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Abstract
Classical results in social choice theory on the sus-
ceptibility of voting rules to strategic manipulation
make the assumption that the manipulator has com-
plete information regarding the preferences of the
other voters. In reality, however, voters only have
incomplete information, which limits their ability
to manipulate. We explore how these limitations af-
fect both the manipulability of voting rules and the
dynamics of systems in which voters may repeat-
edly update their own vote in reaction to the moves
made by others. We focus on the Plurality, Veto,
k-approval, Borda, Copeland, and Maximin voting
rules, and consider several types of information that
are natural in the context of these rules, namely in-
formation on the current front-runner, on the scores
obtained by each alternative, and on the majority
graph induced by the individual preferences.

1 Introduction
Most existing models of collective decision making adopt
simplifying assumptions regarding the information available
to individual decision makers about the preferences and in-
tentions of their peers. For instance, the standard model em-
ployed for the analysis of strategic behaviour in elections pre-
supposes that each voter has access to the full preferences of
the other voters and is able to optimise their own ballot ac-
cordingly. This assumption is central to the classical Gibbard-
Satterthwaite Theorem [Gibbard, 1973; Satterthwaite, 1975],
which shows that essentially all reasonable voting rules are
subject to strategic manipulation. In practice, however, vot-
ers cannot be assumed to possess all of this information, and
they cannot be assumed to hold with certainty the information
to which they do have access. Exploring the consequences of
such richer models of decision making is of particular interest
in the domain of multiagent systems, where we can model the
information available to agents in precise terms.

In this paper, to represent the incomplete information avail-
able to agents, we employ a model developed by Conitzer et
al. [2011] and Reijngoud and Endriss [2012], in which each
agent is endowed with an information set describing the range
of profiles of preferences of the other agents he considers pos-
sible. We focus on information sets that arise naturally in the

context of voting, such as the range of all profiles that are
consistent with a given candidate winning the election.

Our contributions are twofold. In the first part of the paper,
we establish results on the manipulability of voting rules un-
der incomplete information, complementing previous results
by Reijngoud and Endriss [2012]. We focus on the Plurality,
Veto, k-approval, Borda, Copeland, and Maximin rules (all
defined in Section 2). While the Gibbard-Satterthwaite The-
orem shows that all of these rules are susceptible to strate-
gic manipulation when the manipulator has full information,
this may—in principle—cease to be the case when we re-
strict their access to information. We show that, nevertheless,
for several natural restrictions to a manipulator’s information,
manipulation can still occur for certain rules. At the same
time, we are able to identify some combinations of voting
rules and information sets where manipulation can be ruled
out, thereby providing positive results of practical interest.

In the second part of the paper, we connect strategic vot-
ing under incomplete information with the growing litera-
ture on iterative voting [Meir et al., 2010; Lev and Rosen-
schein, 2012; Reijngoud and Endriss, 2012; Reyhani and Wil-
son, 2012; Grandi et al., 2013; Obraztsova et al., 2015]. We
consider scenarios where voters are permitted to update their
ballot any number of times, in response to the limited infor-
mation they have regarding the other votes. The question then
arises whether such a process will converge to a state where
the election winner does not change anymore. As is well
known, under complete information, convergence can only
be guaranteed in very specific circumstances. Arbitrary im-
provement moves are not guaranteed to converge under any
voting rule, best-response dynamics lead to equilibria only
for Plurality and Veto, and other rules require more restric-
tions on allowed manipulations to guarantee convergence. In
contrast to these largely negative results, we are able to show
that, when the only information voters have access to is the
identity of the candidate currently leading the polls, we obtain
convergence results for all the voting rules considered here.

The remainder of this paper is structured as follows. In
Section 2 we recall the definitions of the aforementioned vot-
ing rules and model of incomplete information. Section 3 is
devoted to our results on both susceptibility and immunity to
strategic manipulation, for different types of incomplete in-
formation, Section 4 contains our results on iterative voting
under incomplete information, and Section 5 concludes.



2 Preliminaries
In this section, we recall relevant concepts from voting theory
[Taylor, 2005] and define voting scenarios with incomplete
information as introduced by Reijngoud and Endriss [2012].

2.1 Voting Rules
Let V = {1, . . . , n} denote a set of n voters (or agents) elect-
ing a winner from a set C = {c1, . . . , cm} of m candidates
(or alternatives). Let L(C) be the set of all strict linear or-
ders on C. Each voter i submits a vote (or ballot) bi ∈ L(C),
which may or may not coincide with his real preference order
�i ∈ L(C). A profile b = (b1, . . . , bn) ∈ L(C)n is a vector
of votes, one for each agent. We denote by b−i the profile of
all votes except that of agent i, and we write (b′i, b−i) for the
profile we obtain when we replace bi in b by b′i.

A voting rule F : L(C)n → 2C \ {∅} takes a profile and
returns a nonempty subset of candidates, called the winners
of the election. In this paper, we focus on resolute voting
rules F : L(C)n → C, which always return a single win-
ner. Specifically, we assume ties are broken lexicographically
(i.e., in favour of the candidate with the lowest index). Here
are some of the most common voting rules [Taylor, 2005]:

• Positional scoring rules. Each PSR is associated with a
scoring vector (s1, ..., sm) of integers with s1 > sm and
s1 > s2 > . . . > sm. If a voter ranks a candidate at
the jth position, that candidate receives sj points. The
score of a candidate is the sum of her points over all
ballots. This family of rules includes Plurality with the
scoring vector (1, 0, . . . , 0), Veto with (1, 1, . . . , 1, 0),
Borda with (m − 1,m − 2, ..., 0) and k-approval with
(1, ..., 1, 0, ..., 0), i.e., k 1’s, followed by 0’s.

• Maximin. The score of candidate c is the minimum num-
ber, across all other c′ ∈ C, of voters who prefer c to c′.

• Copeland. The score of candidate c is the number of di-
rect majority contests she wins (i.e., the number of other
c′ ∈ C for which the majority of voters prefer c to c′),
minus the number of majority contests he loses.

The election winner is always the candidate with the highest
score. A Condorcet winner is a candidate that wins every
majority contest, and a weak Condorcet winner is one that
does not lose any such contest, although she may tie some.

2.2 Information Functions
Even after a profile of ballots has been elicited by the election
chair, this information typically will not be communicated to
the electorate, at least not in its entirety, e.g., due to privacy
concerns. Let I denote the set of all possible pieces of infor-
mation that might be communicated to the electorate in view
of a given profile. Following Reijngoud and Endriss [2012],
an information function (IF) is a function π : L(C)n → I
that maps profiles to elements of I. We focus on the follow-
ing natural choices for I and the corresponding IF π:

• Winner (W). Given voting rule F , the corresponding W-
IF returns the winning candidate for the input profile ac-
cording to F : π(b) = F(b).

• Score (S). Given voting rule F , the corresponding S-IF
returns for each c ∈ C her score sF (c, b) for profile b
under F (we omit F when clear from the context).

• Majority Graph. A majority graph is a directed graph
with the nodes being the candidates: there is an edge
(c, c′) from c to c′ if a majority of voters prefer c to c′.
The MG-IF returns the majority graph of the profile.

Given the signal π(b), and assuming each voter i knows how
the IF π is defined, his information set Wπ(b)

i is the set of
(partial) profiles he must consider possible in view of the in-
formation he holds after receiving π(b):

Wπ(b)
i =

{
b′−i ∈ L(C)n−1 | π(bi, b

′
−i) = π(b)

}
Conitzer et al. [2011] work with a similar model, but explic-
itly list the profiles a voter considers possible. Here we follow
Reijngoud and Endriss [2012] and restrict attention to infor-
mation sets that can be represented compactly via π.

We say that π1 is at least as informative as π2, denoted
π1 ⊆ π2, ifWπ1(b)

i ⊆ Wπ2(b)
i for all b ∈ L(C)n and i ∈ V .

3 π-Manipulability
In this section, we analyse the susceptibility of different vot-
ing rules to strategic manipulation by voters with incomplete
information, encoded in the form of information sets. Along
with a number of susceptibility results regarding the manip-
ulability of certain rules given certain information, we also
obtain two new immunity results, demonstrating the role of
information in preventing strategic behaviour.

Suppose that before the election we conduct an opinion
poll to elicit truthful preferences � = (�i)i∈V , and then
communicate the result to the voters using IF π. In the sub-
sequent election, voter i then has an incentive to manipu-
late if there is a scenario in his information set for which
some new ballot would result in a better election outcome
for him, and there is no scenario where the same new ballot
would result in a worse outcome than the truthful outcome.
Thus, manipulation is “safe”.1 Formally, given profile b, we
say that voter i can use π-manipulation bi

i→ b∗i for pro-
file b, if there exists a partial profile b∗−i ∈ W

π(b)
i such that

F(b∗i , b
∗
−i) �i F(b), and for all b′−i ∈ W

π(b)
i it is the case

thatF(b∗i , b
′
−i) �i F(b) orF(b∗i , b

′
−i) = F(b).2 Now, a res-

olute voting rule F is susceptible to π-manipulation (or sim-
ply, π-manipulable) if there is a voter who can π-manipulate
the truthful profile � = (�i)i∈V . If a rule is not susceptible
to π-manipulation, then it is immune to π-manipulation.

If π returns the full profile, then π-manipulability re-
duces to the standard notion of manipulability. In this
case, the Gibbard-Satterthwaite Theorem [Gibbard, 1973;
Satterthwaite, 1975] says that any resolute voting rule for
three or more candidates that is surjective and nondictatorial
is susceptible to manipulation. Reijngoud and Endriss [2012]

1Note that, just as in the classical setting [Taylor, 2005], we only
address the case of one voter at a time considering to manipulate.

2Consult van Ditmarsch et al. [2013] for a discussion of different
types of manipulation in view of the knowledge of the manipulator.



prove a simple generalisation of this theorem, stating that for
any IF π any resolute voting rule for three or more candidates
that is surjective, nondictatorial, and strongly computable
from π-images, is susceptible to π-manipulation. Here, a vot-
ing rule is strongly computable from π-images if upon learn-
ing π(b) for any profile b, a voter i can compute the winners
for any way of voting himself (i.e., not just for bi). Thus, for
example, all PSRs are strongly computable from S-images.

In the sequel, we explore the π-manipulability of Plurality,
Veto, k-approval, Borda, Copeland, and Maximin, under IFs
π = W, S, MG. We start with the case of W-IF, intuitively
providing the least amount of information.3 Note that S-IF
is more informative than W-IF for all our voting rules. For
Copeland, MG-IF is more informative than S-IF. For other
rules, some pairs of IFs cannot be ranked in terms of their in-
formativeness. For example, under Plurality we cannot com-
pute the winner from the majority graph, nor vice versa. For
a given profile, if we increase the information available to a
voter, manipulability could either increase (as the voter might
be able to rule out some profiles where he would do worse
when manipulating) or decrease (as he might also be able to
exclude some profiles where he would benefit from manipu-
lating). However, as we will see next, manipulability across
all profiles increases as information increases.4 This useful
result applies to pairs of IFs that are both at least as informa-
tive as the W-IF (so they allow the voter to infer the winner).

Lemma 1. Let π1 and π2 be two information functions such
that π1 ⊆ π2 ⊆ W-IF. Then any voting rule that is π2-
manipulable is also π1-manipulable.

Proof. Suppose F is π2-manipulable, i.e., there exist a pro-
file b, a voter i, and a ballot b∗i such that F(b∗i , b

∗
−i) �i F(b)

for some b∗−i ∈ W
π2(b)
i , while F(b) �i F(b∗i , b

′
−i) for no

b′−i ∈ W
π2(b)
i . We will show that then F can also be ma-

nipulated by i using the same ballot b∗i under IF π1 in case
the truthful profile is (bi, b

∗
−i). First, as b∗−i ∈ W

π2(b)
i ,

we have Wπ2(b)
i = Wπ2(bi,b

∗
−i)

i and thus, as π2 ⊆ W-IF,
we know that F(b) = F(bi, b∗−i). As the actual profile
is always consistent with the information received, we have
(bi, b

∗
−i) ∈ Wπ1(bi,b

∗
−i). Thus, the first condition is satisfied:

there exists a b∗−i ∈ Wπ1(bi,b
∗
−i) such that F(b∗i , b

∗
−i) �i

F(b) = F(bi, b∗−i). As for the second condition, as π1 ⊆ π2

we haveWπ1(bi,b
∗
−i)

i ⊆ Wπ2(bi,b
∗
−i)

i and thusWπ1(bi,b
∗
−i)

i ⊆
Wπ2(b)
i , meaning there is no b′−i ∈ W

π1(bi,b
∗
−i)

i for which
F(bi, b∗−i) = F(b) �i F(b∗i , b

′
−i).

In the remainder of this section we prove several results on the
π-manipulability of specific voting rules for specific choices
of π, thereby complementing the partial picture drawn by
Reijngoud and Endriss [2012]. Most of our results are nega-
tive, but for the case of the MG-IF we are able to identify two
sets of sufficient conditions for immunity to manipulation.

3As an aside, note that even when π produces no information at
all, there exist examples for voting rules, albeit not natural rules, that
are susceptible to π-manipulation [Reijngoud and Endriss, 2012].

4We are grateful to an anonymous reviewer for pointing this out.

3.1 Winner Information Function
Reijngoud and Endriss [2012] proved that Plurality and
Borda are W-manipulable, while Veto is immune to W-
manipulation. We complement these results by showing that
also k-approval, Copeland, and Maximin are W-manipulable.

Theorem 2. The k-approval (for k 6 m−2), Copeland, and
Maximin voting rules are all susceptible to W-manipulation.

Proof. First, let F be k-approval and assume that there is a
voter i such that the winner in the truthful profile, F(�), is
ranked below the (k + 1)st position in his preference order.5
We now show that such a voter can W-manipulate by swap-
ping the kth and (k + 1)st highest choices in his ballot. In-
deed, since the current winner is less preferable to i than any
candidate in the first k+1 positions, this manipulation is safe
for any profile inWW (�)

i , and there exists a profile in this set
in which the (k + 1)st preferred candidate of voter i needs
only one additional point to win.

We similarly prove W-manipulability of Copeland and
Maximin. Let voter i be such that the winner in the truthful
profile is ranked below the second position in his preference
order. Let i swap his first and second best choices. This ma-
nipulation does not affect the Copeland/Maximin score of the
truthful winner and does not harm i in any profile inWW (�)

i ,
but there exists a profile in this set where i’s second best
choice wins the election after the manipulation.

3.2 Score Information Function
Since all PSRs are strongly computable from images un-
der S-IF, it follows from the generalisation of the Gibbard-
Satterthwaite Theorem [Reijngoud and Endriss, 2012] that
these rules are S-manipulable. By Theorem 2 and Lemma 1,
Maximin and Copeland are S-manipulable as well.

Corollary 3. The Maximin and Copeland voting rules are
susceptible to S-manipulation.

3.3 Majority Graphs
We now turn to the case where the information made available
to voters consists of the majority graph.

Theorem 4. The Copeland and Borda voting rules are sus-
ceptible to MG-manipulation.

Proof. For Copeland, as the winner can be computed given
the majority graph, the result follows immediately from The-
orem 2 together with Lemma 1.

For Borda, consider the following majority graph. Assume
candidates c1, c2, . . . , cm−1 have the same number of incom-
ing and outgoing edges between them, and candidate cm is a
Condorcet loser—i.e., it loses all pairwise majority contests.
It follows then that cm cannot be the winner, as Borda never
elects a Condorcet loser [Fishburn and Gehrlein, 1976].

Let voter i be such that cm �i cm−1 �i c2 �i c1. Since
his top choice is not winning, swapping it with the second
best choice is a safe manipulation for voter i. We now show
that there is a profile in the information set of voter i where
this manipulation is beneficial for him. Let the division of

5Note that for Veto, with k = m− 1, this would be impossible.



Block-2 Block-3

w . . . w w′ . . . w′ w′ ĉm−2 . . . w′ ĉm−2

ĉ1 . . . ĉ1 ĉm−2 . . . ĉm−2 ĉ1 ĉm−3 . . . ĉ1 ĉm−3

...
...

...
...

...
...

...
...

ĉm−2 . . . ĉm−2 ĉ1 . . . ĉ1 ĉm−3 ĉ1 . . . ĉm−3 ĉ1
w′ . . . w′ w . . . w ĉm−2 w . . . ĉm−2 w

w w′ . . . w w′

Table 1: Plurality under MG-IF. Preferences for case s > s′.

votes on the edges in the graph induced by c1, c2, . . . , cm−1
be bn2 c + 1 against bn2 c − 1 (for odd n), and let it be n − 1
against 1 on the edges between c1, c2, . . . , cm−1 and cm. This
implies that all the candidates c1, c2, . . . , cm−1 have equal
Borda scores, and c1 wins by the tie-breaking. Now, after
the manipulation by voter i, the score of candidate cm−1 in-
creases, and she wins the election.

We now turn to positive results. For sufficiently large values
of n, Plurality is known to be immune to MG-manipulation
[Reijngoud and Endriss, 2012]. Here we extend this result to
all k-approval rules with k 6 m− 2 (i.e., excluding Veto).
Theorem 5. For sufficiently large numbers of voters n, k-
approval with k 6 m− 2 is immune to MG-manipulation.

Proof sketch. We give an alternative proof for Plurality that
can be extended to k-approval, except for the Veto case. The
idea is to show that, for any given majority graph, for any
voter i and associated manipulation, there is a profile in his
information set in which that manipulation may be harmful to
i. To this end, we construct a profile with these properties:
• the majority graph is identical to the given MG;
• w is a top choice alternative of any fixed voter i, and it

wins the election in the constructed profile;
• w′ is the least favourite alternative of voter i, and by

construction it either has the same score as w but loses
to w by the tie-breaking, or has one point less than w if
it is prioritised over w by the tie-breaking order.

Our construction consists of three blocks. Block-1 includes
ballots that induce the given majority graph. We know, due
to the McGarvey Theorem [Moon, 1968], that, for any given
majority graph, such a profile exists. Now, let s be the score
of w induced by voters in Block-1, s′ the score of w′ induced
by voters in Block-1, and, finally, smax the maximum score
of any candidate induced by the profile of Block-1. Also,
let Ĉ = {ĉ1, . . . , ĉm−2} = C \ {w,w′} be the set of can-
didates enumerated according to the tie-breaking order, and
Ĉ ′ the same set enumerated in reverse order. Then, Block-2
and Block-3 (also depicted in Tables 1 and 2), will consist of
4 · smax + 8 + 2|s− s′| voters arranged as follows.

Block-2 consists of two sub-blocks, each containing 2 ·
smax + 4 voters, with profile w � Ĉ � w′ repeated in the
first sub-block, and w′ � Ĉ ′ � w repeated in the second.

Block-3 contains 2 · (s− s′) voters and comes in two vari-
ants, depending on the relation between s and s′. Specifically,
if s > s′ then Block-3 consists of (s − s′) pairs of voters,
where the first voter has preference w′ � Ĉ � w and the
second voter has preference Ĉ ′ � w � w′. If, on the other
hand, s′ > s, then Block-3 consists of (s′−s) pairs of voters,

Block-2 Block-3

w . . . w w′ . . . w′ w ĉm−2 . . . w ĉm−2

ĉ1 . . . ĉ1 ĉm−2 . . . ĉm−2 ĉ1 ĉm−3 . . . ĉ1 ĉm−3

...
...

...
...

...
...

...
...

ĉm−2 . . . ĉm−2 ĉ1 . . . ĉ1 ĉm−3 ĉ1 . . . ĉm−3 ĉ1
w′ . . . w′ w . . . w ĉm−2 w′ . . . ĉm−2 w′

w′ w . . . w′ w

Table 2: Plurality under MG-IF. Preferences for case s′ > s.

where the first voter has the preference w � Ĉ � w′ and the
second has the preference order Ĉ ′ � w′ � w.

Now, any manipulation by voter i will take a point from al-
ternative w and make his least favourite candidate w′ win the
election in the constructed profile. So at least in this profile
the manipulation is harmful for i.

The above idea extends to the case of k-approval; however,
it requires a more complicated construction, which we omit
from this paper for the sake of brevity. We do need to point
out, though, that this construction requires at least two zero-
score positions in the scoring rule—that is, k < m− 1.

The Maximin rule is known to be susceptible to MG-
manipulation, at least for the case of an even number of voters
[Reijngoud and Endriss, 2012]. We now show that this neg-
ative result can be circumvented for profiles without a weak
Condorcet winner (when interpreting this result, note that ev-
ery Condorcet winner is also a weak Condorcet winner).
Theorem 6. For profiles without a weak Condorcet winner,
the Maximin voting rule is immune to MG-manipulation.

Proof. Take any majority graph without weak Condorcet
winners, and assume there exists a voter i that has an im-
proving MG-manipulation. Thus, for some profile in voter i’s
information set it is profitable to change the order between
some alternatives cj and ck (w.l.o.g., assume that in the truth-
ful ballot of voter i alternative cj is ranked above ck).

Let ci be the top alternative of voter i. We now show that
there exists a profile in i’s information set such that the above
manipulation is harmful to him. Again, we use the McGarvey
Theorem [Moon, 1968] to construct a preference profile (with
n even) that corresponds to the given majority graph such that
the votes in each pairwise majority contest are as follows:
• The division of votes on the edge between cj and ck is

n
2 + 2 against n2 − 2 if ck loses to the top alternative ci
due to tie-breaking, and it is n

2 +3 against n2 − 3 if ck is
prioritised over ci by the tie-breaking order.
• The edge between ck and ci has the ratio of votes n

2 + 2
against n2 −2 if it is directed from ck to ci, and otherwise
it has the ratio n

2 − 1 against n2 + 1.
• All other directed edges incoming to ci have the ratio of

votes n
2 + 2 against n2 − 2.

• All other directed edges incoming to ck have the ratio of
votes n

2 + 1 against n2 − 1.
• All other directed edges in the graph have the ratio of

votes n
2 + 3 against n2 − 3 (in the corresponding order).

Assume that ck loses to ci due to tie-breaking. In this case, the
Maximin score of both ci and ck is n

2 −2, and ci is the winner
due to tie-breaking. However, after the manipulation by i,



the division of votes on the edge between cj and ck becomes
n
2+1 against n2−1, thus increasing the score of ck and making
her the winner, which is not beneficial for i. Similarly, if ck
wins against ci due to tie-breaking, then the score of ci is
n
2 − 2, the score of ck is n

2 − 3, and ci wins the election.
However, after the manipulation by i, the division of votes on
the edge between cj and ck becomes n2 +2 against n2 −2, thus
increasing the score of ck and making her the winner after tie-
breaking with ci, which again is not beneficial for i.

4 Iterative Voting
As the results in the previous section demonstrate, although
limiting the information that is communicated to voters may
have a positive effect on the manipulability of a rule, there are
still only very few cases in which we can fully rule out ma-
nipulation. Nevertheless, we now demonstrate that strategic
behaviour under incomplete information converges to a stable
outcome more often than in the case of complete information.
We focus on the case of W-IF, providing only winner infor-
mation, which is the most realistic IF we have considered, in
the sense of requiring the least amount of information.

A path is a sequence (b0 → b1 → · · · ) of profiles such
that, for every k > 1, there exists a unique voter, say i, for
which bk = (b′i, b

k−1
−i ) for some b′i 6= bk−1i in L(C). It

is a π-improvement path if, for all k > 1, the move made
by the unique deviator at step k is a π-manipulation. The
set of allowed paths may be further restricted by a suitable
improvement dynamics. For example, some previous work
has assumed that voters always choose the best manipulation
available to them. Iterative voting is based on such myopic
improvement dynamics: the voters start by announcing an
initial vote, and then repeatedly change their ballots in turn,
one at a time. As in most previous work, we make the natural
assumption that the initial profile is the truthful one—that is,
b0 = (�1, . . . ,�n). We do not impose any restrictions on
the order in which the voters apply their updates.

Following Obraztsova et al. [2015], we define an iterative
voting system with incomplete information (F , π,D) as the
process based on the improvement dynamicsD under the vot-
ing rule F with IF π. We say that such a system converges to
a stable outcome (though not necessarily a stable profile) if
every π-improvement path that contains only moves allowed
by D returns a stable winner after a finite number of steps,
i.e., it either terminates or moves back and forth between sev-
eral profiles that all produce the same winner.

We now generalise a condition for convergence, termed
function monotonicity (FM), introduced by Obraztsova et
al. [2015]. FM is based on the idea of exploiting a potential
argument [Monderer and Shapley, 1996]. It uses a real-valued
function G : L(C)n → R over the set of profiles that is re-
quired to (weakly) increase along any allowed improvement
path. Formally, given system (F , π,D) and profile b, let

G(b) = sF (F(b), b) +
m− index (F(b))

m+ 1
,

where, for any candidate c, the number index(c) indicates
her position in the tie-breaking order. Thus, G(b) is the score
of the winner for profile b under F , increased by a number

between 0 and 1 that reflects the “bonus” score each candidate
receives due to her position in the tie-breaking order. Then,
FM holds if and only if, for any allowed improvement path
(b0 → b1 → · · ·), we have G(bk) 6 G(bk+1) for all k > 0.

The following result generalises the corresponding result
of Obraztsova et al. [2015] to the case of incomplete informa-
tion. Its proof is routine and omitted for the sake of brevity.
Lemma 7. Every iterative voting system (F , π,D) that sat-
isfies FM converges to a stable outcome.
Thus, to prove convergence it suffices to show that a given
system satisfies FM. We first apply this technique to Copeland
and Maximin under the unrestricted improvement dynamics
allowing the full range of W-manipulations.
Theorem 8. Under the winner information function W-IF, the
Copeland and Maximin voting rules converge to a stable out-
come for any kind of improvement dynamics.

Proof. We will show that both Copeland and Maximin satisfy
FM. The claim then follows from Lemma 7. Let F stand for
either one of them (we can use the same proof for both).

Call sF (c, b) + (m − index(c))/(m + 1) the G-score of
candidate c in profile b. Thus, G defines a resolute voting
rule that is equivalent to F with lexicographic tie-breaking,
so we can reason about G rather than F . We will show that
the G-score of the winner in a given profile does not decrease
as we move to the next profile. Thus, in case the identity of
the winner does not change when we move from bk to bk+1,
we haveG(bk) 6 G(bk+1). Furthermore, in case the identity
of the winner does change, we get G(bk) < G(bk+1), as the
G-score of the old winner cannot decrease and theG-score of
the new winner must be high enough to beat the old one.

What remains to be shown is that, indeed, for both
Copeland and Maximin the G-score of the current winner
does not decrease during a manipulation. First, observe that,
under W-IF, for these rules no voter will ever change the
ranking of his least-preferred alternative. The reason is that,
knowing only the identity of the winner, any kind of upgrade
of the worst candidate risks increasing that candidate’s score
and beating the former winner. So every voter will always
rank his worst candidate at the bottom of his ballot6 and thus
have no opportunity to demote her even further. But this
means that no manipulator can afford to allow the G-score of
the current winner to decrease, as his worst candidate could
currently be runner-up, so any kind of demotion of the current
winner could cause his least-preferred candidate to win.

We stress that we can only guarantee convergence to a sta-
ble outcome, not to a stable profile, i.e., it is possible that the
voters will update their ballots indefinitely, although eventu-
ally these updates will not affect the identity of the winner
anymore. For example, in an election in which candidate c is
winning by a large margin, a (memory-less) voter i with true
preferences a �i b �i c who only knows that c is winning
but is unaware of her margin of victory will keep attempting
to manipulate by swapping a and b in her ballot, not realising
that he has no chance of affecting the outcome.

6Note that at this point we make use of the assumption that the
initial profile is truthful (at least w.r.t. least preferred candidates).
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Figure 1: Cycle of safe W-manipulations from the truthful
profile (top, left) for the PSR with scoring vector (3, 2, 0).

Theorem 8 cannot be extended to the PSRs, as the exam-
ple in Figure 1 shows. Winners are underlined. In the initial
truthful profile, a wins by tie-breaking. Then voter 2 (for
whom a is worst) can safely manipulate and make c win.
Then voter 1 manipulates, but unsuccessfully (c still wins).
Now voter 2 manipulates again, making b win. Note that his
manipulation is safe: there is no risk in demoting c, as a is
demoted as well (losing more points than c). Finally, voter 1
manipulates analogously, and we are back at the first profile.

Closer inspection of Figure 1 shows that the first two ma-
nipulation moves, while safe, arguably are not the most nat-
ural choices for our voters. For instance, in the initial profile
voter 2 could have also manipulated by voting c �2 b �2 a,
which would have achieved the same goal and which, intu-
itively, seems the more natural choice. This intuition can
be formalised in a number of ways, e.g., by defining a suit-
able notion of “best” response. Here, instead, we opt for
a much simpler solution. Under the conservative improve-
ment dynamics, when choosing which of the available safe
π-manipulations to play, a voter will always choose one that
minimises the Kendall tau distance to his current ballot.

Theorem 9. Under the winner information function W-IF
and the conservative improvement dynamics, every positional
scoring rule converges to a stable outcome.

Proof. We use the same technique as for Theorem 8, i.e., we
are done if we can show that no manipulator will ever remove
his least preferred candidate from the bottom spot in his bal-
lot. But this is clearly the case under W-IF and conservative
improvements: if voter i’s least preferred candidate c is cur-
rently winning, no manipulation can make things worse, so i
can choose one that keeps c at the bottom of his ballot. And if
some other candidate is currently winning, it is not safe to put
c in a position where she would get more than the minimum
number of points, so i must keep c at a minimum-score spot
and he can choose the bottom spot (the latter distinction only
matters in case sm−1 = sm, e.g., for Plurality).

To put Theorems 8 and 9 into perspective, let us recall what
other convergence results are known to date. We restrict at-
tention to results that apply when agents initially vote truth-
fully and when ties are broken lexicographically (without
these assumptions, results often are significantly weaker).
Under complete information and best-response dynamics,
Plurality converges [Meir et al., 2010]. Lev and Rosen-
schein [2012] extended this result to the case of Veto, but also
demonstrated that many other rules do not converge under
these conditions [see also Reyhani and Wilson, 2012]. Sev-
eral other authors introduced more restricted types of manipu-

lation moves, e.g., with voters attempting to manipulate only
by swapping the first two candidates in their ballot [Grandi
et al., 2013] or by promoting their most preferred candidate
amongst the current k front-runners [Reijngoud and Endriss,
2012], and were able to establish convergence results under
those assumptions for a wider range of voting rules [see also
Obraztsova et al., 2015]. However, for the game-theoretical
setting considered here, the only known positive results for
the full information case concern Plurality and Veto.

The early work of Chopra et al. [2004] already hinted at the
fact that the information each voter has access to will impact
convergence, but these authors did not establish any concrete
convergence results for specific voting rules. Reijngoud and
Endriss [2012] used the same model of incomplete informa-
tion as we do, but their convergence results concern heavily
restricted forms of manipulation only. Meir et al. [2014] used
a similar model of information, but focused only on Plurality.
Thus, Theorems 8 and 9 significantly broaden the range of
positive results regarding convergence in iterative voting.

5 Conclusion
We have studied the impact of incomplete information effects
on the susceptibility of voting rules to strategic manipulation,
and closed a number of gaps in existing research in this field.
For one, although in many cases strategic behaviour by vot-
ers cannot be ruled out, even under heavy restrictions on the
information they have access to, we have been able to obtain
positive results on the immunity of certain voting rules when
voters only have access to the majority graph, rather than to
the full profile of individual preferences.

Our most important results concern the scenario of iterative
voting, where we have been able to demonstrate that a process
of repeated manipulations will converge for a number of vot-
ing rules when voters only have access to the information of
which candidate is winning the election. This convincingly
demonstrates the significance of the assumptions regarding
information access we are willing to make, as similarly pos-
itive results so far have only been available for the very sim-
plest of voting rules, namely Plurality and Veto.

Our results suggest a number of possible avenues for fu-
ture work. First, both our study of manipulation under in-
complete information and our study of convergence in itera-
tive voting with incomplete information should be extended
to a wider range of voting rules. Second, while we have con-
sidered particular forms of incomplete information that are
natural abstractions of a full profile of preferences (and that
might, e.g., get published in an opinion poll), other forms
more closely associated with notions of uncertainty are also
of interest (e.g., a voter may consider all those profiles pos-
sible that differ from some specific profile on at most k pair-
wise rankings). Such ideas have been explored by Meir et
al. [2014] and could be applied to both the immunity and the
convergence questions we have asked here. Third, in cases
where convergence can be guaranteed, we should seek a bet-
ter understanding of the properties of the election outcomes
produced by iterative voting, in line with previous work by
Reijngoud and Endriss [2012] and Grandi et al. [2013] for
the case of restricted manipulation moves.
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