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ABSTRACT
Graph aggregation is the process of computing a single output

graph that constitutes a good compromise between several input

graphs, each provided by a different source. One needs to perform

graph aggregation in a wide variety of situations, e.g., when apply-

ing a voting rule (graphs as preference orders), when consolidating

conflicting views regarding the relationships between arguments in

a debate (graphs as abstract argumentation frameworks), or when

computing a consensus between several alternative clusterings of

a given dataset (graphs as equivalence relations). Other potential

applications include belief merging, data integration, and social net-

work analysis. In this short paper, we review a recently introduced

formal framework for graph aggregation that is grounded in so-

cial choice theory. Our focus is on understanding which properties

shared by the individual input graphs will transfer to the output

graph returned by a given aggregation rule. Our main result is a

powerful impossibility theorem that generalises Arrow’s seminal

result regarding the aggregation of preference orders to a large

collection of different types of graphs. We also provide a discussion

of existing and potential applications of graph aggregation.
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1 INTRODUCTION
Suppose each of the members of a group of autonomous agents pro-

vides us with a different directed graph that is defined on a common

set of vertices. Graph aggregation is the task of computing a single

graph over the same set of vertices that, in some sense, represents a

good compromise between the various individual views expressed
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by the agents. Graphs are ubiquitous in computer science and artifi-

cial intelligence (AI). For example, in the context of decision support

systems, an edge from vertex x to vertex y might indicate that al-

ternative x is preferred to alternative y. In the context of modelling

interactions taking place on an online debating platform, an edge

from x to y might indicate that argument x undercuts or otherwise

attacks argument y. And in the context of social network analysis,

an edge from x to y might express that person x is influenced by

person y. How to best perform graph aggregation is a relevant

question in these three domains, as well as in any other domain

where particular graphs may be supplied by different agents or

originate from different sources. For example, in an election, we

have to aggregate the preferences of several voters. In a debate, we

sometimes have to aggregate the views of the individual partici-

pants in the debate. And when trying to understand the dynamics

within a community, we sometimes have to aggregate information

coming from several different social networks.

In recent work [13], we introduced a formal framework for study-

ing graph aggregation in general abstract terms and demonstrated

its relevance to a wide range of applications. The present paper

provides a compact exposition of this contribution. Our framework

provides tools for evaluating what constitutes a “good” method of

aggregation and it allows us to ask questions regarding the existence

of methods that meet a certain set of requirements. Our approach

is inspired by work in social choice theory [2], which offers a rich

framework for the study of aggregation rules for preferences—a

very specific class of graphs. Our technical results focus on the

conditions under which an aggregation rule will preserve certain

attractive properties of graphs during aggregation.

Related work. Our work builds on and is related to contributions

in the field of social choice theory, starting with the seminal contri-

bution of Arrow [1]. This concerns, in particular, contributions to

the theory of voting and preference aggregation [2, 24, 26], but also

judgment aggregation [9, 16, 21]. In computer science, these frame-

works are studied in the field of computational social choice [5]. As

we shall discuss in some detail, graph aggregation is an abstraction

of several more specific forms of aggregation taking place in a wide

range of different domains. Aggregation of specific types of graphs

has been studied, for instance, in nonmonotonic reasoning [10],

belief merging [23], social network analysis [29], clustering [14],

and argumentation in multiagent systems [7].

Paper overview. Section 2 introduces our framework of graph

aggregation. Section 3 presents our main technical results, showing

that certain desirable properties of aggregation rules are impossible

to realise simultaneously. Section 4, finally, discusses applications.
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2 GRAPH AGGREGATION
In this section, we present the basic definitions of our model, and

some examples for aggregation rules and axiomatic properties.

2.1 Basic Notation and Terminology
Fix a finite set of vertices V. A (directed) graph G = ⟨V ,E⟩ based on

V is defined by a set of edges E ⊆ V ×V . We write xEy for (x ,y) ∈ E.
AsV is fixed,G is in fact fully determined by E. We therefore identify

sets of edges E ⊆ V × V with the graphs G = ⟨V ,E⟩ they define.

For any kind of set S , we use 2S to denote the powerset of S . So
2
V×V

is the set of all graphs. We use E (x ) := {y ∈ V | (x ,y) ∈ E}
to denote the set of successors of a vertex x in a set of edges E.

A given graph may or may not satisfy a specific property, such
as transitivity, reflexivity, or more complex properties coming from

specific application domains, such as negative transitivity used in

economics or the Euclidean property familiar from modal logic.

We are going to be interested in families of graphs that all satisfy

several of these properties. It will often be useful to think of a graph

property P , such as transitivity, as a subset of 2
V×V

.

LetN = {1, . . . ,n} be a finite set of (two or more) individuals (or
agents). We are going to refer to subsets ofN as coalitions. Suppose
every individual i ∈ N specifies a graph Ei ⊆ V ×V. This gives rise

to a profile E = (E1, . . . ,En ). We use N E
e := {i ∈ N | e ∈ Ei } to

denote the coalition of individuals accepting edge e under profile E.
An aggregation rule is a function F : (2V×V )n → 2

V×V
, mapping

any profile of individual graphs into a single graph. An example

for an aggregation rule is the majority rule, accepting a given edge

if and only if more than half of the individuals accept it.

2.2 Specific Aggregation Rules
Under a quota rule, an edge will be included in the graph returned

by the rule, if the number of individuals accepting it meets a certain

quota. Formally, a quota rule is a rule Fq defined via a function

q : V ×V → {0, 1, . . . ,n+1}, associating each edge with a quota:

Fq : E 7→ {e ∈ V ×V : |N E
e | ⩾ q(e )}

Fq is called a uniform quota rule in case q is a constant function.

The uniform quota rules include three simple and well-known

rules: the (strict) majority rule Fmaj is the uniform quota rule with

q = ⌈n+1
2
⌉, the intersection rule F∩ is the uniform quota rule with

q = n, and the union rule F∪ is the uniform quota rule with q = 1.

The idea of using quota rules is natural andwidespread. For example,

quota rules have been studied in judgment aggregation [8].

Next, we present a new class of aggregation rules specifically

designed for graphs that is inspired by approval voting [4]. Imagine

we associate each vertex with an election in which all the possible

successors of that vertex are the candidates (and in which there

may be more than one winner). Each agent votes by stating which

vertices she considers acceptable successors. Based on this infor-

mation, a choice function v : (2V )n → 2
V
selects which edges to

include in the outcome graph. Formally, the successor-approval rule
based on v is the aggregation rule Fv defined by stipulating:

Fv : E 7→ {(x ,y) ∈ V ×V | y ∈ v (E1 (x ), . . . ,En (x ))}

For example, such a rule might accept exactly those successors

of a given vertex x that receive above-average support.

2.3 Axiomatic Properties
When choosing an aggregation rule, we need to consider its proper-

ties. In social choice theory, such properties are called axioms [26].
We now introduce three basic axioms for graph aggregation.

First, we introduce an independence condition that requires that

the decision of whether or not a given edge e is to be accepted

by a rule should only depend on which of the individual graphs

include e . This corresponds to well-known axioms in preference

and judgment aggregation [1, 22]. Formally, an aggregation rule F

is called independent of irrelevant edges (IIE) if N E
e = N E ′

e implies

e ∈ F (E) ⇔ e ∈ F (E′). That is, if exactly the same individuals

accept e under profiles E and E′, then F should either accept e in
both cases or it should reject e in both cases.

Next, the fundamental economic principle of unanimity requires

that an edge should be accepted by a group in case all individuals

in that group accept it. Formally, an aggregation rule F is called

unanimous if it is always the case that F (E) ⊇ E1 ∩ · · · ∩ En .
Finally, a requirement that, in some sense, is dual to unanimity

is to ask that the outcome graph should only include edges that

are part of at least one of the individual graphs. In the context

of ontology aggregation this axiom has been introduced under

the name groundedness [25]. Formally, an aggregation F is called

grounded if it is always the case that F (E) ⊆ E1 ∪ · · · ∪ En .
Whether or not to insist on a given axiom depends on the appli-

cation at hand. Unanimity and groundedness are uncontroversial

and certainly desirable in most contexts. Independence is much

harder to satisfy, but very useful when it can be guaranteed, as

it greatly simplifies the process of aggregation. For example, all

quota rules are independent, but (for most natural choices of v)
successor-approval rules are not.

2.4 Collective Rationality
To what extent can a given aggregation rule ensure that a given

property that is satisfied by each of the individual input graphs will

be preserved during aggregation? This question relates to a well-

studied concept in social choice theory, often referred to as collective
rationality [1, 21]. In the literature, collective rationality is usually

defined w.r.t. a specific property that should be preserved (e.g., the

transitivity of preferences or the logical consistency of judgments).

Here, instead, we formulate a definition that is parametric w.r.t. a

given graph property.

Formally, an aggregation rule F is called collectively rational w.r.t.
a graph property P if F (E) satisfies P whenever all of the individual

graphs in a given profile E = (E1, . . . ,En ) do.

Example 2.1 (Collective rationality). Suppose three individuals
provide us with three graphs over the same set V = {x ,y, z,w }:

x y z

w

x y z

w

x y z

w

x y z

w

If we apply the majority rule, then we obtain the graph to the right
of the arrow. Thus, the majority rule is not collectively rational w.r.t.
seriality (the property of every vertex having a successor), as each
individual graph is serial, but the graph returned by the rule is not.
The property of symmetry, on the other hand, is preserved in this case.



3 IMPOSSIBILITY RESULTS
In social choice theory, an impossibility theorem states that it is not

possible to devise an aggregation rule that satisfies certain axioms

and that is also collectively rational w.r.t. a certain combination of

properties of the structures being aggregated (which in our case

are graphs). In this section, we present two powerful impossibility

theorems for graph aggregation, the Oligarchy Theorem and the

Dictatorship Theorem, derived in the original paper [13].

The Dictatorship Theorem is inspired by—and significantly

generalises—the seminal impossibility result for preference aggre-

gation due to Arrow, first published in 1951 [1]. Our proof technique

makes use of winning coalitions, i.e., sets of individuals who can

force the acceptance or rejection of a given edge, and it hinges on the

definition of three meta-properties for classifying graph properties:

contagiousness, implicativeness, and disjunctiveness. Intuitively

speaking, a graph property P is contagious if, under certain condi-

tions, acceptance of one edge forces us to also accept one of the

edges adjacent to that first edge; P is implicative if, again under cer-

tain conditions, the acceptance of two specific edges e1 and e2 forces
us to also accept a third edge e3; finally, P is disjunctive if there are
two specific edges e1 and e2 such that, under certain conditions, we

always need to accept at least one of them. We refer to the original

paper for the precise definition of these meta-properties [13].

An aggregation rule F is called oligarchic (on nonreflexive edges)

if there exists a coalition C⋆ ⊆ N (the “oligarchs”) such that any

given nonreflexive edge e is accepted by F if and only if all of the

members ofC⋆
accept e . Thus, oligarchic rules are highly restrictive

and unattractive for most applications.

Theorem 3.1 (Oligarchy Theorem). Let P be a graph property
that is contagious and implicative. Then, for |V | ⩾ 3, any unanimous,
grounded, and IIE aggregation rule F that is collectively rational
w.r.t. P must be oligarchic on nonreflexive edges.

An aggregation rule F is called dictatorial (on nonreflexive edges)
if there exists an individual i⋆ ∈ N (the “dictator”) such that any

given edge e is accepted by F if and only if i⋆ accepts e .

Theorem 3.2 (Dictatorship Theorem). Let P be a graph prop-
erty that is contagious, implicative, and disjunctive. Then, for |V | ⩾ 3,
any unanimous, grounded, and IIE aggregation rule F that is collec-
tively rational w.r.t. P must be dictatorial on nonreflexive edges.

Arrow’s Theorem, which states the impossibility of aggregating

preference orders (i.e., graphs that are reflexive, transitive, and com-

plete), is a corollary of Theorem 3.2, since transitivity is a graph

property that is contagious and implicative, while completeness is

a graph property that is disjunctive. In general, any combination of

graph properties that together hit all three meta-properties, by The-

orem 3.2, gives rise to an impossibility theorem saying that all rele-

vant aggregation rules are dictatorial. Similarly, any combination

of graph properties that together hit the first two meta-properties,

by Theorem 3.1, gives rise to an impossibility theorem saying that

the only relevant aggregation rules are oligarchic.

4 APPLICATIONS AND DISCUSSION
Directed graphs are ubiquitous in computer science and beyond.

They have been used as modelling devices for a wide range of appli-

cations. In this section, we sketch a number of different application

scenarios for graph aggregation, each requiring different types of

graphs (satisfying different properties) to model relevant objects of

interest, and each requiring different types of aggregation rules.

We are also going to hint at how our impossibility theorems

can be put to good use, to help clarify what is and what is not

achievable in different application domains. Some of the results

we have been able to obtain in this manner are new, while others

demonstrate how our approach can be used to clarify known results

and to obtain significantly simpler proofs for them [13].

Bounded rationality in preference aggregation. The most immedi-

ate example for a graph aggregation problem is preference aggrega-

tion as classically studied in social choice theory [1]. In this context,

vertices are interpreted as alternatives available in an election and

the graphs considered—interpreted as preference orders—are re-

flexive, transitive, and complete. Aggregation rules then reduce to

so-called social welfare functions. While the types of preferences

typically considered in classical social choice theory are required to

be complete, recent work in AI has also addressed the aggregation

of partial preference orders, to account for the bounded rationality

of agents. That is, agents may be unable to rank all alternatives.

A prominent example in this literature is the work of Pini et al.

[24]. Their main result is a variant of Arrow’s Theorem for partial

preference orders with maxima or minima, a result that can be

obtained with a simple proof as a corollary of our Theorem 3.2.

Knowledge. If we think of V as a set of possible worlds, then

a graph on V that is reflexive and transitive (and possibly also

symmetric) can be used to model an agent’s knowledge: (x ,y)
being an edge means that, if x is the actual world, then our agent

will consider y a possible world [19]. If we aggregate the graphs

of several agents by taking their intersection, then the resulting

collective graph represents the distributed knowledge of the group,
i.e., the knowledge the members of the group can infer by pooling

all their individual resources. If, on the other hand, we aggregate by

taking the union of the individual graphs, then we obtain what is

sometimes called the shared or mutual knowledge of the individual
agents, i.e., the part of the knowledge available to each and every

individual on their own. Finally, if we aggregate by computing the

transitive closure of the union of the individual graphs, then we

obtain a model of the group’s common knowledge. These concepts
play a role in disciplines as diverse as epistemology [20], game

theory [3], and distributed systems [18].

Nonmonotonic reasoning and belief merging. When an intelligent

agent attempts to update her beliefs or to decide what action to

take, she may resort to several patterns of common-sense inference

that will sometimes be in conflict with each other. To take a famous

example, we may wish to infer that Nixon is a pacifist, because he

is a Quaker and Quakers by default are pacifists, and we may at

the same time wish to infer that Nixon is not a pacifist, because he

is a Republican and Republicans by default are not pacifists. In a

popular approach to nonmonotonic reasoning in AI, such default

inference rules are modelled as graphs that encode the relative

plausibility of different conclusions [27]. Thus, here the possible

conclusions are the vertices and we obtain a graph by linking one

vertex with another, if the former is considered at least as plausible

as the latter. Conflict resolution between different rules of inference



then requires us to aggregate such plausibility orders, to be able

to determine what the ultimately most plausible state of the world

might be. In this context, we were able to show that a well-known

impossibility result from this literature, due to Doyle and Wellman

[10], is a straightforward corollary of our Theorem 3.2. Our results

also allow us to clarify the underlying reasons for a possibility

result established by Maynard-Zhang and Lehmann [23].

Argumentation. In a so-called abstract argumentation framework,
arguments are taken to be vertices in a graph and attacks between

arguments are modelled as directed edges between them [11]. A

graph property of interest in this context is acyclicity, as that makes

it easier to decide which arguments to ultimately accept. If we think

of V as the collection of arguments proposed in a debate, a profile

E = (E1, . . . ,En ) specifies an attack relation for each of a number

of agents that we may wish to aggregate into a collective attack

relation before attempting to determine which of the arguments

might be acceptable to the group. Recent work has addressed the

challenge of aggregating several abstract argumentation frame-

works from a number of angles [7, 12]. Our approach has already

proved useful in obtaining novel results in this setting [6].

Social networks. We may also think of each of the graphs in a

profile as a different social network relating members of the same

population. One of these networks might describe work relations,

another might model family relations, and a third might have been

induced from similarities in online purchasing behaviour. Social

networks are often modelled using undirected graphs, which we

can simulate in our framework by requiring all graphs to be sym-

metric. Aggregating individual graphs then amounts to finding a

single meta-network that describes relationships at a global level.

Alternatively, we may wish to aggregate several graphs represent-

ing snapshots of the same social network at different points in time.

The meta-network obtained can be helpful when studying the social

structures within the population under scrutiny [29].

Consensus clustering. Clustering is the attempt of partitioning

a given set of data points into several clusters. The intention is

that the data points in the same cluster should be more similar to

each other than each of them is to data points belonging to one

of the other clusters. While this is useful in many disciplines, the

field is lacking a precise definition of what constitutes a “correct”

partitioning of the data and there are many different clustering

algorithms, such as k-means or single-linkage clustering, and even

more parameterisations of those basic algorithms [28]. Observe

that every partitioning that might get returned by a clustering algo-

rithm induces an equivalence relation (i.e., a graph that is reflexive,

symmetric, and transitive): two data points are equivalent if and

only if they belong to the same cluster. Finding a compromise be-

tween the solutions suggested by several clustering algorithms is

what is known as consensus clustering [15]. This thus amounts to

aggregating several graphs that are equivalence relations. One of

the classical results in this area, due to Fishburn and Rubinstein

[14], is an immediate corollary to our Theorem 3.1 .

Data integration. A promising direction for future research in

graph aggregation, in the area of the Semantic Web, concerns XML

data integration [17]. The basic structure underlying documents

encoded in XML is that of a tree, i.e., a special kind of graph. Thus,

if we want to combine information encoded using XML that has

been obtained from different sources on the Semantic Web, we need

to use some form of graph aggregation as well.
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