two outcomes that satisfy its goal, an agen
prefers the one that minimises total expense (= marginaﬁ
costs + taxes); and !

e between two valuations thab notsatisfy its goal, an ~ WZ(G, 1) =
agent prefers to minimise total expense. {7 €7(G) [3(vi,-..,vn) € NE(G, 7) S.t.(v1, ..., Wn) = T}

It is important to note that while utility functions provide Given this definition, we can state the first basic decision
a convenient numeric representation of preference refgtio pProblem that we consider in the remainder of the paper:
utility is nottransferable in our settings. WEAK IMPLEMENTATION:

Solution Concepts: Given this formal definition of util- Instance Boolean gam& and objectivel’ € L.
ity, we can define solution concepts in the standard game-  Question Is it the case thatVZ(G, T) # 0?

theoretic way[9]. In this paper, we focus on (pure) Nash it the answer to the WAK IMPLEMENTATION problem
equilibrium.  (Of course, other solution concepts, such agg ) is “yes’, then we say thal’ can be weakly imple-
dominant strategy equilibria, might also be considered, bumented in Nash equilibriurfor simply: T can be weakly im-
for simplicity, in this paper we focus on Nash equilibria.) plemented irG). Let us see an example.
We say an outcomévy,...,Vi,...,Vn) is a Nash equilib- )
rium if for all agentsi € Ag, there is nov/ € V, such that Example 2 Define a game G as follows: Ag= {1,2},
Ui(Vi, .. Vo Vn) > Ui(Ve, . V.o Vo). LtNE(G, 7) @ = {p1,p2}, @i = {pi}, 1 = P, 72 = —P1 A P2,
denote the set of all Nash equilibria of the ga@with taxa-  ¢(P1,b) = 0 for all b € B, while op,, T) = 1 and
tion scheme. c(p2, L) = 0. Define an objectivl = p; A p2. Now, with-
Before proceeding, let us consider some properties of Nas@ut any taxes (i.e., with taxation schemg, there is a single
equilibrium outcomes. First, observe that an unsuccessfulash equilibrium(vy, v3), which satisfies pA —p.. Agentl

agent will choose a least cost course of action in any NasBets its goal achieved, while agehtioes not; and moreover
equilibrium. (vi,v5) £ Y. However, if we adjust so thatr(ps, L) = 10,

" y y y : then we find a Nash equilibrium outcor\, v;) such that
Propostion 1 Supposev Vs ) € NEG7) IS () = 1 e (V) - Y. Hore, agen i
Lreees¥ioees¥n) not able to get its goal achieved, but it can, nevertheless,
V¥ € arg min G(Vi) + 711 (V) be incentivised by taxation to make a choice that ensures the
vieV; achievement of the objectite




So, what objective¥" can be weakly implemented? At first thenWZ(G,T) # 0.

sight, it might appear that the satisfiability %fis a sufficient  \ye know from[1] that the problem of checking for the ex-
condition for implementability. Consider the followingiva

X . X , tence of pure strategy Nash equilibria in cost-free Bawle
approach for constructing taxation schemes with the aim Ogames is?_complete. It turns out that theuPLEMENTA-
implementing satisfiable objectivés 2 '

) ) TION problem is no harder:
Find a valuatiorv such thawv |= T (such a valua- iy N
tion will exist sinceT is satisfiable). Then define a Proposition 6 TheSTABILISATION problem isX;-complete,
taxation scheme such that-(p, b) = 0if b = v(p) even if taxes ar®-bounded. As a consequence, INEAK
andr(p, b) = k otherwise, wheré& is an astronom- IMPLEMENTATION problem is alsd-)-complete.
ically large number.

Thus, the idea is simply to make all choices other than selec . . .
ing an outcome that satisfi@stoo expensive to be rational. tl'he fact thabVZ(G, T) # () is good news of a kind — it tells

In fact, this approach does not work, because of an importarﬂs thatt Welczrélmptose a ta}ﬁtlon SChe”Ff%mSahmaSt
subtlety of the definition of utility. In designing a taxatio _c:nerakljoga t(h t)tr?u come ot (he ?am$ sa 'Sh S oweve(;, |
scheme, the principal can perturb an agent’s choices batwed: cOUld be that there are many taxation schemes, and only

different valuations, but itannotperturb them in such a way one of .thelm satltsf|t¢§f. Th|s r|119t|va|1tes ust tt(') consgﬂler the
that an agent would prefer an outcome that does not satisf§ifond implementatiogor simply implementatiopproblem.

it's goal over an outcome that does. We have: trong |mplement§1t|on corresponds.closely.to the notion of
" o Nash implementation in the mechanism design literaftélre
Proposition 3 There exist instances of th&EAK IMPLE-

. e e Let SZ(G, T) denote the set of taxation schemesver G
MENTATION problem with satisfiable objectivés that can- (G,7) xad v

; such that:
not be weakly implemented. o
What about tautologous objectives, i.e., objectitesuch 1. G, has at least one Nash equilibrium outcome;
thatY < T? Again, we might be tempted to assume that 2. all Nash equilibrium outcomes ¢, 7 satisfy Y.
tautologies are trivially implementable. This is not intfdee

3.2 (Strong) Implementation

case, however, as it may be tiNEE(G, 7) = () for all taxation Formally:

schemes: SI(G,T) =

Proposition 4 There exist instances of thH& EAK IMPLE- {reT(G)]

MENTATION problem with tautologous objectivésthat can- NE(G,7) £ 0 & :
not be implemented. Y(V1,...,Vn) € NE(G,7) : (V1,...,Vn) E T}

Tautologous objectives might appear to be of little intgres  This gives us the following decision problem:
but we argue that this is not the case. Suppose we have a | i

gameG such thatNE(G, 7o) = (. Then, in its unmodified MPLEMERTATION: -
condition, this game isinstable it has no equilibria. Thus, Instance Boplean gamé and objectlvér?e L.

we will refer to the problem of implementing (= checking Question|Is it the case tha§Z(G, T) # 0

for the existence of a taxation scheme that would ensure dt turns out that strong implementation is no harder thankwea
least one Nash equilibrium outcome), as the &LISATION implementation:

problem. The following example illustrateSABILISATION . Proposition 7 IMPLEMENTATION is 25-complete.

Example 3 Let Ag = {1,2,3}, with ¢ = {p,q,r}, &; =

{p}, @2 ={a}, ®3 = {r},m = T,72 = (@A-P)V(A<T), 4 Desirable Properties of Taxation Schemes

3= (TA-p) V(< r)cpT)=0cpl) =1, . . .
and all other costs ar®. For any outcome in which p=  We saw above that one simple approach to designing taxation
1, agentl would prefer to set p= T, so no such outcome Schemes is simply to apply punatively high taxes to all un-
can be stable. So, consider outconfes, v, vs) in which desirable actions, effectlvely Ieaw_ng.players no chomgtb

p = T. Here if (vi,V5,V3) = q < r then agent3 would comply with the desires of the principal. Even allowing for
prefer to deviate, while ifvy, Vs, vs) & q <+ 1 then agent the key fact that, as we noted earlier, we carcwnpletely

2 would prefer to deviate. Now, consider a taxation schemé&ontrol a player's preferences using this approach (becaus
with 7(p, T) = 10 and7(p, L) = 0 and all other taxes are & player would always prefer to get their goal achieved than
0. With this scheme, the outcome in which all variables arenot, however high taxes are set), this does not seem an intu-

set to_L is a Nash equilibrium. Hence this taxation schemeltively sensible approach in practice, because arbijraigh
stabilises the system. taxes areneffecienif a player ends up paying more than they

Returning to the weak implementation problem, we can de_strlctly need to. So, the overall goal of the principal is & d

. - " : : ~“sign taxation schemes so as to bring about the objedtive
Ir(l)vvssa sufficientcondition for weak implementation, as fol and thus the first measure of whether a taxation scheme

. o ) succeeds will be whether it implemenfs but we can surely
Proposllt_lon 5 For all games G and objectives, if the for-  hink of many secondary criteria through which the deslrabi
mula"is satisfiable: ity or otherwise of a taxation scheme to implem#&htan be

T =7TA /\ i evaluated. In the parent paper we investigate a number of
icAg different such criteria. Here, we will focus on just two.




The first idea we have is to design a taxation scheme that Our focus in the present paper hast been on the design
implementsY while imposing the lowest possible tax bur- of incentive compatible mechanisms, and in this respect, ou
den on society Broadly, we can think of this approach as work differs from the large body of work on computational
minimising the degree of intervention of the principal irth and algorithmic mechanism desif$) 4; 7. Of course, this is
operation of society. The functiab(- - -) gives the total tax notto say that incentive compatibility is not important; are

burden of an outcome: simply focussing on scenarios in which the true preferences
of agents are already known and where we want to incen-
th(vy, ... S rw). g y
i€Ag

The optimal taxation schemé& then satisfies:

7Vn)

tivise these agents to realise a range of social objecthads t
can be expressed in terms of a Boolean formula. We believe
the results of the present paper strongly indicate thaethey

important and interesting theoretical and practical qaast

* .
T € arg mln,.egz(GVT

)
max{th(vy, ..., Vn) | (V1,...,Vn) € NE(G, 7)}

relating to non-incentive compatible taxation schemes: Fu
ture work might consider: a characterisation of the condii

It is easy to construct examples showing that minimisingdnder which an objectivé” can be implemented in a game
the total tax burden may result in socially undesirable out-: consideration of the computation of taxation schemes
comes; but such “least intervention” approaches are ofseour fOr ObjectivesY; and the use of taxation schemes to incen-

very popular in human societies.
Another desirable property of taxation schemes is th

tivise behaviour in other settings, beyond Boolean games.
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the same. In the literature on taxation, this is known a
horizontal equity[2]. One could formalise this notion in
several different ways for our model, but we will focus on [1]
the following idea. In any outcome, we have two “classes”
of agents: those that get their goal achieved and those ¢that d
not. Thus, when looking at the differences in taxes paid, we
only compare the taxes of agents that get their goal achieveg)
against other agents that get their goal achieved, and we on
compare agents that do not get their goal achieved again%]
other agents that do not get their goal achieved. The fumctio
he(- - -) denotes the maximum difference in tax paid between
agents in the same equivalence class:

hevi,...,h) = max
{atif(ﬂ(Vi) —n(w) [ {i,i} CAG& (vi,...,n) F 7 A} [4]

{abs(ni(v) —7n(w)) [ {i,i} SAg& (Vi,...,vn) = =(7 V )}

Then7* will denote an outcome that maximises horizontal
equity (i.e., minimises the difference in taxes paid by agen [5]
in the same circumstances).

T € arg miﬂresz(G,T)
max{he(vy,...,Vq) | (v1,...,Vn) € NE(G,7)}

5 Conclusions & Future Work (6]

We have studied the use of taxation schemes to incentivise
behaviours in Boolean games. We showed how a principil
can perturb the preferences of agents in a Boolean game ﬂ
imposing a taxation scheme, and in so doing, how it can, in
certain circumstances, incentivise agents to choose m&so

to satisfy some social objectivg, represented as a Boolean
formula. However, we saw that while an agent’s preference$s]
can be perturbed, they are not completely malleable: no mat-
ter what the taxation scheme, an agent would always prefer
to get its goal achieved than otherwise. This means there arg
limits on the extent to which preferences can be perturbed
by taxation, and hence limits on what objectivescan be
achieved. We studied a number of issues around the probIeLr]ro]
of implementing objective¥ via taxation schemes, and also
discussed the notion of equitable taxation.
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