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Abstract

In preference aggregation a set of individuals express preferences over a set of al-

ternatives, and these preferences have to be aggregated into a collective preference.

When preferences are represented as orders, aggregation procedures are called social

welfare functions. Classical results in social choice theory state that it is impossible

to aggregate the preferences of a set of individuals under different natural sets of

axiomatic conditions. We define a first-order language for social welfare functions

and we give a complete axiomatisation for this class, without having the number of

individuals or alternatives specified in the language. We are able to express classical

axiomatic requirements in our first-order language, giving formal axioms for three

classical theorems of preference aggregation by Arrow, by Sen, and by Kirman and

Sondermann. We explore to what extent such theorems can be formally derived from

our axiomatisations, obtaining positive results for Sen’s Theorem and the Kirman-

Sondermann Theorem. For the case of Arrow’s Theorem, which does not apply in

the case of infinite societies, we have to resort to fixing the number of individuals

with an additional axiom. In the long run, we hope that our approach to formalisa-

tion can serve as the basis for a fully automated proof of classical and new theorems

in social choice theory.

Keywords: social choice theory, first-order logic, axiomatisability, preference ag-

gregation, automated reasoning

1 Introduction

Social choice theory is a branch of mathematical economics that is concerned with the

design and analysis of methods for collective decision making (Arrow et al., 2002; Gaert-

ner, 2006). Classical results in the field explore the possibility of aggregation in different

∗To appear in the Journal of Philosophical Logic; accepted in April 2012.
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settings. Perhaps the most famous one is Arrow’s Theorem (Arrow, 1963); it states that

it is impossible to aggregate the preferences of a finite set of individuals in a manner

that would satisfy a small number of natural properties. In recent years there has been

a growing interest in applications of logic to social choice theory (Endriss, 2011). In this

paper we present a formalisation of several results from social choice theory in classical

first-order logic (FOL). We define a language that enables us to formalise classical prop-

erties of aggregation procedures, we give axioms for various settings of aggregation, and

we explore to what extent certain classical impossibility theorems can be derived in this

formal framework.

There have been a number of recent contributions that address the formalisation

of theorems in social choice theory using a variety of logical frameworks (e.g., Pauly,

2008; Ågotnes et al., 2009; Wiedijk, 2007; Nipkow, 2009; Tang and Lin, 2009; Troquard

et al., 2011). There are several reasons for this broad interest in applying tools from

mathematical logic to social choice theory. The first of them is of course that the full

formalisation of a problem domain can help us gain a deeper understanding of that

domain. More specifically, in social choice theory, it can clarify the exact nature of the

assumptions that are being made to derive, for instance, a characterisation result (Pauly,

2008). Second, a complete formalisation together with an automatically derived (or

automatically verifiable) proof can give additional assurances for the correctness of a

result. As pointed out by Blau (1957), Arrow’s original proof contained an error; this

has been acknowledged and corrected in the second edition of Arrow’s book (Arrow,

1963). While there has been some discussion in the literature whether the standard

proofs have been worked out in sufficient detail (Nipkow, 2009), we certainly do not

want to suggest that the major results in social choice theory are not based on sound

foundations. However, for verifying newer and less well studied results, full formalisation

and automated reasoning could prove useful tools.

Previous work has discussed formalisations of Arrow’s Theorem in modal logic

(Ågotnes et al., 2009), dependence logic,1 and in the language of set theory (Wiedijk,

2007; Nipkow, 2009). Here we explore to what extent it is possible to model the frame-

work of preference aggregation in classical FOL. There are several reasons for focusing

on FOL: it is a natural language for speaking about linear orders, which are central to

the modelling of preferences, and the body of literature and results that a first-order for-

malisation enable us to apply is bigger than for most other logical systems. An informal

first-order language was also used already in the work of social choice pioneers like Arrow

and Sen,2 and it constitutes a well estabilished language that can be easily understood

1J. Väänänen (personal communication, 2009); see also (Väänänen, 2007).
2Arrow once took a course with Tarski (Burdman Feferman and Feferman, 2004).
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and used in the field of mathematical economics.

In this work we concentrate on three theorems, proved by Arrow (1963), Sen (1970)

and Kirman and Sondermann (1972). We are able to show that for two of these theorems

it is possible to completely describe the problem within a language of FOL based on the

language of orders. The exception is Arrow’s Theorem: for stating that it only applies

to the case of a finite number of individuals we have to instantiate the statement for a

fixed number of individuals (we will see that Arrow’s Theorem is equivalent to a certain

theory of FOL axioms not having a finite model). In particular, we will not require any

form of second-order quantification, which may seem surprising given that several of the

axioms used, for instance, in Arrow’s Theorem certainly have a “second-order flavour”.

Our axiomatisation draws on several ideas from an important recent paper by Tang

and Lin (2009). In this work, the two authors provide an alternative proof of Arrow’s

Theorem composed of two inductive mathematical lemmas and an automated proof of

the impossibility for the base case of 3 alternatives and 2 individuals. This last step is

performed utilising a propositional language based on situation calculus, constructing

computer-generated formulas that instantiate Arrow’s conditions. In our paper, we gen-

eralise this language to a complete axiomatisation of the Arrovian framework of social

welfare functions in classical FOL. We obtain a logical language that is both human-

readable and easy to implement, and we study its expressive power formalising several

classical impossibility theorems in the field of preference aggregation using this language.

The remainder of the paper is organised as follows. In Section 2 we recall the frame-

work of preference aggregation, stating the three theorems that constitute the object of

our analysis. In Section 3 we define a first-order language for preference aggregation

and we present first-order axioms for social welfare functions and for several conditions

introduced in the social choice literature. The models of these first-order theories are

studied in detail in Section 4, where we prove several axiomatisability results for the

theorems introduced in Section 2. Section 5 concludes and discusses some preliminary

results concerning the use of automated reasoning tools in this setting.

2 Social welfare functions and impossibility theorems

In this section we review the basic definitions of preference aggregation and we state

three famous theorems (Arrow, 1963; Sen, 1970; Kirman and Sondermann, 1972) that

we aim at formalising using a first-order language. We also present a recent proof method

based on induction, introduced by Tang and Lin (2009) to prove Arrow’s Theorem, and

we prove a generalisation of one of their lemmas.

Let N be a set of individuals expressing preferences over a set X of alternatives.
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We represent such preferences with a binary relation. In this paper we concentrate on

two representations of preferences: linear and weak orders. A binary relation is a linear

order if it is irreflexive, transitive and complete. The term aPib stands for “individual

i strictly prefers alternative a to alternative b”. The choice of a preference relation Pi

for each individual constitutes a preference profile P = (P1, . . . , Pn). A weak order is

a binary relation that is reflexive, transitive and complete. We will denote weak orders

with the letter R, thus aRib will stand for “individual i weakly prefers a to b” and

call R = (R1, . . . , Rn) a profile of weak orders. Note that every weak order R induces

an irreflexive and transitive binary relation, usually referred to as the strict part of R,

namely the relation that holds between a and b whenever aRb holds but bRa does not.

If we denote with L(X ) the set of all linear orders on X , then the set of all profiles

of (linear) preference orders is the set L(X )N . A social welfare function (SWF) for X
and N is a function w : L(X )N → L(X ). A SWF associates with every preference

profile P = (P1, . . . , Pn) ∈ L(X )N a linear order w(P ), which in most interpretations

is taken to represent the aggregation of the preferences of the individuals into a “social

preference order” over X . The same definition can be given using the set R(X ) of all

weak orders over X as the domain of aggregation, defining a SWF for N and X as a

function w : R(X )N → R(X ).

In most of the paper we shall assume that preferences are represented as linear orders,

and we give details in Section 3.3 for the generalisation of our first-order formalisation

to the case of SWFs defined on weak orders.

2.1 Arrow’s Theorem

Since the seminal work of Arrow (1963), social choice theory has made extensive use of

the axiomatic method to classify and study aggregation procedures. There are several

properties that an aggregation mechanism may satisfy, and some of them have been

argued to be natural requirements for a SWF. In this section we will concentrate on

three properties that have led Arrow to prove his famous theorem, stated here for the

case of linear orders:

• UN: A SWF w satisfies unanimity if, whenever every individual strictly prefers

alternative a to alternative b, so does society. Formally, if aPib for every individual

i ∈ N , then aw(P ) b.

• IIA: A SWF w satisfies independence of irrelevant alternatives if the social ranking

of two alternatives a and b depends only on their relative ranking by the individuals.

The formal condition is that, given two preference profiles P and P ′, if for every
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individual i ∈ N we have that aPib if and only if aP ′
i b, then aw(P ) b if and only

if aw(P ′) b.

• ND: A SWF w is non-dictatorial if there is no individual i ∈ N such that for every

profile P the social preference order w(P ) is equal to Pi.

It is important to note that in our definition of SWFs there are two hidden conditions

that could be stated as axioms, but that we have instead included as an integral part of

the formal framework of preference aggregation. The first is usually called unrestricted

or universal domain: it requires a SWF to be defined over all preference profiles in

L(X )N . Domain restrictions, such as single-peaked preferences (Black, 1948), are the

most common escape from Arrow’s impossibility (see, e.g., Gaertner, 2001). The sec-

ond hidden condition is called collective rationality, as it is first stated in Arrow (1963,

Chapter VIII, Section V). It requires the outcome of the aggregation to be a linear order,

i.e., it requires the outcome to conform to the same rationality constraints as the input

received from the individuals. Non-comparability or ties between alternatives are not

allowed for a SWF at the collective level.

We are now ready to state Arrow’s celebrated theorem:

Theorem 2.1 (Arrow, 1963). If X and N are finite and non-empty, and if |X | ≥ 3,

then there exists no SWF for X and N that satisfies UN, IIA and ND.

Various proofs of this theorem are known (Geanakoplos, 2005; Gaertner, 2006), and

several formulations can be found in the literature that differ in view of the assumptions

on individual and collective preferences that are being made (Taylor, 2005), starting from

Arrow’s original version for weak orders (Arrow, 1963). In Section 2.4 we present one

recent proof of this result that is based on induction.

2.2 Infinite societies

Given our interest in a logical formalisation of impossibility results such as Arrow’s

Theorem, we have to question the assumption of finiteness in Theorem 2.1. There are

two parameters in Arrow’s Theorem: the number of alternatives and that of individuals.

If we relax the assumption of finiteness for the set of alternatives X , then the statement

continues to hold.3 If instead the set of individuals is allowed to be infinite, then the

impossibility does not hold anymore: there exists a unanimous and independent SWF

that is also non-dictatorial on infinite societies, as has first been pointed out by Fishburn

3This result seems to be a folk theorem. We will nevertheless give a new proof of this generalisation
in Section 2.4.
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(1970). Independent and unanimous SWFs on infinite domains can nevertheless be

characterised, and a general form of Arrow’s Theorem be proved without restrictions on

the cardinality of N . This result is due to Kirman and Sondermann (1972), and we now

briefly review their theorem.

Call a subset J ⊆ N of individuals a winning coalition, if for every profile P and for

every pair of alternatives x, y, if xPjy for every j ∈ J then xw(P ) y. A winning coalition

can force the outcome of the SWF over x and y by voting unanimously over these two

alternatives.

Theorem 2.2 (Kirman and Sondermann, 1972). If a SWF satisfies UN and IIA, then

the corresponding collection J of winning coalitions is an ultrafilter over the set N .4

Arrow’s Theorem comes as a straightforward corollary, since every ultrafilter over a finite

set is principal, i.e., it contains a singleton {i} (Davey and Priestley, 1990). This means

that a coalition J is a winning coalition if and only if it contains i, which is therefore a

dictator.

2.3 Impossibility of a Paretian Liberal

The Arrovian framework of SWFs can be extended by adding individual “spheres of

influence” as a model for individual rights. This model was first proposed by Sen (1970),

who proved an impossibility result known as the Impossibility of a Paretian Liberal. We

follow here the presentation of this result by Gaertner (2006), adapting Sen’s Theorem

to the case of linear orders.

A rights system is a collection of pairs of alternatives for which an individual has

the power to influence the result of the SWF. Formally, let D be a function D : N →
P(X × X ), such that if (x, y) ∈ D(i) and xPiy then also xw(P ) y. Sen’s framework for

individual rights is composed of a SWF w and a rights system D. The conditions that

he argues to be minimal natural requirements for such a framework are the following:

• UN: A SWF w satisfies unanimity if, whenever every individual strictly prefers

alternative a to alternative b, so does society. Formally, if aPib for every individual

i ∈ N , then aw(P ) b (same condition as the one in Section 2.1).

• MINLIB: w is minimally liberal with respect to D if there exist two individuals

i1 and i2 such that they are decisive in both ways with respect to two alternatives

each, i.e., there exist two individuals i1 and i2 and four (not necessarily distinct)

4A collection of subsets J is an ultrafilter if it contains the full set, is closed under finite intersections,
and is maximal in the following sense: for every subset J of N , exactly one of J and its complement
Jc = N \ J is in J (Davey and Priestley, 1990).
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alternatives {x1, y1, x2, y2} such that both (x1, y1) and (y1, x1) are in D(i1) and

both (x2, y2) and (y2, x2) are in D(i2).

The Impossibility of a Paretian Liberal is the following theorem:

Theorem 2.3 (Sen, 1970). There is no SWF that satisfies UN and MINLIB.

The proof of this result is a straightforward reduction to a minimal case, and we present

here the main idea for the sake of comparison with the inductive proofs we will introduce

in the next section.

Proof. Suppose individual i1 is decisive over the pair (x1, y1) and individual i2 over

(x2, y2), and we assume that these 4 alternatives are pairwise distinct (the other cases

being easier to prove). Consider a profile P , where x1P1y1 and x2P2y2, and for both

i = i1 and i = i2 it is the case that y2Pix1 and y1Pix2. Then by MINLIB we have that

x1w(P )y1 and x2w(P )y2, and by UN that y2w(P )x1 and y1w(P )x2. This constitutes

a cycle of w(P ), contradicting our assumption that w(P ) is a linear order.

2.4 Inductive proofs

Recall that no assumption of finiteness was made to prove Sen’s Theorem, and the method

employed in this proof is a reduction from a general impossibility to the base case of two

individuals and four (or less) alternatives. We will now present a similar method devised

by Tang and Lin (2009) to prove Arrow’s Theorem. Tang and Lin (2009) prove Theo-

rem 2.1 by means of two inductive lemmas, reducing the general statement to the base

case of 3 alternatives and 2 individuals, and then verify this last step automatically with

a computer. The first lemma is the inductive step on the number of alternatives: “if there

exists a SWF for m+ 1 alternatives and n individuals that satisfies Arrow’s conditions,

then there exists a SWF for m alternatives and the same number of individuals that still

satisfies Arrow’s conditions.” The contrapositive of this lemma spreads the impossibility

from the base case to every finite set of alternatives: “if Arrow’s Theorem holds for the

case of 3 alternatives and n individuals, then it holds for every finite set of m alternatives

and n individuals”. We first generalise this result to also cover the case of an infinite

number of alternatives:

Lemma 2.4. If there exists a SWF w for X and N , with |X | ≥ 3, that satisfies UN,

IIA and ND, then there exists a set X ′ ⊆ X with |X ′| = 3 and a SWF for X ′ and N
that satisfies the same properties.
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Note that the contrapositive of Lemma 2.4 reads: “if Arrow’s Theorem holds for the case

of 3 alternatives and n individuals, then it also holds for any larger set X (including the

infinite case) and n individuals”.

Proof. Let X ′ = {a1, a2, a3} be any set containing three different alternatives in X . Every

linear order P over X ′ can be extended to a linear order P e over the whole set X (though

not in a unique way). Define a SWF w′ for X ′ and N in the following way:

xw′(P ) y :⇔ xw(P e) y

where P is a preference profile over X ′ and P e any extension of P to a preference profile

over X . By IIA this definition does not depend on the extension chosen. Furthermore, w′

remains unanimous and independent of irrelevant alternatives by definition. It remains

to be shown that w′ is non-dictatorial. Suppose the contrary: we prove that w would

then be dictatorial too, in contradiction with the assumptions. Let i be the dictator

for w′, and x and y two different alternatives in X , and suppose that xPiy in a certain

profile P . We now show that also xw(P ) y must hold, thus i is a dictator on every pair

of alternatives in X . The case where both x and y are in X ′ is trivial. We can therefore

restrict ourselves to the case where there are at least two distinct elements in X ′ different

from x and y, a1 and a2. Let individual i change her preference relation such that a1Pia2,

obtaining profile P ′. Let now every individual j (including i) rearrange her preference

such that xPja1 and a2Pjy, and call this profile P ′′. Both steps can be done without

affecting the initial ranking of x and y, thus by IIA xw(P ) y if and only if xw(P ′′) y.

By unanimity of w we have xw(P ′′) a1 and a2w(P ′′) y. Since i is a dictator relative to

X ′, it must be the case that a1w(P ′′) a2 holds, and thus by transitivity also xw(P ′′) y,

which as previously observed implies xw(P ) y.

The second lemma of Tang and Lin (2009) extends Arrow’s impossibility from the case

of two individuals to every finite set N . A generalisation to an infinite set N , analogous

to our Lemma 2.4, cannot be proved, for Arrow’s Theorem does not hold for infinite

societies, as we have seen in Section 2.2.

The proof methods presented in this section inspire a new terminology for properties

of SWFs. Let AX be a set of axioms or properties of SWFs. We say that AX has the

inductive property with respect to alternatives if an inductive proof like that of Tang

and Lin (2009) can produce a SWF satisfying AX for m− 1 alternatives starting from a

SWF satisfying AX for m alternatives. We can define the same property with respect to

individuals. If a certain set of axioms has the inductive property, then an impossibility

result over a minimal case will spread over SWFs of any finite size. We say that a
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set of axioms AX satisfies the finite model property (FMP) with respect to alternatives

(individuals) if from every SWF satisfying AX we can build a SWF over a finite set of

alternatives (individuals) that satisfies the same axioms. If this property hold we can

extend an impossibility result from the finite to the infinite case. Finally, putting these

two properties together, we have the reduction property : from any SWF satisfying AX

we can build another one that still satisfies the same axioms but with a set of alternatives

(individuals) of minimal size. The proof of Sen’s Theorem is a proof that the axioms

of unanimity and minimal liberalism have the reduction property for both alternatives

and individuals. Our Lemma 2.4 proves that the Arrovian axioms have the reduction

property for alternatives. The inductive lemma by Tang and Lin (2009) guarantees that

the same axioms have the inductive property with respect to individuals, but Fishburn

(1970) shows that they do not have the finite model property.

3 Language for axioms

In this section we present a formal system of axioms expressed in FOL to model the

social choice framework of preference aggregation. Our approach borrows several ideas

from Tang and Lin (2009), whose main concern, however, is a different one and who do

not provide a complete axiomatisation. We start by introducing a first-order language

and we provide axioms to reason about SWFs. We then formalise Arrow’s conditions

in this language and, in a slightly extended language, Sen’s conditions. We conclude by

generalising our axiomatisation to the case of weak orders.

3.1 A theory for social welfare functions

The first step is to define a theory capable of reasoning about SWFs. In Section 2 we

have introduced the main objects: individuals, alternatives and preference profiles. A

closer look at Arrow’s axioms suggests that if we aim at formalising such conditions

with a first-order language we must be able to quantify over all three objects separately.

While a unary predicate can serve the purpose by marking alternatives and individuals,

problems arise when dealing with quantification over all possible linear orders (the set

of preference profiles). At first sight this corresponds to a second-order quantification,

but exploiting the finiteness of the domain and the fact that two linear orders can be

generated from each other using a sequence of swaps, we are able to devise a version

of the condition of universal domain that holds on finite models. Following Tang and

Lin (2009), we introduce a set of “situations” and consider them as names for different

preference profiles. In our case the set of situations will be a subset of the domain marked
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by a unary predicate, allowing us to quantify over this set. We will indicate with P u the

preference profile associated with situation u. Call Lswf = {A(1), I(1), S(1), p(4), w(3)} the

relational first-order signature consisting of the following components:

• three unary predicates to mark alternatives (A), individuals (I), and situations (S).

• a predicate p of arity 4 to represent, given an individual z and a situation u,

the linear order P u
z associated with situation u. Orders are represented as binary

relations: p(z, x, y, u) indicates that individual z prefers x over y in situation u.

• a ternary relation w that stands for the SWF, producing the social preference

relation w(P u) for every situation u. w(x, y, u) translates as x is preferred over y

in the social order associated with situation u.

Formulas in this language express conditions for SWFs, and we now present an axioma-

tisation to characterise this class. We start from the axioms of linear order for p(z, ·, ·, u):

LINp: • I(z) ∧ S(u) ∧A(x) ∧A(y)→ (p(z, x, y, u) ∨ p(z, y, x, u) ∨ x = y)

• I(z) ∧ S(u) ∧A(x)→ ¬p(z, x, x, u)

• I(z) ∧ S(u) ∧A(x1) ∧A(x2) ∧A(x3) ∧
p(z, x1, x2, u) ∧ p(z, x2, x3, u)→ p(z, x1, x3, u)

All axioms presented in this section are to be considered universally closed; therefore

the first axiom should be read as: “for all z, u, x and y, if z is an individual, if u is a

situation, and if x and y are alternatives, then either individual z in situation u prefers x

to y, or she prefers y to x, or x is equal to y.” This is the completeness (or connectedness)

axiom, and the second and the third are the irreflexivity and transitivity axioms. Recall

that a situation u encodes a preference profile, so the quantification over S-variables is a

quantification over all preference profiles encoded in S. Further axioms will ensure that

these are all the logically possible profiles of linear orders over X . The analogous axioms

for w(·, ·, u) follow:

LINw: • S(u) ∧A(x) ∧A(y)→ (w(x, y, u) ∨ w(y, x, u) ∨ x = y)

• S(u) ∧A(x)→ ¬w(x, x, u)

• S(u) ∧A(x1) ∧A(x2) ∧A(x3) ∧ w(x1, x2, u) ∧ w(x2, x3, u)→ w(x1, x3, u)

These are axioms for collective rationality : they require the outcome of aggregation to

be a linear order. The next two sets of axioms guarantee that there are at least 3

different alternatives, that A, I and S are non-empty and that they form a partition of

the universe:
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MIN: • ∃x1.∃x2.∃x3.A(x1) ∧A(x2) ∧A(x3) ∧ ((x1 6= x2) ∧ (x1 6= x3) ∧ (x2 6= x3))

• ∃z.I(z)

• ∃u.S(u)

PART: • A(x)→ (¬I(x) ∧ ¬S(x))

• I(x)→ (¬A(x) ∧ ¬S(x))

• S(x)→ (¬I(x) ∧ ¬A(x))

• A(x) ∨ I(x) ∨ S(x)

The next two axioms restrict the arguments of p and w to be of the correct type:

DEF: • p(z, x, y, u)→ (I(z) ∧A(x) ∧A(y) ∧ S(u))

• w(x, y, u)→ (A(x) ∧A(y) ∧ S(u))

We now turn our attention to the encoding of the set of all preference profiles into the

set of elements marked by S. The first axiom guarantees that two distinct situations

cannot encode the same preference profile, thus the encoding of situations into preference

profiles must be injective:

INJ: S(u) ∧ S(v) ∧ u 6= v →
∃z.∃x.∃y.[I(z) ∧A(x) ∧A(y) ∧ p(z, x, y, u) ∧ p(z, y, x, v)]

To express the condition of universal domain in our language, and to be able to quantify

over the entire set of situations, we use another idea due to Tang and Lin (2009): identify

the set L(X ) with the symmetric group S(X ) of all permutations over X and generate

it via transpositions. This is the job of the next axiom:5

PERM: p(z, x, y, u)→ ∃v. {S(v) ∧ p(z, y, x, v) ∧
∀x1.[p(z, x, x1, u) ∧ p(z, x1, y, u)→ p(z, x1, x, v) ∧ p(z, y, x1, v)] ∧
∀x1.[(p(z, x1, x, u)→ p(z, x1, y, v)) ∧ (p(z, y, x1, u)→ p(z, x, x1, v))] ∧
∀x1.∀y1.[x1 6= x ∧ x1 6= y ∧ y1 6= y ∧ y1 6= x→ (p(z, x1, y1, u)↔ p(z, x1, y1, v))] ∧
∀z1.∀x1.∀y1. [z1 6= z → (p(z1, x1, y1, u)↔ p(z1, x1, y1, v))]}

The complexity of this axiom is largely due to the fact that linear orders are being

represented as binary relations. Given our representation of Pi not as a complete sequence

of elements in X but as a subset of X 2, we have to require that, given a situation u,

an individual z, and two alternatives x and y, there exists another situation v such that

(the following five items correspond to the five lines of the axiom):

• the relative positions of x and y have been switched in P v
z ;

5Observe that in this axiom the variables x1, y1, and z1 must be explicitly quantified, because they are
within the scope of an existential quantifier; the other variables x, y, z, and u are (as before) implicitly
bound by the universal closure of the axiom.
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• if an alternative x1 was between x and y in P u
z , then its relation with respect to x

and y is switched in P v
z ;

• if x1 was more preferred than x in P u
z , then in v it is more preferred than y (and

thereby also x); if it was less preferred than y in P u
z , then in v it is less preferred

than x (and thereby also y).

• for every pair of alternatives different from x and y the relative ranking is copied;

• P v
z′ = P u

z′ for every individual z′ 6= z.

Call Tswf the theory composed of all the axioms above. In Section 4 we will prove a

completeness result with respect to the class of models that can be constructed from

SWFs, providing a formal argument to the claim that Tswf characterises the class of

SWFs. It is worth noting that some of our axioms, such as PART or INJ, are not

strictly required. Including these axioms gives us more “control” in the resulting models

and improves the readability of the axiomatisation.

3.2 Arrow’s axioms

We are now able to formalise the conditions that lead to Arrow’s impossibility result.

Adding to Tswf the next three axioms we obtain a theory that we shall call Tarrow:

UN: S(u) ∧A(x) ∧A(y)→ [(∀z.(I(z)→ p(z, x, y, u)))→ w(x, y, u)]

IIA: S(u1) ∧ S(u2) ∧A(x) ∧A(y) →
[∀z.(I(z)→ (p(z, x, y, u1)↔ p(z, x, y, u2)))→ (w(x, y, u1)↔ w(x, y, u2))]

ND: I(z)→ ∃x.∃y.∃u.[S(u) ∧A(x) ∧A(y) ∧ p(z, x, y, u) ∧ w(y, x, u)]

Let us analyse in detail the axiom of independence of irrelevant alternatives. The first

universal quantification provides us with two generic situations u1 and u2 and two alter-

natives x and y. The main implication then states that if all individuals do not change

their preference about x and y when moving from situation u1 to u2, then the social

outcome w(x, y, u1) in the first situation must be the same as w(x, y, u2). On a finite

set X of alternatives the permutation axiom guarantees that this applies to all logically

admissible profiles.

Several weaker versions of the axiom of independence have been proposed in the lit-

erature, in an attempt to escape Arrow’s impossibility result. An axiomatisation of these

frameworks can be obtained by simply replacing the axiom of independence presented

in this section with a formalisation of the weaker version. For instance, the notion of

ternary and m-ary independence proposed by Blau (1971) can be expressed in our lan-
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guage by modifying appropriately the antecedent of the current formalisation, to account

for three (or more) alternatives.

3.3 Weak orders and general aggregation procedures

Arrow’s Theorem was initially formulated for weak orders (Arrow, 1963), and in this

section we provide a suitable modification of Tswf to cover this and more general cases.

To allow for ties in the preferences of the individuals the first axioms to be modified

are that of linear order LINp, changing irreflexivity into reflexivity:6

WEAKp: • I(z) ∧ S(u) ∧A(x) ∧A(y)→ (p(z, x, y, u) ∨ p(z, y, x, u) ∨ x = y)

• I(z) ∧ S(u) ∧A(x)→ p(z, x, x, u)

• I(z) ∧ S(u) ∧A(x1) ∧A(x2) ∧A(x3) ∧
p(z, x1, x2, u) ∧ p(z, x2, x3, u)→ p(z, x1, x3, u)

The same can be done for collective rationality formalised in LINw. Things get more

complicated for what concerns the coding of situations. While the axiom INJ can be

kept without modifications, the axiom of permutation has to be significantly changed

to be able to construct the whole set of weak orders from a single situation. This can

be done in the following way. First introduce an axiom that states the existence of a

preference profile where all individuals are indifferent over all alternatives:

PERM1: ∃u.S(u) ∧ (∀z.∀x.∀y. I(z) ∧A(x) ∧A(y)→ p(z, x, y, u))

The second step is to modify the permutation axiom to enable us to separate indifferent

alternatives, putting one of the two at the bottom of the order:

PERM2: • p(z, x, y, u) ∧ p(z, y, x, u)→ (

∃v1. {S(v1) ∧ ∀x1.[(x1 6= y)→ p(z, x1, y, v1) ∧ ¬p(z, y, x1, v1)] ∧
∀x1.[x1 6= y → p(z, x, x1, v1)↔ p(z, x, x1, u)] ∧
∀x1.∀y1.[x1 6= x ∧ x1 6= y ∧ y1 6= y ∧ y1 6= x→ (p(z, x1, y1, v1)↔ p(z, x1, y1, u))] ∧
∀z1.∀x1.∀y1. [z1 6= z → (p(z1, x1, y1, v1)↔ p(z1, x1, y1, u))]} ∧

∃v2.{S(v2) ∧ ∀x1.[p(z, x1, y, v2)] ∧ ∀x1[(∀x2 p(z, x2, x1, u))↔ p(z, y, x1, v2)] ∧
∀x1.[x1 6= y → p(z, x, x1, v2)↔ p(z, x, x1, u)] ∧
∀x1.∀y1.[x1 6= x ∧ x1 6= y ∧ y1 6= y ∧ y1 6= x→ (p(z, x1, y1, v2)↔ p(z, x1, y1, u))] ∧
∀z1.∀x1.∀y1. [z1 6= z → (p(z1, x1, y1, v2)↔ p(z1, x1, y1, u))]})

The first part of the axiom separates alternatives x and y that were clustered together,

6We will not change the name of the predicate p in the language, interpreting it as representing
preference (weak or strict).
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and sends y to the bottom of the order making it strictly dominated by every other alter-

native. The second part does the same job, but clusters y together with the alternatives

that constituted the bottom of the initial situation u. It is easy to see that in this way we

can generate all weak orders over a finite set of alternatives. At last, Arrow’s conditions

have to be adapted to conclude the axiomatisation of the framework. This can easily be

done, paying particular attention to the unanimity axiom that is usually stated for the

“strict part” of the order Ri (recall that a is strictly preferred to b iff aRb and ¬bRa).

Analogously to what we have done for the case of weak orders, the definition of a

SWF can be modified to cover the case of preferences represented as partial orders in the

social output. More generally, we call aggregation procedure a function that associates a

collective binary relation over X with a profile of binary relations over the same set X
supplied by the individuals. This is the case of SWFs, where both input and output of

the function are linear (or weak) orders. As we have seen in this case, with a suitable

modification of the axioms LINp and LINw we can control, respectively, the properties

of individual and collective preference relations. For instance, by removing the axiom

of completeness from LINw we obtain SWFs which output an incomplete ranking of

the alternatives. While classical social choice theory concentrates on total preference

relations, either weak or linear orders, partial orders are attractive for both theoretical

and computational reasons, for instance when the set of alternatives is too large to enable

individuals to compare each pair of alternatives (Pini et al., 2009).

The main drawback of this approach is that a new axiom generating a universal

domain, corresponding to PERM, has to be devised for any such system. In Section 4.4

we take one step further, proving that the condition of universal domain for linear orders

(on both finite and infinite domains) is not first-order axiomatisable.

3.4 Sen’s framework of individual rights

In this section we provide additional axioms to formalise Sen’s framework of individual

rights. The language Lswf has to be enriched with a new predicate d to represent

decisive sets, obtaining the following signature Lsen = {A(1), I(1), S(1), p(4), w(3), d(2)}.
The interpretation of these symbols is the same as for Lswf, with d representing the

decisive sets of player i in the following way: d(i, x, y) holds iff (x, y) ∈ Di.

We now define the theory Tsen by adding to the theory Tswf three axioms. First,

since the relation d encodes the decisive sets of the individuals, in the next set of axioms

we state that decisive sets are symmetric (if (x, y) ∈ Di then (y, x) ∈ Di), irreflexive (if

(x, y) ∈ Di then x 6= y), and in analogy to p and w we require its arguments to be of the

correct type. The final axiom in the following list encodes the meaning of decisiveness
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by relating d to the SWF w.

DEC: • I(z) ∧A(x) ∧A(y) ∧ d(z, x, y)→ d(z, y, x)

• I(z) ∧A(x)→ ¬d(z, x, x)

• d(z, x, y)→ (I(z) ∧A(x) ∧A(y))

• d(z, x, y)→ ∀u.p(z, x, y, u)→ w(x, y, u)

Second, we formalise the conditions of Sen’s Theorem:

UN: • S(u) ∧A(x) ∧A(y)→ [∀z.(I(z)→ p(z, x, y, u))→ w(x, y, u)]

MINLIB: • ∃z1.∃z2.∃x1.∃y1.∃x2.∃y2.[(d(z1, x1, y1) ∧ (d(z2, x2, y2) ∧ (z1 6= z2)]

The first axiom, UN, is the same axiom of unanimity as for the Arrovian framework,

and the second axiom, MINLIB, formalises minimal liberalism, stating that for at least

two distinct individuals there are two alternatives on which they are decisive.

3.5 Formalisations in other logical languages

While we are not aware of any other work exploring the limits of classical FOL in ex-

pressing the Arrovian framework of SWFs, there have been several contributions to the

literature making proposals for a full formalisation of Arrow’s Theorem, using a variety

of logical frameworks. In this section, we briefly review some of them.

A number of results in social choice theory have been proved by Tang (2010) using

the inductive method we sketched in Section 2 (see also Lin (2007) for a more general

view). Tang and Lin (2009) use a formalisation in the style of the Situation Calculus

to model and ultimately automatically prove or even discover theorems in social choice

theory. This language proves very useful for the purpose of automatically checking base

cases of theorems such as Arrow’s. In these small domains it is possible to list all

instances of their formalisation of the axioms in propositional logic, and later check the

(un)satisfiability of these formulas using a SAT solver. While our first-order language

borrows several ideas from their approach, it constitutes a language in the logical sense of

this term, and enables us to study results concerning axiomatisability and expressivity.

Moreover, our language requires less mathematical fatigue to support the automation,

since no inductive lemmas have to be proven before an implementation can take place.

In addition to that, it does not require us to specify the number of alternatives and of

individuals explicitly in the language. On the other hand, as we shall briefly discuss in

Section 5, automatically proving an impossibility theorem from axioms expressed in our

language, while possible in principle, is highly demanding in practice.

Second-order logic of orders is the natural candidate to write axioms like PERM,

and it has indeed been employed by Nipkow (2009) and Wiedijk (2007) to formalise the
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proof of Arrow’s Theorem using automatic theorem checkers like Mizar and Isabelle. In

Section 5 we review this approach more in detail.

The labelling of variables with unary predicates like I, S and A immediately sug-

gest an alternative formalisation in many-sorted first-order logic (Enderton, 1972). This

approach has been followed by Geist and Endriss (2011) in the related field of ranking

sets of objects, i.e., the study of how to extend preferences from alternatives to set of

alternatives, and provides a more readable axiomatisatisation.

Ågotnes et al. (2009) and Troquard et al. (2011) develop modal logics for expressing

concepts from social choice theory, including Arrow’s Theorem. In the first paper the

authors provide a modal framework capable of reasoning about preference and judgment

aggregation, providing a formal proof in their language of a key lemma in the proof of

Arrow’s Theorem. The second work concentrates on social choice functions (i.e., pro-

cedures that associate a subset of alternatives to every profile), and provides a sound

and complete axiomatisation of this class. The authors present logical formalisations of

several axioms, with a focus on strategy-proofness. Both these approaches obtain inter-

esting and useful results for the specification and verification of properties of aggregation

procedures. However, the logical systems they introduce are specifically built for this

purpose, and their potential for a full formalisation of impossibility theorems is limited

by the fact that the number of individuals is fixed in their language.

A formalisation in dependence logic has been sketched by Väänänen (personal com-

munication, 2009). It represents an interesting approach in which it relates the Arrovian

axiom of independence of irrelevant alternatives with concepts of dependence embed-

ded in this logic. The drawback of this axiomatisation is, again, that the number of

alternatives and of individuals appears explicitly in the axioms.

4 Formalisation of impossibility theorems

In Section 3 we have referred to Tswf as the theory of SWFs, and in this section we justify

this choice by proving that Tswf axiomatises the class of SWFs. Using the terminology

introduced by Pauly (2008), we prove that Tswf absolutely axiomatises the set of SWFs,

i.e., a model for Lswf represents a SWF if and only if it satisfies the theory Tswf. To

be precise, this is true for the finite case. In the general case, Tswf axiomatises a set

of partial SWFs defined on subdomains satisfying a certain condition of closure. This

translates in the finite case into an absolute axiomatisation of all SWFs. To do so we

will associate with every SWF w a model Mw of Tswf, and then prove a completess

result. This enables us to determine precisely to what extent the three theorems we have

introduced in Section 2 can be formally derived from our axioms. We shall assume for
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the rest of the section that the set of alternatives is non-empty and contains at least 3

elements, and that the set of individuals is non-empty.

A model of Tswf is a structure M = (M,A, I, S, p, w), specifying the interpretation

of every symbol in the language presented in Section 3.

Definition 4.1. If w is a SWF for X and N , then Mw is the following Lswf-model:

(i) the universe M = X tN t L(X )N , the disjoint union of the sets corresponding to

the three unary predicates A, I and S (in particular the set S is equal to the set of

all preference profiles L(X )N );

(ii) (z, x, y, u) ∈ p⇔ xP u
z y, where P u

z is the preference relation of z in profile u; and

(iii) (x, y, u) ∈ w ⇔ xw(P u) y.

If X is finite, then the resulting model Mw is unique. In the case where X is infinite,

on the other hand, this is not the only model that can be built from w. To obtain a full

characterisation we need the following definition:

Definition 4.2. Given a set X , let S(X ) denote the set of permutations over X . A

transposition is a permutation that switches just two elements of the set. G ⊆ S(X ) is

closed under transpositions if whenever g ∈ G, g ◦ τ ∈ G for every transposition τ .

Observe that if X is finite, then the only subset of S(X ) closed under transpositions is

S(X ) itself.

Let now w be a SWF on an infinite set of alternatives X . We have already remarked

that we can identify the set L(X ) with the set S(X ) of all permutations over X . With

every choice of Gi ⊆ S(X ) closed under transpositions for every individual i ∈ N we can

associate a model of Tswf, using the same construction as in Definition 4.1, except that

the set of situations is now the Cartesian product S =
∏

i∈N Gi. In the finite case this

definition boils down to Definition 4.1, because L(X ) is the only possible choice for Gi

for every individual. The following completeness result shows that these are all possible

models of Tswf:

Proposition 4.3. M |= Tswf if and only if there exist two non-empty sets X and N ,

with |X | ≥ 3, and a SWF w for X and N such that M =Mw.

Proof. It is easy to prove that Mw is a model of Tswf. By definition, for every z and u

the relations p(z, ·, ·, u) and w(·, ·, u) are linear orders over X , so the LINp axioms are

satisfied as well as LINw. The axioms MIN, PART and INJ are valid by virtue of

items (i) and (ii) in Definition 4.1. The set of situations S is either the set of all preference

profiles or a Cartesian product
∏

i∈N Gi of subsets of L(X ) closed under transpositions.

This is sufficient to validate axiom PERM. To see this, let u be a situation in S and

17



i an individual, and consider for every pair of alternatives the linear order obtained

by switching these two alternatives in the order of individual i in situation u. This

procedure is equivalent to composing an element in Gi (the order of individual i in u)

with a transposition. Since Gi is closed under transpositions, the new profile we obtain

is still an element of S, i.e., there exists a situation v that represents it. Thus, the axiom

of permutation is satisfied.

Suppose now thatM |= Tswf. We can define the two sets N and X as the subsets of

the universe indicated by the unary predicates. With every element in S we can associate

a preference profile, the one encoded by the relation pM. From the relation wM we can

define a partial SWF, whose domain is the set of all preference profiles encoded in S, a

subset G ⊆ L(X )N . By PERM, if we take the projection of G on every component i,

denoted with Gi, we obtain a set of linear orders that is closed under transpositions: for

every individual i, if g ∈ Gi then g composed with every transposition (a swap of a pair

of alternatives) is still in Gi. Thus G is of the form
∏

i∈N Gi, and M =Mw as defined

in Definition 4.1.

4.1 Arrow’s Theorem

As we have seen, if the set of alternatives is finite we can associate a unique SWF with

every model of Tswf. Therefore, by virtue of Proposition 4.3, we can restate Arrow’s

Theorem as follows:

Theorem 4.4. Tarrow has no finite models.

Despite its theoretical interest, a result like Theorem 4.4 is of little practical use for a

potential application to automated reasoning. What should be sought is a formalisation

of Arrow’s theorem in a sentence that can be derived formally from our theory. The

first attempt of proving the inconsistency of Tarrow fails, because Arrow’s Theorem does

not hold in the case of an infinite number of individuals, as we have seen in Section 2.2.

(The issue of an infinite number of alternatives, on the contrary, is fully resolved by

Lemma 2.4.) Fishburn’s result (Fishburn, 1970) translates in our framework into the

existence of an infinite modelM of Tswf such thatM |= (UN∧ IIA∧ND). Since there

is no first-order formula that characterises finite models (see e.g. Enderton (1972)), we

have to somehow circumvent this problem.

One possibility is to give up some generality and to fix the number of individuals

with a set of additional axioms. Call Tn
swf the theory composed of all axioms of Tswf

plus the following axiom:

∃z1, . . . , zn.I(z1) ∧ · · · ∧ I(zn) ∧ (
∧

k 6=j zk 6= zj) ∧ [I(z)→ (z = z1) ∨ · · · ∨ (z = zn)]
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With a proof analogous to that of Proposition 4.3 we obtain a completeness result for

Tn
swf with respect to SWFs defined for a set N of n individuals. Now the following

proposition holds:

Proposition 4.5. If w is a SWF for X and N with |X | ≥ 3 and |N | = n, and if Mw

is the corresponding model, then Mw |= ¬(UN ∧ IIA ∧ND). Therefore, for every n,

Tn
swf ` ¬(UN ∧ IIA ∧ND).

Proof. If the number of alternatives is finite, then the first part of this result is a direct

consequence of Arrow’s Theorem. In case there are an infinite number of alternatives, we

can resort to a proof similar to that of Lemma 2.4 to reduce a model Mw, constructed

from a SWF w, to a base model for only 3 alternatives that agrees with the initial model

on the three Arrow’s conditions. The key observation is that in the proof of Lemma 2.4

we never used the condition of universal domain in its full generality: every time we

defined a new profile, it was always constructible with a finite sequence of switches

between pairs of alternatives. The condition of closure under transpositions therefore

guarantees that the result extends to every Mw defined on a finite set N . Since the

conjunction of Arrow’s conditions is falsified on the base model, then it is falsified also

on the initial model constructed on an infinite number of alternatives. The second part

of the statement follows by completeness of FOL.

4.2 The Kirman-Sondermann Theorem

To formalise the Kirman-Sondermann Theorem we have to first encode in our language

the statement that the set J of “winning coalitions” is an ultrafilter:

• N ∈ J : [∀z.I(z)→ p(z, x, y, u)]→ w(x, y, u)

• Closure under intersections: w(x, y, u1) ∧ w(x, y, u2)→
[(∀z.I(z)→ (p(z, x, y, u1) ∧ p(z, x, y, u2)↔ p(z, x, y, v)))→ w(x, y, v)]

• Maximality: [∀z.I(z)→ (p(z, x, y, u)↔ ¬p(z, x, y, v))]→ (w(x, y, u)↔ ¬w(x, y, v))

Call UF the conjunction of these axioms. It is important to note that these axioms

characterise the notion of ultrafilter for this particular framework only. We now prove

the following restatement of the Kirman-Sondermann Theorem:

Theorem 4.6. Tswf ∪ {UN,IIA} ` UF:

Proof. We will prove that all models Mw of Tswf ∪ {UN, IIA} verify all axioms in

UF, and conclude using completeness of FOL to obtain provability. By the Kirman-

Sondermann Theorem, if w satisfies UN and IIA then the collection of winning coalitions
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is an ultrafilter. Let thenMw be a model built from w. The first axiom of UF is clearly

satisfied, since the SWF is unanimous. The second axiom states that whenever in two

situations x is ranked higher than y, then in every other situation, if the intersection of

the individuals who ranked x higher than y in the two previous situations continue to

do so, then x should still be ranked higher than y . This axiom is valid by closure under

intersections of the set of winning coalitions of w. The only detail requiring attention is

that Mw could be defined over a (transposition-closed) subset of the universal domain.

This constitutes no problem, as no axioms require the existence of particular profiles.

With similar reasoning we can prove that the last axiom of maximality is also valid.

Note that the condition of non-dictatorship included in Tarrow corresponds to requiring

the ultrafilter to be free (i.e., non-principal): the existence of a dictator is equivalent to

characterising the set of winning coalitions as those subsets containing an element i of

N . This gives a formal proof that the set of winning coalitions under Arrow’s conditions

must be a free ultrafilter. Since it is not possible to build a free ultrafilter over a finite set

(Davey and Priestley, 1990), we get an indirect formalisation of the argument presented

by Fishburn (1970): if a SWF satisfies UN, IIA and ND, then the number of individuals

must be infinite.

4.3 Sen’s Theorem

The case of Sen’s Theorem is easier. The theorem does not presuppose the finiteness of

the domain of aggregation, and its proof works by reduction: given a SWF satisfying Sen’s

axioms, by restricting this function to the two decisive individuals on to a restricted set

of three alternatives we derive a contradiction. The proof of Proposition 4.3 can be easily

adapted to Sen’s framework, and Theorem 2.3 is therefore equivalent to the following:

Theorem 4.7. Tsen is inconsistent (it has no models).

We conclude this section with some general statements about the formalisation of axioms

for SWFs. Using the terminology introduced in Section 2.4, we can state that if a set

of axioms has the reduction property with respect to both alternatives and individuals,

then an impossibility result corresponds to the theory formalising these axioms being

inconsistent (cf. Sen’s Theorem). If they only satisfy the inductive property instead, an

impossibility result corresponds to the inconsistency of the theory in the finite case (cf.

Arrow’s Theorem). In the other direction, exploiting results in logic to obtain properties

of the axiomatic requirements, the finite model property of a set of axioms could be

obtained by analysing the shape of the first-order formulas used to translate them (see,

e.g., Ebbinghaus and Flum, 1999).
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4.4 Universal domain

In Section 3 we put forward two axioms to formalise the condition of universal domain

for linear and weak orders. These axioms are rather complex, and rely heavily on the

assumption of finiteness of a model to generate all possible profiles of preferences. In

this section we prove a non-axiomatisability result for the class of SWFs satisfying the

axiom of universal domain over arbitrary sets of alternatives, thus justifying our choice

of the axiom PERM as the best approximation to formalise the condition of universal

domain in our first-order language.

If M is a model of Tswf, we say that M satisfies the condition of universal domain

if for every possible profile of linear orders there is a situation u that encodes it. Call U
this class of models. What we seek is a Lswf-formula ϕ that axiomatises this class. This

turns out to be impossible, as we show next:

Proposition 4.8. There is no Lswf-formula ϕ such that for all models M of Tswf,

M |= ϕ if and only if M satisfies the condition of universal domain. That is, the classs

U is not Lswf-axiomatisable.

Proof. For the sake of contradiction, suppose such a formula ϕ does exist. Since Lswf is

finite, using the downward Löwenheim-Skolem Theorem, we can construct a countable

model M1 of Tswf ∪ ϕ. Recall that the universe of M1 is partitioned into three sets

X1, N1 and S1. Let X1 be the set of elements of M1 marked by predicate A. If X1 is

finite, then the set L(X1) of all linear orders over X1 is also finite. The universal domain

L(X1)
N1 can therefore be either finite, if N1 is also finite, or uncountable in the case of

an infinite set of individuals. Since S1 encodes the universal domain andM1 is countable

we conclude that X1 cannot be finite. Suppose then that X1 is countable. Then the set

L(X1) is not countable. (This can be seen in the following way: every countable ordinal

induces a non-isomorphic linear order over X1, therefore the cardinality of L(X1) is at

least the cardinality of β1, which is uncountable.)7 This is a contradiction, since M1 is

countable and S1 is a subset of the domain of M1.

5 Conclusion

In this work we have presented a first-order axiomatisation of social welfare functions,

formalising successfully three important results in social choice theory. First, we have

presented a first-order language and a theory for SWFs, we have formalised Arrow’s

conditions, and we have extended the language to cover the model of individual rights

7More precisely, ℵ1 = |ω1| ≤ |L(X1)| ≤ |P(X1 ×X1)| = 2ℵ0 .
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proposed by Sen (1970). We have been able to reduce non-trivial conditions to first-order

statements, such as independence of irrelevant alternatives and the universal domain

condition. A thorough study of the formalisation of the universal domain condition has

been carried out throughout the paper, especially in Section 3.3 and Section 4.4, to cover

the case of weak orders and of general sets of alternatives. In Section 4 we have focused

on three famous theorems in social choice theory, namely those of Arrow (1963), Sen

(1970), and Kirman and Sondermann (1972). We have explored to which extent they can

be formalised and formally derived from the first-order axioms presented in Section 3.

Sen’s Theorem stands out as the easiest case, whose proof (a reduction proof, using

the terminology introduced in Section 2.4) enables us to state an easy correspondence

between the original statement and the inconsistency of the FOL axioms formalising

Sen’s conditions. For the case of Arrow’s Theorem we have solved the issue of an infinite

number of alternatives by proving Lemma 2.4, which reduces the impossibility to the case

of 3 alternatives. Arrow’s statement is therefore equivalent to the unsatisfiability of our

axioms in finite models. We have also proved that, if the number of individuals is fixed in

our language, then there is a formal derivation of Arrow’s Theorem from our axioms. For

the most general case of a possibly infinite number of individuals we have proved that a

statement inconsistent with the assumption of an infinite society can be formally derived

from Arrow’s conditions, formalising in this way the Kirman-Sondermann Theorem. In

Section 3.5 we have discussed related work that deals with formalising results in social

choice theory in languages other than FOL.

Here lies the first of several ideas for future work. A comparison study between

our formalisation and that in stronger logics or languages might lead to the use of more

powerful theoretical results, for instance from model theory. A closer study of the relation

between finite model properties and the “shape” of some of our axioms might lead to

simpler proofs of our axiomatisability results, and might lead to interesting results by

using methods from descriptive complexity theory (Ebbinghaus and Flum, 1999). In this

direction, interesting connections with the work of Herzberg and Eckert (2012) might be

expected.

The results proved in Section 4 support the belief that automated reasoning can play

a role in proving theorems of social choice theory, and we carried out some preliminary

experiments using an automated theorem prover. The system we have chosen is Prover9,

the successor of the well-known and widely used Otter theorem prover (McCune, 2003).

The task of writing an input file containing our axiomatisation does not pose a serious

challenge, thanks to the simplicity of the syntax and the high readability of our axioms.

However, to date we have not been able to automatically prove the theorems formalised in

this paper. It is very likely that a suitable reformulation of the axioms, in a way that can
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help and guide the work of the theorem prover, would prove successful in increasing its

speed and efficiency. Readers interested in this problem can find the list of all the axioms

for Sen’s Theorem in Appendix A. We have tested Prover9, as well as the equational

theorem prover E (Schulz, 2004), on this list of axioms, without obtaining a result after

a reasonable amount of time, except for a minimal case with just two individuals and

three alternatives where we instantiated the axiom of permutation for the 36 situations.

There is a growing literature concerning the use of automated reasoning in social

choice theory, and we conclude this paper by reviewing some of these results. As men-

tioned before, Tang and Lin (2009) have shown that Arrow’s Theorem in its general form

(for finite X and N ) follows from Arrow’s Theorem for 3 alternatives and 2 individuals.

For this base case, these authors give a formalisation in propositional logic. While the

number of SWF’s is already prohibitively large in this case (namely 636 ≈ 1028), a com-

plete instantiation of Arrow’s conditions for 36 profiles in the base case is still feasible,

and Tang and Lin (2009) report that unsatisfiability can be verified using a state-of-the-

art SAT solver in less than 1 second. This approach, altough successfull in providing new

proofs of several classical theorems of social choice theory, has the drawback of not being

easily generalised and adapted to other frameworks, since for every new application new

inductive lemmas have to be proved, and new instanciations have to be generated.

The same method was employed and enhanced by Geist and Endriss (2011) in the

related field of ranking sets of objects. In this work the authors are able to prove a gen-

eral inductive lemma for a set of axioms sharing a common structure, and they devise a

complete procedure to automatically discover (im)possibility theorems by listing the for-

malisation of several of these axioms, and automatically going through all combinations.

A different approach is the one adopted by Nipkow (2009) and Wiedijk (2007). These

authors verify formally two proofs of Arrow’s Theorem given by Geanakoplos (2005)

using proof checkers for higher-order logic (the Isabelle and Mizar system, respectively).

The condition of finiteness of the set of individuals is expressible in these higher-order

languages (and for these particular proofs, this condition must be stated also for the set

of alternatives), making it possible to prove the full statement of Arrow’s Theorem. This

is the only approach so far where neither the number of individuals nor the number of

alternatives is specified in the language.
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Appendix A: Tsen in Prover9 Syntax

formulas(sos).

% LIN_p

(I(z) & S(u) & A(x) & A(y)) -> (p(z,x,y,u)|p(z,y,x,u)|x=y).

(I(z) & S(u) & A(x)) -> -p(z,x,x,u).

(I(z) & S(u) & A(x) & A(y) & A(v) & p(z,x,y,u) & p(z,y,v,u) ) -> p(z,x,v,u).

% LIN_w

(S(u) & A(x) & A(y)) -> (w(x,y,u)|w(y,x,u)|x=y).

(S(u) & A(x) & A(y)) -> -w(x,x,u).

(S(u) & A(x) & A(y) & A(v) & w(x,y,u) & w(y,v,u)) -> w(x,v,u).

% DEC

d(z,x,y)->(I(z) & A(x) & A(y)).

d(z,x,y)->d(z,y,x).

d(z,x,y)->(x!=y).

d(z,x,y) -> (all u p(z,x,y,u) -> w(x,y,u)).

% PART

A(x) -> (-I(x) & -S(x)).

I(x) -> (-A(x) & -S(x)).

S(x) -> (-I(x) & -A(x)).

A(x) | I(x) | S(x).

% DEF

p(z,x,y,u)->(I(z) & A(x) & A(y) & S(u)).

w(x,y,u)->(A(x) & A(y) & S(u)).
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% INJ

S(u) & S(v) & (u!=v) -> exists z exists x exists y

(I(z) & A(x) & A(y) & p(z,x,y,u) & p(z,y,x,v)).

% PERM

p(z,x,y,u) -> exists v (S(v) & p(z,y,x,v) &

(all x1 (p(z,x,x1,u) & p(z,x1,y,u) -> p(z,x1,x,v) & p(z,y,x1,v))) &

(all x2 (p(z,x2,x,u) -> p(z,x2,y,v))) & (all x3 (p(z,y,x3,u) -> p(z,x,x3,v))) &

(all x4 all y1 (x4 != x & x4 != y & y1 != y & y1 != x ->

(p(z,x4,y1,u) <-> p(z,x4,y1,v)))) &

(all z1 all x5 all y2 (z1 != z -> (p(z1,x5,y2,u) <-> p(z1,x5,y2,v))))).

% UN

(S(u) & A(x) & A(y)) -> (( all z (I(z) -> p(z,x,y,u))) -> w(x,y,u)).

% MINLIB

exists z1 exists z2 exists x1 exists y1 exists x2 exists y2

(d(z1,x1,y1) & d(z2,x2,y2) & z1!=z2).

end_of_list.
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