
Abstract Models for Dialogue Protocols:

A Preliminary Report

Raquel Fernández1 and Ulle Endriss2

1 Department of Computer Science, King’s College London
Strand, London WC2R 2LS (UK)

Email: raquel@dcs.kcl.ac.uk
2 Department of Computing, Imperial College London

180 Queen’s Gate, London SW7 2AZ (UK)

Email: ue@doc.ic.ac.uk

Abstract

In this report, we examine a variety of dialogue protocols, taking
inspiration from two fields: natural language dialogue modelling and
multiagent systems. In communicative interaction, one can identify
different features that may increase the complexity of the dialogue
structure. This motivates a hierarchy of abstract models for protocols
that takes as a starting point protocols based on deterministic finite
automata. From there, we proceed by looking at particular examples
that justify either an enrichment or a restriction of the initial model.

Keywords: Dialogue modelling, multiagent systems, communication
protocols, automata theory

1 Introduction

If we look at a corpus of real human-human dialogues, we find evidence of
frequently reoccurring sequences of utterance types. For instance, questions
are followed by answers and proposals are usually either accepted, rejected,
or countered. These interaction patterns have inspired a line of research whose
object of description is, broadly speaking, the rule-governed behaviour exhibited
by dialogue interaction.

Communication patterns are usually modelled by means of conventional pro-
tocols, i.e. public conventions which specify the range of possible follow-ups
available to the participating agents. Although it is clear that epistemic notions
such as belief and knowledge, alongside intentions, contribute to an agent’s
actual responses, conventional protocols have nevertheless been shown to be a
powerful descriptive and explanatory means of formalising the rules of encounter

Department of Computer Science
King’s College London

Technical Report TR-03-03
July 2003



that characterise coherent interaction, both in natural language dialogue as well
as in dialogue between autonomous software agents.

The focus of this paper is on the formal properties of communication pro-
tocols. We examine a variety of protocols, taking inspiration from two fields:
natural language dialogue modelling and multiagent systems. More specifically,
we restrict ourselves to conventional protocols that characterise the set of legal
continuations according to externally observable features, such as the agents’
actual utterances. In multiagent systems, protocols designed in accordance
with this criterion have recently been put forward by a number of authors
(e.g. [18, 19]). This stands in marked contrast to the approach followed, for
instance, by FIPA [8] where legality conditions are explained in terms of the
mental attitudes of the agents participating in a dialogue.

As we shall see, in dialogue interaction one can identify several features that
increase the complexity of the dialogue structure in different ways. In our ap-
proach, this variety of phenomena motivates a hierarchy of abstract models for
protocols. We do not claim that our classification subsumes the full range of
protocols one can find in the literature; instead the hierarchy is intended as a
classification that captures the relevant distinguishing features of different dia-
logue phenomena. For the dialogues that we consider in this paper, utterances
are assumed to occur sequentially. This is a common assumption made in natu-
ral language dialogue modelling, whereas multiagent systems research has also
tried to address concurrent communication. Also, our dialogues will typically
only involve two participants.

As a starting point, in Section 2, we take protocols that can be modelled by
deterministic finite automata. From there, we proceed by looking at particular
examples that justify either an enrichment or a restriction of the initial model.
In particular, in Section 3, we augment the basic model by a stack component to
be able to represent protocols that can handle embedded dialogues. This kind of
enrichment is generalised in Section 4 to a class of protocols with memory. The
subsequent sections discuss further instances of this class of models. In Section 5
we extend the model of Section 3 by introducing protocols with a stack of sets
to also account for compound moves within a single turn. Section 6 discusses
protocols with a simple set, which allow us to represent the kind of blackboard
architecture used in argumentation systems. The final example for our protocols
with memory are the protocols equipped with a list presented in Section 7. A
restriction of the basic automata-based model which allows for a simple logic-
based representation of protocols is given in Section 8. Finally, our conclusions
are presented in Section 9.

2 Protocols as finite automata

Deterministic finite automata (DFAs) have been widely used to represent com-
munication protocols, in particular in the area of multiagent systems. Pitt and
Mamdani [18] give several examples for such automata-based protocols. One
of them, the continuous update protocol, specifies a class of dialogues between

2



two agents A and B where A continuously updates B on the value of some
proposition. The following diagram provides an intuitive description of this
protocol:

0HOINJMKL 1HOINJMKL 2HOINJMKL

3@GAFBECDHOINJMKL 4@GAFBECDHOINJMKL

+3 A: inform(c) //

B: acknowledge

&&
ff

A: inform(c)

B: end

��

A: end

��

Here, c is an expression in some suitable content language which is used to
encode the actual information transmitted by A. For this particular protocol,
the value of c is intended not to be relevant; any inform move uttered by agent
A will take us from state 0 to state 1, whatever the content of the transmitted
piece of information may be. The notion of what constitutes a legal dialogue
conforming to the above protocol is intuitively clear. At the time a new dialogue
starts, for instance, an inform move uttered by agent A would be the only legal
utterance. Immediately after A has informed B, the latter can either choose to
acknowledge that fact or it may end the dialogue. However, it would be illegal
for A to continue the dialogue with another inform move unless it has received
an acknowledgement from B first, and so forth.

This type of protocols will provide the starting point for our proposed clas-
sification of communication protocols. We are now going to define the class of
DFA-based protocols, i.e. the class of protocols that can be defined in terms of
a DFA. Our definition amounts to a simple re-wording of the usual definition
of a DFA (see e.g. [13, 16]) using a terminology appropriate for the descrip-
tion of dialogue protocols. A DFA-based protocol is a quintuple 〈Q, q0, F,L, δ〉,
consisting of a finite set of dialogue states Q including an initial state q0 ∈ Q
and a set of final states F ⊆ Q, a communication language L,1 and a transi-
tion function δ : Q × L → Q. The elements of L are called utterances and are
constructed from a finite set A of agents (or dialogue participants), a finite set
M of dialogue moves (or communicative acts), and a content language C. We
assume that every utterance has the structure i : m(c) with i ∈ A, m ∈ M,
and c ∈ C. In general, at the level of describing abstract models for dialogue
protocols rather than concrete instances of these models, we do not put any
restrictions on the content language C, i.e. utterances of the form i : m(c) cover
any type of utterance. Our chosen representation merely singles out the name
of the speaker and the type of the dialogue move. As the types of dialogues we

1When talking about DFAs in general (i.e. not just in the context of protocols), we would
refer to L as an input alphabet rather than a communication language. We remark here that
the input alphabet is usually taken to be finite [13], while our representation does not exclude
infinite alphabets (although any given DFA will necessarily only make use of a finite subset
of the alphabet).

3



are going to consider typically only involve two participants we may think of A
as the set {A,B}.

This representation allows for a simple formalisation of the notion of legality
of an utterance at a given point in a dialogue. Given the current dialogue state
q, an utterance u constitutes a legal continuation of the dialogue iff there exists
a state q′ ∈ Q such that δ(q, u) = q′ holds. Before a dialogue starts we are
in the initial state q0. A legal dialogue is a dialogue where each utterance is a
legal continuation of the preceding sequence of utterances. Furthermore, a legal
dialogue is complete iff it results in one of the final states in F .

3 Protocols that allow for subdialogues

DFA-based protocols have also been successfully used in natural language in-
teraction, usually under the name of conversational games (e.g. [15]). However,
some very common features of natural language dialogue cannot be captured by
a DFA. The following example shows a dialogue where several question-answer
sequences are embedded:

A : (1) Who should we invite? [Q1]
B : (2) Should we invite Bill? [Q2]
A : (3) Which Bill? [Q3]
B : (4) Jack’s brother. [A3]
A : (5) Oh, yes. [A2]
B : (6) OK, then we should invite Gill as well. [A1]

Replying to a question with another question (2) and asking for clarification
(3) are rather common phenomena in natural language dialogue, especially in
information-oriented interaction. Thus, the presence of embedded subdialogues
creates a structure that calls for an enrichment of the DFA-based model. This
can be modelled by adding a stack to a DFA. In the example above, questions
would get pushed onto the stack, to be then popped by their respective an-
swers. The machine model of a DFA together with a stack corresponds to a
pushdown automaton, at least if we restrict ourselves to a finite communication
language [13].

An example of a structuring mechanism able to handle this kind of phe-
nomena is Ginzburg’s qud (questions under discussion) [9, 10]. Simplifying a
little, in Ginzburg’s approach questions get introduced into qud and get down-
dated once they are answered. The qud plays a central role in determining the
possible responses to a given utterance, the general assumption being that the
turn-holder will address the top element in qud.

Another approach that provides a similar structuring mechanism is the mod-
elling of dialogue by means of discourse obligations [20, 14]. In this case, the
authors suggest that a question imposes an obligation on the addressee to answer
the question. Once the question is answered, the obligation is discarded.

4



4 Protocols with memory

Both discourse obligations and questions under discussion are examples for ab-
stractions from the full dialogue history. We only keep those parts of the history
that are relevant to the legality of future utterances, in a convenient format. For
the examples of the previous section, this format has been that of a stack.

DFAs are abstract machines with a limited amount of memory (encoded
by the states of the automaton). Adding a (finite) stack as discussed earlier
amounts to enriching the automaton with an unlimited memory component.
Modelling this memory as a stack is just one of many options. Besides stacks, we
may consider a variety of abstract data types (ADTs) such as, for instance, sets
or lists [1]. We call the set of objects that can be stored in memory the memory
alphabet (which may or may not be identical to the communication language).
Every ADT comes with a set of basic operations (push(x) and pop in the case of
a stack) and functions (top to return the top element on a stack, for example). A
recent formalisation of a complex protocol with memory in dynamic logic (DL),
namely a protocol for inquiry-oriented dialogues based on Ginzburg’s dialogue
gameboard [7], suggests that the usual DL program constructors provide an
adequate language to combine these basic operations.2

In the following sections, we are going to discuss several examples that mo-
tivate different choices for ADTs as memory components on top of our basic
DFA-based model.

5 Protocols with a stack of sets

In Section 3, we have considered a dialogue where several questions are posed
in sequence. There we have argued that in these cases it seems reasonable to
use a protocol where the last question asked takes precedence (i.e. it is the first
one to be addressed), and that such a protocol can be modelled by a pushdown
automaton. As some authors have noticed [10, 4], however, when successive
queries are asked by a single speaker, this simple kind of protocol is not always
correct. This is illustrated by the following example (adapted from [4]):

A : (1) Where were you on the 15th? [Q1]
A : (2) Do you remember talking to anyone after the incident? [Q2]
B : (3) I didn’t talk to anyone. [A2]
B : (4) I was at home. [A1]
B : (3’) I was at home. [A1]
B : (4’) I didn’t talk to anyone. [A2]

Dialogues as the one above show that when two or more questions are uttered in
succession by the same speaker, the respondent is sometimes allowed to answer

2In dynamic logic, complex programs can be constructed from basic ones (such as e.g. pop)
via the operations of composition (;), choice (∪), and iteration (∗) [11]. Additionally, the DL
programming language includes the test operator ? which may, for instance, be applied to
expressions over functions such as top provided by the ADT in question.

5



them in any order. In such dialogues, the questions under discussion are in what
has been called a coordinate structure [4], with none of them taking precedence
over the others. When this is the case, a protocol based on a DFA plus a stack
would not be appropriate to handle this phenomenon.

In fact, although in Section 3 we have represented the qud as a stack, in
Ginzburg’s model the questions currently under discussion form a partially or-
dered set. This order indicates what conversational precedence different ques-
tions take over each other. It should be noted, however, that the proposed
model does not actually make use of the full expressive power of a partially
ordered set. This is so because new questions can only be added at the top,
either strictly above the currently most salient question, or next to it. Also,
questions can only be deleted from the top; we do not have access to elements
further down the order.

In terms of our hierarchy of protocols with memory, such an architecture
can be modelled using a DFA together with a finite stack of sets. The questions
under discussion that currently have maximal conversational precedence are
those in the top set on the stack. Now, adding a new question strictly above
the currently maximal ones corresponds to pushing a singular set containing
only that question onto the stack. To add a new question next to the currently
maximal questions, on the other hand, we first pop the top set off the stack,
then insert the new question into that set, and then push the new set back onto
the stack. To delete a question (with maximal precedence), we first pop the top
set off the stack, then delete that question from the set, and finally push the
remaining set back onto the stack—unless that set is empty (i.e. unless there
has been only a single maximal question). A delete operation will fail in case
the question given as a parameter is not a member of the top set.

An interesting issue is what causes a question to be inserted into the top set
of the stack or, alternatively, to be pushed onto the currently maximal set. A
simple hypothesis we could make is that the first operation takes place when
successive queries are posed within a single turn (as in the example above),
while the second one is executed when a different speaker replies to a question
with another question (as in the example in Section 3). The following dialogue
(taken from [10]), however, shows that successive querying within a single turn
does not always involve question coordination:

A : (1) Who will you be inviting? [Q1]
A : (2) And why? [Q2]
B : (3) Mary and Bill, I guess. [A1]
A : (4) Aha. [Ack]
B : (5) Yeah, (because) they are very undemanding folks. [A2]

Notice that here the first question asked takes precedence over the last one—
only after the first question is answered does the second question get addressed.
Indeed, answering (2) before (1) would seem rather strange in this situation.

Ginzburg uses examples like the one above to motivate a modification of
his qud-update protocol, namely the addition of a new operation (‘+qud-flip’),

6



which pushes a question under the maximal element in qud, i.e. between the
topmost element and the rest of the stack. In our abstract model this would
correspond to first popping the top element off the stack, then pushing the new
question, and finally pushing the former top element back onto the stack.

Which mechanism is used to add a question to qud does then not only
depend on whether successive questions are asked within a single turn. As
Ginzburg [10] and Asher [4] argue, following the Discourse Relations approach,3

when two questions are asked by the same speaker, how the second question gets
added to qud depends on its relation to the first one. Under this view, in the
first example of the this section, the discourse relation of Coordination is said
to hold between questions (1) and (2), while in the second example the relation
that holds between the questions is that of Query-extension. When Coordination
holds, the respondent can choose to answer the questions in any order. If, on the
oder hand, the questions are related by Query-extension, it is more appropriate
to answer the first question posed first.

When the last question asked takes precedence (as in the example in
Section 3), the relation that holds between the questions is that of Query-
elaboration. This can also happen when the queries are asked by a single speaker,
as the following dialogue (taken from [10]) shows:

A : (1) Who have you invited? [Q1]
A : (2) Have you invited Jill? [Q2]
B : (3) Yes. [A2]
A : (4) Aha. [Ack]
B : (5) I’m also inviting Merle and Tawfik. [A1]

All these examples show that, in order to determine the legality of a dialogue
move with respect to a given protocol, one also has to take into account complex
relations between the elements of the content language C. Integrating this kind
of conditions with our abstract model of protocols with memory is one of issues
we are currently investigating further.

6 Protocols with a blackboard

Our next example is inspired by work on argumentation in discourse modelling.
Argumentation-based protocols have recently been used to model different types
of dialogues (e.g. negotiation dialogues) between software agents [2]. Central to
this approach is the notion of a so-called commitment store [12]. For example,
asserting an argument amounts to placing that argument into one’s commitment
store. A retract move would then be considered legal only if the correspond-
ing argument can be found in the agent’s commitment store (and would itself

3During the last decade, inspired by the early work of Mann and Thompson [17], a lot
of attention has been paid to characterising the nature of Discourse Relations, i.e. coherence
relations that can hold between adjacent sentences, mostly in text/monologue (e.g. [3]), but
recently also in dialogue [5].

7



cause the respective argument to be deleted again). This kind of “blackboard
architecture” may be modelled in terms of a DFA-based protocol together with
a (finite) set (or possibly one set for each agent). Any utterances that may
affect the legality of utterances later on in a dialogue would be stored in this
set. In particular, this kind of architecture requires us to abstract from the
order in which utterances occur. We can only keep track of the fact that a given
utterance either has or has not been uttered in the past.

It is interesting to note that adding a set to a DFA does not increase ex-
pressive power provided we are working with a finite memory alphabet, because
the range of all possible configurations of the set component could be encoded
into a larger DFA.4 However, such a construction would result in an exponential
blow-up of the set of states; that is, a blackboard architecture can have very
practical advantages over a simple DFA-based protocol. In the literature on
argumentation systems, each agent is usually equipped with its own commit-
ment store. Again, while this is a convenient means of representation, working
with a DFA with more than one set does also not increase the expressive power
of the model, because the range of all possible configurations of the memory
components could be encoded explicitly within a larger DFA.

We also note here that, in contrast to the case of sets, enriching a DFA-based
protocol with a stack does result in an increase in expressive power, even if the
memory alphabet is required to be finite. This immediately follows from the fact
that pushdown automata are strictly more powerful than DFAs [16]. Further-
more, adding a second stack would again increase expressive power, because a
pushdown automaton with two stacks is equivalent to a Turing machine, which
is strictly more powerful than a simple pushdown automaton [16].

7 Protocols with a list

As a final example for a protocol with memory, we remark that systems pro-
viding access to (parts of) the dialogue history explicitly in order to check the
legality of an utterance may be modelled as DFA-based protocols together with
a finite list (by appending utterances to the end of the list as they occur in the
dialogue). This architecture allows us to keep track of relevant utterances and
the order in which they occur. In particular, a list-based representation enables
us to access any of the elements stored in memory at any time, and not just,
say, the element inserted last (as for stacks).

This is the most powerful protocol model we have discussed, because, given
the (full) dialogue history, it should—in principle—always be possible to specify
any conditions pertaining to the legality of an utterance. In fact, this is precisely
the thesis underlying the conventionalist approach to communication protocols

4The set of possible configurations of the blackboard is the power-set of the memory al-
phabet, i.e. it is also finite. We can therefore transform the original DFA by introducing a
new state for every pair of an original state and a configuration of the blackboard. If we
arrange the transition function accordingly, we obtain a new DFA (without explicit memory
component) that corresponds to the same protocol as the original automaton.

8



(in multiagent systems research): what is legal may only depend on publicly
observable facts. Of course, in computational terms, this model is also the
most costly one. Storing the entire dialogue history may not always be feasible.
Also, simply storing the history without making suitable abstractions (as in our
previous examples) does not seem particularly supportive for designing concise
protocols.

A DFA together with a list can be used to simulate a Turing machine. To see
this, recall that for any Turing machine we can construct a pushdown automaton
with two stacks that accepts the same language [16]. We can use the list to
encode two stacks as follows. At the beginning, the list is initialised with a
single special symbol that is different from any of the symbols in the memory
alphabet used for the rest of the simulation. Then, to push an element onto
the first stack we append that element to the beginning of the list; to push an
element onto the second stack we append it at the end of the list. Similarly,
popping the first stack means removing the first element of the list; popping
the second stack amounts to removing the final element of the list. Whenever
the first or the last element in the list is the special symbol used to initialise
the list, then the respective popping operation will fail (because the respective
stack would be empty).

8 Shallow protocols

So far we have concentrated on enriching the basic model of DFA-based protocols
to cater for a variety of complex dialogue phenomena. Where such phenomena
are not present, we may usefully restrict the model rather than extend it. Re-
cently, a class of so-called shallow protocols has been introduced in the context
of multiagent systems [6]. A shallow protocol is a protocol where the legality
of an utterance can be determined on the sole basis of the previous utterance
in the dialogue. For example, to express that any proposal by agent A must be
followed by either an acceptance, a rejection, or a counter proposal by agent B,
we may use the following shallow rule (omitting descriptions of the content of
an utterance for simplicity):5

A: propose → e(B: accept ∨ B: reject ∨ B: counter)

While such a simplistic approach to representing protocols will have little rel-
evance to natural language dialogue modelling, it can be of great interest in
the area of multiagent systems. As shown in [6], it is possible to check a priori
whether a given agent will behave in conformance to a given shallow protocol
by inspecting the agent’s specification, rather than just observing an actual di-
alogue at runtime (at least in the sense of the agent being guaranteed not to
utter anything illegal; guaranteeing that an agent actually utters anything at
all appears to be more difficult).

5The next-operator d (familiar from linear temporal logic [11]) refers to the next turn in
the dialogue.

9



A DFA-based protocol is shallow iff the value of the transition function δ
is always uniquely identifiable given only its second argument (the utterance).
An example for a non-shallow protocol would be a DFA where two edges with
the same label point to two different states. In principle, it is always possible to
turn a DFA-based protocol into a shallow protocol by renaming any duplicate
transitions.6 In a context where renaming is not acceptable, however, shallow
protocols really do determine a proper subclass to DFA-based protocols.

9 Conclusion

In this report, we have reviewed a variety of interesting features of dialogue as
they occur either in natural language interaction or in the context of multiagent
systems. These features have given rise to a number of different abstract models
for dialogue protocols. These protocols are based on the machine model of a
deterministic finite automaton, which we have further enriched with memory
components modelled as different abstract data types. In one case, we have
also seen that a restriction of the basic model can have useful applications. We
hope to have been able to point out interesting connections between issues in
dialogue modelling on the one hand, and well-known machine models from the
theory of computation on the other.

We should emphasise that our protocols with memory are abstract mod-
els that are intended to capture characteristic features of particular classes of
dialogues. In most cases, the full power of the theoretical model will not be
necessary to model actual human-human dialogues. For instance, pushdown
automata, which we have used to model the phenomenon of subdialogues in
Section 3, are only strictly more expressive than simple DFAs if the size of the
stack is not bounded (provided the memory alphabet is finite). However, one
may argue that humans will hardly ever use more than a relatively small num-
ber of levels of embeddings. In the case of communicating software agents this
bound may be higher, but for practical purposes it seems still very reasonable to
work with an upper bound on the number of elements that can be stored in the
stack. For all the ADTs that we have discussed in this paper, if the number of
elements that can be stored is bounded, then a DFA equipped with a respective
memory component is not more expressive than a simple DFA (again, provided
the memory alphabet is finite). We stress that this does not disqualify the idea
of working with memory-enriched protocols, however. A simple DFA together
with an ADT that structures relevant information in an appropriate manner
can be much more useful, from both a practical and a theoretical point of view,
then a single large and possibly rather cumbersome DFA.

6In fact, many of the simpler DFA-based protocols to be found in the multiagent systems
literature happen to be shallow or could at least be made shallow by renaming only a very
small number of transitions. In such cases, it seems advantageous to use the simpler model of
shallow protocols in the first place.

10



Acknowledgements. The work of the first and the second author is sup-
ported by UK ESRC grant RES-000-23-0065 and EC grant IST-2001-32530,
respectively. Thanks to Jonathan Ginzburg and Nicolas Maudet for helpful
comments and encouragement.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, 1983.

[2] L. Amgoud, N. Maudet, and S. Parsons. Modelling Dialogues using Argu-
mentation. In Proceedings of 4th International Conference on MultiAgent
Systems (ICMAS-2000). IEEE, 2000.

[3] N. Asher. Reference to Abstract Objects in English: A Philosophical Se-
mantics for Natural Language Metaphysics. Studies in Linguistics and Phi-
losophy. Kluwer Academic Publishers, 1993.

[4] N. Asher. Varieties of Discourse Structure in Dialogue. In Proceedings of
the Second International Workshop on Dialogue (Twendial), 1998.

[5] N. Asher and A. Lascarides. Questions in Dialogue. Linguistics and Phi-
losophy, 21:237–309, 1998.

[6] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol Conformance
for Logic-based Agents. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-2003), 2003. To appear.

[7] R. Fernández. A Dynamic Logic Formalisation of Inquiry-Oriented Dia-
logues. In Proceedings of the 6th CLUK Colloquium, Edinburgh, 2003.

[8] Foundation for Intelligent Physical Agents (FIPA). Communicative Act
Library Specification, 2002. http://www.fipa.org/specs/fipa00037/.

[9] J. Ginzburg. Interrogatives: Questions, Facts, and Dialogue. In S. Lappin,
editor, Handbook of Contemporary Semantic Theory. Blackwell Publishers,
Oxford, 1996.

[10] J. Ginzburg. A Semantics for Interaction in Dialogue. Forth-
coming for CSLI Publications. Draft chapters are available from
http://www.dcs.kcl.ac.uk/staff/ginzburg/.

[11] R. Goldblatt. Logics of Time and Computation. CSLI, 2nd edition, 1992.

[12] C. L. Hamblin. Fallacies. Methuen, London, 1970.

[13] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2nd edition, 2001.

11



[14] J. Kreutel and C. Matheson. Modelling Questions and Assertions in Dia-
logue Using Obligations. In Proceedings of Amstelog’99, the 3rd Workshop
on the Sematics and Pragmatics of Dialogue, Amsterdam, 1999.

[15] I. Lewin. The Autoroute Dialogue. TRINDI Deliverable, SRI International,
1998.

[16] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Compu-
tation. Prentice-Hall International, 2nd edition, 1998.

[17] W. Mann and S. Thompson. Rethorical Structure Theory: A Framework
for the Analysis of Texts. Technical Report RS-87-185, Information Systems
Institute, 1987.

[18] J. Pitt and A. Mamdani. A Protocol-based Semantics for an Agent Com-
munication Language. In Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI-1999). Morgan Kaufmann Pub-
lishers, 1999.

[19] M. P. Singh. Agent Communication Languages: Rethinking the Principles.
IEEE Computer, 31(12):40–47, 1998.

[20] D. Traum and J. Allen. Discourse Obligations in Dialogue Processing. In
Proceedings of the 32nd Annual Meeting of the ACL, 1994.

12


