
Towards a Hierarchy of Abstract Models for

Dialogue Protocols

Raquel Fernández∗ Ulle Endriss†

Abstract
In this paper, we examine a variety of dialogue protocols, taking inspiration
from two fields: natural language dialogue modelling and multiagent systems. In
communicative interaction, one can identify different features that may increase
the complexity of the dialogue structure. This motivates a hierarchy of abstract
models for protocols that takes as a starting point protocols based on determin-
istic finite automata. From there, we proceed by looking at particular examples
that justify either an enrichment or a restriction of the initial model.

1 Introduction

If we look at a corpus of real human-human dialogues, we find evidence of
frequently reoccurring sequences of utterance types. For instance, questions
are followed by answers and proposals are usually either accepted, rejected,
or countered. These interaction patterns have inspired a line of research whose
object of description is, broadly speaking, the rule-governed behaviour exhibited
by dialogue interaction.

Communication patterns are usually modelled by means of conventional
protocols, i.e. public conventions which specify the range of possible follow-
ups available to the participating agents. Although it is clear that epistemic
notions such as belief and knowledge, alongside intentions, contribute to an
agent’s actual responses, conventional protocols have nevertheless been shown
to be a powerful descriptive and explanatory means of formalising the rules
of encounter that characterise coherent interaction, both in natural language
dialogue as well as in dialogue between autonomous software agents.

The focus of this paper is on the formal properties of communication
protocols. We examine a variety of protocols, taking inspiration from two fields:
natural language dialogue modelling and multiagent systems. More specifically,
we restrict ourselves to conventional protocols that characterise the set of legal
continuations according to externally observable features, such as the agents’
actual utterances. In multiagent systems, protocols designed in accordance with
this criterion have recently been put forward by a number of authors (e.g. [14,

∗ Department of Computer Science, King’s College London, raquel@dcs.kcl.ac.uk
† Department of Computing, Imperial College London, ue@doc.ic.ac.uk



15]). This stands in marked contrast to the approach followed, for instance, by
FIPA [6] where legality conditions are explained in terms of the mental attitudes
of the agents participating in a dialogue.

As we shall see, in dialogue interaction one can identify several features
that increase the complexity of the dialogue structure in different ways. In our
approach, this variety of phenomena motivates a hierarchy of abstract models
for protocols. We do not claim that our classification subsumes the full range
of protocols one can find in the literature; instead the hierarchy is intended
as a classification that captures the relevant distinguishing features of different
dialogue phenomena. For the dialogues that we consider in this paper, utter-
ances are assumed to occur sequentially. This is a common assumption made
in natural language dialogue modelling, whereas multiagent systems research
has also tried to address concurrent communication. Also, our dialogues will
typically only involve two participants.

As a starting point, in Section 2, we take protocols that can be modelled by
deterministic finite automata. From there, we proceed by looking at particular
examples that justify either an enrichment or a restriction of the initial model.
In particular, in Section 3, we augment the basic model by a stack component to
be able to represent protocols that can handle embedded dialogues. This kind of
enrichment is generalised in Section 4 to a class of protocols with memory. The
subsequent sections discuss further instances of this class of models. In Section 5
we extend the model of Section 3 by introducing protocols with a stack of sets
to also account for compound moves within a single turn. Section 6 discusses
protocols with a simple set, which allow us to represent the kind of blackboard
architecture used in argumentation systems. The final example for our protocols
with memory are the protocols equipped with a list presented in Section 7. A
restriction of the basic automata-based model which allows for a simple logic-
based representation of protocols is given in Section 8. Finally, our conclusions
are presented in Section 9.

2 Protocols as finite automata

Deterministic finite automata (DFAs) have been widely used to represent com-
munication protocols, in particular in the area of multiagent systems. Pitt and
Mamdani [14] give several examples for such automata-based protocols. One of
them, the continuous update protocol, specifies a class of dialogues between two
agents A and B where A continuously updates B on the value of some propo-



sition. The following diagram provides an intuitive description of this protocol:

0HOINJMKL 1HOINJMKL 2HOINJMKL

3@GAFBECDHOINJMKL 4@GAFBECDHOINJMKL

+3 A: inform //

B: acknowledge

&&
ff

A: inform

B: end

��

A: end

��

This representation allows for a simple formalisation of the notion of legality of
an utterance at a given point in a dialogue. Given the current dialogue state q,
an utterance u constitutes a legal continuation of the dialogue iff there exists
a state q′ such that the automaton’s transition function maps the pair (q, u)
to q′. This type of protocols will provide the starting point for our proposed
classification of communication protocols.

3 Protocols that allow for subdialogues

DFA-based protocols have also been successfully used in natural language in-
teraction, usually under the name of conversational games (e.g. [12]). However,
some very common features of natural language dialogue cannot be captured by
a DFA. The following example shows a dialogue where several question-answer
sequences are embedded:

A : (1) Who should we invite? [Q1]
B : (2) Should we invite Bill? [Q2]
A : (3) Which Bill? [Q3]
B : (4) Jack’s brother. [A3]
A : (5) Oh, yes. [A2]
B : (6) OK, then we should invite Gill as well. [A1]

The presence of embedded subdialogues creates a structure that calls for an
enrichment of the DFA-based model. This can be modelled by adding a stack
to a DFA. In the example above, questions would get pushed onto the stack,
to be then popped by their respective answers. The machine model of a DFA
together with a stack corresponds to a pushdown automaton [13].

An example of a structuring mechanism able to handle this kind of phe-
nomena is Ginzburg’s qud (questions under discussion) [7, 8]. Simplifying a
little, in Ginzburg’s approach questions get introduced into qud and get down-
dated once they are answered. The qud plays a central role in determining the



possible responses to a given utterance, the general assumption being that the
turn-holder will address the top element in qud.

Another approach that provides a similar structuring mechanism is the
modelling of dialogue by means of discourse obligations [16, 11]. In this case,
the authors suggest that a question imposes an obligation on the addressee to
answer the question. Once the question is answered, the obligation is discarded.

4 Protocols with memory

Both discourse obligations and questions under discussion are examples for
abstractions from the full dialogue history. We only keep those parts of the
history that are relevant to the legality of future utterances, in a convenient
format. For the examples of the previous section, this format has been that of
a stack.

DFAs are abstract machines with a limited amount of memory (encoded
by the states of the automaton). Adding a (finite) stack as discussed earlier
amounts to enriching the automaton with an unlimited memory component.
Modelling this memory as a stack is just one of many options. Besides stacks,
we may consider a variety of abstract data types (ADTs) such as, for instance,
sets or lists [1]. We call the set of objects that can be stored in memory the
memory alphabet. Every ADT comes with a set of basic operations (push(x)
and pop in the case of a stack) and functions (top to return the top element on a
stack, for example). A recent formalisation of a complex protocol with memory
in dynamic logic (DL), namely a protocol for inquiry-oriented dialogues based
on Ginzburg’s dialogue gameboard [5], suggests that the usual DL program
constructors provide an adequate language to combine these basic operations.1

In the following sections, we are going to discuss several examples that
motivate different choices for ADTs as memory components on top of our basic
DFA-based model.

5 Protocols with a stack of sets

As some authors have noticed [8, 3], when successive queries are asked within
a single turn, a protocol with a simple stack is not always correct. This is illus-
trated by the following example (adapted from [3]):

1. In dynamic logic, complex programs can be constructed from basic ones (such as e.g. pop)
via the operations of composition (;), choice (∪), and iteration (∗) [9]. Additionally, the DL
programming language includes the test operator ? which may, for instance, be applied to
expressions over functions such as top provided by the ADT in question.



A : (1) Where were you on the 15th? [Q1]
A : (2) Did you talk to him after the incident? [Q2]
B : (3) I didn’t talk to anyone. [A2]
B : (4) I was at home. [A1]
B : (3’) I was at home. [A1]
B : (4’) I didn’t talk to anyone. [A2]

Dialogues as the one above show that when two or more questions are ut-
tered in succession by the same speaker, the respondent is sometimes allowed
to answer them in any order. In terms of our hierarchy of protocols with mem-
ory, such an architecture can be modelled using a DFA together with a finite
stack of sets. The questions under discussion that currently have maximal con-
versational precedence are those in the top set on the stack.

An interesting issue is what causes a question to be either inserted into
the maximal set of the stack or, alternatively, to be pushed on top of the stack
of sets. As Ginzburg [8] and Asher [3] argue, this depends on the relation of
that question to those that are already in the maximal set on the stack. For
instance, in the previous example the discourse relation of Coordination is said
to hold between questions (1) and (2), while in the earlier example the rela-
tion that holds between the questions is that of Query-elaboration. This shows
that, in order to determine the legality of a dialogue move with respect to a
given protocol, one also has to take into account complex relations between
the utterances occurring in a dialogue. Integrating this kind of conditions with
our abstract model of protocols with memory is an issues that requires further
investigation.

6 Protocols with a blackboard

Our next example is inspired by work on argumentation in discourse modelling.
Argumentation-based protocols have recently been used to model different types
of dialogues between software agents [2]. Central to this approach is the notion of
a so-called commitment store [10]. For example, asserting an argument amounts
to placing that argument into one’s commitment store. A retract move would
then be considered legal only if the corresponding argument can be found in
the agent’s commitment store (and would itself cause the respective argument
to be deleted again).

This kind of “blackboard architecture” may be modelled in terms of a
DFA-based protocol together with a (finite) set (or possibly one set for each
agent). Any utterances that may affect the legality of utterances later on in
a dialogue would be stored in this set. In particular, this kind of architecture
requires us to abstract from the order in which utterances occur. We can only



keep track of the fact that a given utterance either has or has not been uttered
in the past.

7 Protocols with a list

As a final example for a protocol with memory, we remark that systems pro-
viding access to (parts of) the dialogue history explicitly in order to check the
legality of an utterance may be modelled as DFA-based protocols together with
a finite list (by appending utterances to the end of the list as they occur in the
dialogue). This architecture allows us to keep track of relevant utterances and
the order in which they occur. In particular, a list-based representation enables
us to access any of the elements stored in memory at any time, and not just,
say, the element inserted last (as for stacks). Note that a DFA together with a
list can be used to simulate a Turing machine (the list may be thought of as
the machine’s tape).

This is the most powerful protocol model we have discussed, because,
given the (full) dialogue history, it should—in principle—always be possible to
specify any conditions pertaining to the legality of an utterance. In fact, this is
precisely the thesis underlying the conventionalist approach to communication
protocols (in multiagent systems research): what is legal may only depend on
publicly observable facts. Of course, in computational terms, this model is also
the most costly one. Storing the entire dialogue history may not always be fea-
sible. Also, simply storing the history without making suitable abstractions (as
in our previous examples) does not seem particularly supportive for designing
concise protocols.

8 Shallow protocols

So far we have concentrated on enriching the basic model of DFA-based pro-
tocols to cater for a variety of complex dialogue phenomena. Where such phe-
nomena are not present, we may usefully restrict the model rather than extend
it. Recently, a class of so-called shallow protocols has been introduced in the
context of multiagent systems [4]. A shallow protocol is a protocol where the
legality of an utterance can be determined on the sole basis of the previous
utterance in the dialogue. For example, to express that any proposal by agent
A must be followed by either an acceptance, a rejection, or a counter proposal
by agent B, we may use the following shallow rule:2

A: propose → e(B: accept ∨ B: reject ∨ B: counter)

While such a simplistic approach will have little relevance to natural language
dialogue modelling, it can be of great interest in the area of multiagent systems.

2. The next-operator d (familiar from linear temporal logic [9]) refers to the next turn in the
dialogue.



As shown in [4], it is possible to check a priori whether a given agent will
behave in conformance to a given shallow protocol by inspecting the agent’s
specification, rather than just observing an actual dialogue at runtime.

9 Conclusion

In this paper, we have reviewed a variety of interesting features of dialogue as
they occur either in natural language interaction or in the context of multiagent
systems. These features have given rise to a number of different abstract models
for dialogue protocols. These protocols are based on the machine model of a
deterministic finite automaton, which we have further enriched with memory
components modelled as different abstract data types. In one case, we have
also seen that a restriction of the basic model can have useful applications. We
hope to have been able to point out interesting connections between issues in
dialogue modelling on the one hand, and well-known machine models from the
theory of computation on the other.

We should emphasise that our protocols with memory are abstract mod-
els that are intended to capture characteristic features of particular classes of
dialogues. In most cases, the full power of the theoretical model will not be
necessary to model actual human-human dialogues. For instance, pushdown
automata, which we have used to model the phenomenon of subdialogues in
Section 3, are only strictly more expressive than simple DFAs if the size of the
stack is not bounded (provided the memory alphabet is finite). However, one
may argue that humans will hardly ever use more than a relatively small num-
ber of levels of embeddings. In the case of communicating software agents this
bound may be higher, but for practical purposes it seems still very reasonable to
work with an upper bound on the number of elements that can be stored in the
stack. For all the ADTs that we have discussed in this paper, if the number of
elements that can be stored is bounded, then a DFA equipped with a respective
memory component is not more expressive than a simple DFA (again, provided
the memory alphabet is finite). We stress that this does not disqualify the idea
of working with memory-enriched protocols, however. A simple DFA together
with an ADT that structures relevant information in an appropriate manner
can be much more useful, from both a practical and a theoretical point of view,
then a single large and possibly rather cumbersome DFA.

Acknowledgements. The work of the first and the second author is supported
by UK ESRC grant RES-000-23-0065 and EC grant IST-2001-32530, respec-
tively. Thanks to Jonathan Ginzburg and Nicolas Maudet for useful comments
and encouragement, and to the referees of the Tbilisi Symposium 2003 for their
helpful suggestions.



References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, 1983.

[2] L. Amgoud, N. Maudet, and S. Parsons. Modelling Dialogues using Argu-
mentation. In Proceedings of 4th International Conference on MultiAgent
Systems (ICMAS-2000). IEEE, 2000.

[3] N. Asher. Varieties of Discourse Structure in Dialogue. In Proceedings of
the 2nd Workshop on the Semantics and Pragmatics of Dialogue (Twen-
dial), 1998.

[4] U. Endriss, N. Maudet, F. Sadri, and F. Toni. Protocol Conformance for
Logic-based Agents. In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-2003). Morgan Kaufmann Publishers,
2003.

[5] R. Fernández. A Dynamic Logic Formalisation of Inquiry-Oriented Dia-
logues. In Proceedings of the 6th CLUK Colloquium, Edinburgh, 2003.

[6] Foundation for Intelligent Physical Agents (FIPA). Communicative Act
Library Specification, 2002. http://www.fipa.org/specs/fipa00037/.

[7] J. Ginzburg. Interrogatives: Questions, Facts, and Dialogue. In S. Lappin,
editor, Handbook of Contemporary Semantic Theory. Blackwell Publish-
ers, Oxford, 1996.

[8] J. Ginzburg. A Semantics for Interaction in Dialogue. Forth-
coming for CSLI Publications. Draft chapters are available from
http://www.dcs.kcl.ac.uk/staff/ginzburg/.

[9] R. Goldblatt. Logics of Time and Computation. CSLI, 2nd edition, 1992.
[10] C. L. Hamblin. Fallacies. Methuen, London, 1970.
[11] J. Kreutel and C. Matheson. Modelling Questions and Assertions in Di-

alogue Using Obligations. In Proceedings of the 3rd Workshop on the
Sematics and Pragmatics of Dialogue (Amstelog), 1999.

[12] I. Lewin. The Autoroute Dialogue. TRINDI Deliverable, SRI International,
1998.

[13] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Compu-
tation. Prentice-Hall International, 2nd edition, 1998.

[14] J. Pitt and A. Mamdani. A Protocol-based Semantics for an Agent Com-
munication Language. In Proceedings of the 16th International Joint Con-
ference on Artificial Intelligence (IJCAI-1999). Morgan Kaufmann Pub-
lishers, 1999.

[15] M. P. Singh. Agent Communication Languages: Rethinking the Principles.
IEEE Computer, 31(12):40–47, 1998.

[16] D. Traum and J. Allen. Discourse Obligations in Dialogue Processing. In
Proceedings of the 32nd Annual Meeting of the ACL, 1994.


