
Springer Nature 2021 LATEX template

A General Framework for Participatory

Budgeting with Additional Constraints∗

Simon Rey, Ulle Endriss and Ronald de Haan

Institute for Logic, Language and Computation (ILLC),
University of Amsterdam, Amsterdam, The Netherlands.

Contributing authors: s.j.rey@uva.nl; u.endriss@uva.nl;
r.dehaan@uva.nl;

Abstract

We introduce a new approach for designing rules for participatory
budgeting, the problem of deciding on the use of public funds based
directly on the views expressed by the citizens concerned. The core
idea is to embed instances of the participatory budgeting problem into
judgment aggregation, a powerful general-purpose framework for mod-
elling collective decision making. Taking advantage of the possibilities
offered by judgment aggregation, we enrich the familiar setting of par-
ticipatory budgeting with additional constraints, namely dependencies
between projects and quotas regarding different types of projects. We
analyse the rules obtained in both algorithmic and axiomatic terms.

Keywords: Participatory Budgeting, Judgment Aggregation, Voting

1 Introduction

Participatory budgeting (PB) is an instrument intended to improve the demo-
cratic process by allowing citizen to directly express their views regarding the
use of public funds (Cabannes, 2004). Since its first use for municipal budget
allocation in Brazil over three decades ago, PB has been adopted across the
world (Dias, 2018; Wampler et al., 2021). The typical PB process is divided

∗This is an extended version of a paper originally presented at the 17th International
Conference on Principles of Knowledge Representation and Reasoning (Rey et al.,
2020), and also at the 8th International Workshop on Computational Social Choice.

1

Springer Nature 2021 LATEX template

2 Participatory Budgeting with Additional Constraints

into two stages (Shah, 2007; Wampler, 2012). In the first stage, citizens can
submit project proposals they have for the city. Some of these proposals are
then shortlisted and the citizens are asked to vote on which of the short-
listed projects they want to be implemented, given a budget constraint. While
this describes the typical scenario of a PB process, each local implementation
comes with its own specificities. In particular, it is quite common to encounter
additional constraints on the range of projects that can be funded. In this
paper, we develop a general framework that allows us to easily incorporate
such additional constraints within the standard model for PB.

What types of additional constraints are used in real-life PB processes?
By focusing on the case of the city of Paris (City of Paris, 2022) we can for
instance learn that projects are sometimes grouped into categories and that
special constraints apply to these categories. For instance, some projects are
labelled “low income neighbuorhood” and a specific number of them has to
be selected in the final bundle to be funded. Another category of projects are
those designated for the whole city (and not a specific neighbourhood), and
this category may also have a lower quota attached to it. Similar constraints
can also be found in PB processes in Lisbon (Allegretti and Antunes, 2014)
or in Amsterdam (City of Amsterdam, 2022). Other natural constraints that
we can imagine include the existence of dependencies between projects, such
as when some projects can only be realised if others are as well.

The challenge is then to incorporate such constraints into the formal study
of PB. This is not a straightforward task. Indeed, most of the existing formal
work in (computational) social choice regarding PB views voting on projects
as a generalisation of multiwinner voting (see, e.g., Aziz et al., 2018; Talmon
and Faliszewski, 2019; Peters et al., 2021). PB mechanisms that have been
introduced in the literature are thus grounded in multiwinner voting, with an
additional budget constraint. While this can provide useful intuitions regard-
ing, for instance, the type of normative desiderata we may wish to postulate
for PB, it does not allow for great flexibility. In particular, it does not permit
us to model the more expressive forms of PB we discussed earlier. Instead,
by following this approach, one would need to redefine and and analyse from
scratch everything for every specific variation of the base model motivated by
real-life instances of PB. To address this problem, we develop in this paper a
complementary approach, and study PB as a special case of judgment aggre-
gation (JA), a highly expressive general-purpose aggregation framework (List
and Puppe, 2009; Grossi and Pigozzi, 2014; Endriss, 2016).

JA is a framework in which opinions over binary issues are aggregated in
a manner that ensures conformance to some feasibility constraint expressed in
propositional logic. It is known to generalise many forms of preference aggre-
gation and voting scenarios (Dietrich and List, 2007; Lang and Slavkovik,
2013; Endriss, 2018; Chingoma et al., 2022), including PB (De Haan, 2018).
This high expressivity is particularly appealing for us as it allows us to easily
encode additional constraints for PB. However, this comes at a computational
cost that could be prohibitive if left unchecked. Indeed, the computational

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 3

complexity of computing outcomes of common JA rules is typically very high
(Endriss et al., 2020), and hard even relative to complexity classes beyond NP.
One of the main challenges we face in our endeavour thus is to find ways of
implementing PB via JA in an efficient manner.

To cope with this algorithmic challenge, we explore the idea of looking for
tractable fragments of JA. Of particular interest in this context is the prior
work of De Haan (2018), who developed the idea of modelling JA problems
using Boolean circuits in decomposable negation normal form (DNNF circuits)
to save on the computational cost. We further develop this approach to express
PB problems with additional constraints as DNNF circuits for JA, which can
then be used in an efficient manner (from a computational perspective). More
specifically, our contribution regarding the algorithmic part of this research
agenda consists in two efficient embeddings of PB into JA for two kinds of
additional constraints, namely dependencies between projects and quotas over
categories of projects.

Of course, an expressive framework for modelling PB scenarios and a set
of algorithmically efficient PB rules alone are not sufficient. We also require a
good understanding of whether the rules we design are normatively adequate
to be used in the context of PB. In the second part of the paper we therefore
focus on this aspect and provide an axiomatic analysis of the rules we propose.

Among the requirements that have been introduced to study PB rules, the
most fundamental one is probably exhaustiveness. It rules out any under-use
of the budget by stating that it should not be possible for the leftover budget
to be so large as to still allowing us to fund a further project. Interestingly, this
requirement is incompatible with the usual view that JA rules take on logical
negation. In JA, it is indeed standard to consider that when an agent says no
to a given issue, selecting that issue would yield some dissatisfaction for the
agent. When it comes to PB, the semantics of negation is usually ‘weaker’ in
the following sense: An agent not approving of a given project would be neutral
about whether the project will be selected. This motivates the introduction
of asymmetrical counterparts of typical JA rules with this weaker take on
negation. This approach allows us to define exhaustive rules within JA. We
also provide an algorithmic solution to enforce exhaustiveness, but one that
only works in limited cases (when the budget limit is uni-dimensional).

Incorporating exhaustiveness in JA is a mandatory step to make sure that
the JA rules are potential candidates for PB rules, but it is not enough. To
provide additional insight, we deepen our axiomatic analysis by studying how
JA rules behave with respect to the monotonicity axioms for PB introduced
by Talmon and Faliszewski (2019).

Thus, our contribution in this paper may be summarised as follows:

• We introduce a general framework for PB that makes it possible to easily
incorporate additional constraints, and we exemplify this approach with two
natural constraints on projects, namely dependencies and quotas.

Springer Nature 2021 LATEX template

4 Participatory Budgeting with Additional Constraints

• We demonstrate that, even though this more general framework is expressive
enough to cover cases that require some extra computational cost, in many
natural settings the overhead is manageable.

• We show that some of the typical JA rules are good candidates to be used
in the context of PB, at least in view of monotonicity requirements.

Overall, our analysis demonstrates that this framework is suitable for the the-
oretical analysis of PB rules. Its main added value is the flexibility it offers to
study of PB rules across different variants of the standard PB setting. Thanks
to this framework, one can incorporate extra constraints for PB by “only”
investigating the specific encoding of the constraint on the JA side, thereby
immediately making available all other results previously established for the
basic framework without those constraints. In particular, once a rule has been
proven to satisfy a certain axiom, it will continue to do so, regardless of the
extra constraints.1 In this sense, this framework allows for an efficient study
of a myriad of variations around the standard PB setting.

Related Work

According to the terminology of Aziz and Shah (2020), the basic model of PB
we focus on in this paper is called combinatorial PB with binary projects and
approval ballots. Several types of normative requirements have been studied
for this framework. An important emphasis has been put on fairness and pro-
portionality requirements (Fain et al., 2016; Aziz et al., 2018; Peters et al.,
2021; Lackner et al., 2021; Los et al., 2022; Fairstein et al., 2022). Incentive
compatibility is another important topic in the context of PB (Goel et al.,
2019; Freeman et al., 2019; Rey et al., 2021). Other properties such as mono-
tonicity requirements have also been studied (Talmon and Faliszewski, 2019).
Much attention has been devoted to the algorithmic side of PB, too. Greedy
and optimal welfare/fairness-maximising rules have been studied by Talmon
and Faliszewski (2019), Fluschnik et al. (2019), Patel et al. (2021), and Sree-
durga et al. (2022). Using a different approach, Fain et al. (2016) and Freeman
et al. (2019) instead studied PB solutions as market equilibria, in the spirit of
the public decision making setting of Conitzer et al. (2017).

While the review in the previous paragraph has focused on the standard
model for PB, several extensions have also been explored. For instance, Lu
and Boutilier (2011) considered an extension of PB where the cost of a project
might depend on the number of agents choosing it; Benade et al. (2018) pro-
posed different ballot formats for PB; Baumeister et al. (2020) focused on
irresolute PB rules; Rey et al. (2021) investigated the interplay between the
two stages we discussed in the introduction; Lackner et al. (2021) approached
PB from a long-term perspective where several PB elections are held in

1To be precise, this is true for axioms that have a “universal flavour”, i.e., for axioms that
stipulate that certain conditions must be satisfied for all relevant situations (rather than requiring
the existence of a situation exhibiting a specific property of interest). The monotonicity axioms
of Talmon and Faliszewski (2019) are examples of such universal axioms.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 5

sequence; Hershkowitz et al. (2021) looked into local versus global PB pro-
cesses; Baumeister et al. (2022) studied PB settings with uncertainty on the
cost and completion time of the projects. Particularly interesting for our con-
cerns are the works of Jain et al. (2020) and Jain et al. (2021), who have
investigated extensions of PB in which projects are grouped into categories,
and where either the utility of each agent is a function of the number of selected
projects from each category, or where there are specific budget limits for each
category. Another exciting contribution is that of Fain et al. (2018) who fol-
lowed a similar approach to ours. These authors considered a general setting
of public decision making (introduced by Conitzer et al., 2017) and added dif-
ferent types of constraints to it (matroid, matching, and packing constraints),
allowing for great flexibility on what can be modelled. Finally, Motamed et al.
(2022) studied in more depth PB settings with multiple resources, an extension
we also consider in this paper.

The study of how to embed preference aggregation problems into JA dates
back to at least Dietrich and List (2007). The systematic study of how to
embed voting rules into JA was then initiated by Lang and Slavkovik (2013)
and later refined by Endriss (2018). Our work on the algorithmic aspects of
such embeddings is based on the results of De Haan (2018), whose paper is
also the first example for work investigating the embedding of PB into JA.
Lately, a similar approach has been followed by Chingoma et al. (2022) to
embed multiwinner voting into JA.

Paper Outline

We recall relevant definitions from PB and JA in Section 2 and then introduce
our central definition of an embedding of PB into JA. Section 3 is devoted to
the study of efficient embeddings for basic PB and the extensions we propose.
Section 4 discusses exhaustiveness, and Section 5 contains the remainder of
our axiomatic analysis. We draw our conclusions in Section 6.

2 Frameworks

In this section we recall basic definitions regarding the frameworks of partic-
ipatory budgeting (PB) and judgment aggregation (JA). We also define the
main concept of this paper, namely embeddings of PB instances into JA.

2.1 Participatory Budgeting

We mainly adopt the notation of Aziz and Shah (2020). PB is about selecting
a set of projects to be funded, given a (possibly multi-dimensional) budget
limit. The set of (binary) projects is denoted by P = {p1, . . . , pm}. Let R =
{r1, . . . , rd} be a set of resources and b = (b1, . . . , bd) a budget limit vector, with
bi ∈ R≥0 indicating the limit in terms of resource ri. The costs of the projects
are defined by a cost function c : P ×R → R≥0, indicating for a given project
the cost in terms of the given resource. Slightly overloading notation, we use
c(p) = (c(p, r1), . . . , c(p, rd)) to denote the cost vector of project p. Moreover,

Springer Nature 2021 LATEX template

6 Participatory Budgeting with Additional Constraints

for any subset P ⊆ P, let c(P, r) =
∑

p∈P c(p, r) and c(P) =
∑

p∈P c(p). A
problem instance I = 〈R, b,P, c〉 for PB consists of a set of resources R, a
budget limit vector b, a set of projects P, and a cost function c. We denote by
I the set of all such instances.

A solution of a PB problem instance, called a budget allocation, is a subset
of projects π ⊆ P. A budget allocation π is said to be feasible if c(π) ≤ b. For
a given I ∈ I, the set of all feasible budget allocations is denoted by A(I). A
budget allocation π is said to be exhaustive if there is no project p ∈ P \π such
that c(π ∪ {p}) ≤ b. AEX(I) is the set of all feasible and exhaustive budget
allocation for an instance I.

Before deciding which budget allocation to recommend, we consult the
agents belonging to a set N = {1, . . . , n}. Each agent i ∈ N submits an
approval ballot Ai ⊆ P, giving rise to a profile A = (A1, . . . , An). For any given
project p ∈ P, its approval score under profile A is defined as

∑
i∈N 1p∈Ai

,
the number of agents approving of p. Without loss of generality, we assume
that every project has an approval score of at least 1, as projects with approval
score 0 can be removed in a pre-processing step. Finally, a PB rule is a function
F : I × (2P)n → 22P \ {∅} mapping any given instance I and profile A to a
nonempty set F (I,A) ⊆ A(I) of feasible budget allocations.2 Returning a set
allows us to model possible ties in the outcome.

2.2 Judgment Aggregation

The specific JA framework we use is known as binary aggregation with integrity
constraints (Grandi and Endriss, 2011).3

Let LX be the set of propositional formulas over a given set X of proposi-
tional atoms, using the usual connectives ¬, ∨, ∧, →, and logical constants ⊥
and >. Propositional atoms and their negations are called literals. For any sub-
set of atoms X ⊆ X, we write Lit(X) = X ∪{¬x | x ∈ X} for the set of literals
corresponding to P . We often use xi to denote atoms and `xi

to denote literals
corresponding to xi, i.e., `xi

∈ {xi,¬xi}. We say that `xi
is positive if `xi

= xi
and negative if `xi

= ¬xi. A truth assignment α : X → {0, 1} is a mapping
indicating for each atom its truth value. For `xi

∈ Lit(X), let α(`xi
) = α(xi)

if `xi
is positive and let α(`xi

) = 1− α(xi) otherwise. We write α |= ϕ when-
ever α is a model of ϕ according to the usual semantics of propositional logic
(Van Dalen, 2013).

In the context of JA, the atoms in X represent propositions an agent may
either accept or reject. A judgment J is a set J ⊆ X, indicating which propo-
sitions are accepted. Let aug(J) = J ∪ {¬x | x ∈ X \ J} be the judgment J
augmented with the negative literals of the propositions not selected. Observe
that a judgment J can be equivalently described as the truth assignment α
such that α(x) = 1 if and only if x ∈ J . In our examples, when we do not

2Observe that A(I) is never empty. This is appropriate, given that the empty set of projects is
always feasible. This, however, is not true for some of the extensions discussed in Section 3.

3While this framework is most convenient for our purposes, the original framework of List and
Pettit (2002) could be used as well, given that it is known that the former can be efficiently
embedded into the latter (Endriss et al., 2016).

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 7

explicitly specify the status of some of the propositions, it is assumed that
we only consider judgments (and truth assignments) for which the unspecified
propositions are rejected (mapped to 0).

An integrity constraint Γ ∈ LX is a formula used to constrain the range
of admissible judgments. A judgment J satisfies Γ (written J |= Γ), if J ,
interpreted as a truth assignment, is a model of Γ. Such a judgment J is then
said to be admissible. Let J(Γ) = {J ⊆ X | J |= Γ} be the set of all admissible
judgments for any Γ ∈ LX. A problem instance for JA is simply an integrity
constraint Γ.

We again use N = {1, . . . , n} to denote the set of agents. Each agent i ∈
N provides us with a judgment Ji, resulting in a judgment profile J =
(J1, . . . , Jn). For a profile J and a literal ` ∈ Lit(X), we write nJ` =∑

i∈N 1`∈aug(Ji) for the number of supporters of `. The majoritarian outcome
for a profile, denoted by m(·), is the set of literals supported by a (strict)
majority of agents:

m(J) = {` ∈ Lit(X) | nJ` > n/2}.

A JA rule is a function F : LX × (2X)n → 22X \ {∅} taking as input an
integrity constraint Γ and a judgment profile J and returning a nonempty set
F (Γ,J) ⊆ J(Γ) of admissible judgments. Observe that no assumption is made
about the profile. In particular, we do not require Ji |= Γ for any of the agents
i ∈ N .

Before reviewing a number of well-known concrete JA rules, let us first
introduce a very general class of such rules.

Definition 1 (Additive rules) A JA rule F is an additive rule if there exists a
function f : (2X)n×Lit(X)→ R mapping pairs of profiles and literals to real values,
such that, for every integrity constraint Γ ∈ LX and every profile J ∈ (2X)n, we have:

F (Γ,J) = argmax
J∈J(Γ)

∑
`∈aug(J)

f(J , `).

This class generalises both the scoring rules of Dietrich (2014) and the additive
majority rules (AMRs) defined by Nehring and Pivato (2019). More specifi-
cally, a scoring rule is associated with a scoring function s : 2X × Lit(X)→ R
mapping judgments and literals to scores, and corresponds to the additive rule
defined with respect to the function f such that:

f(J , `) =
∑
i∈N

s(Ji, `).

An AMR is associated with a non-decreasing gain function g : {0, . . . , n} → R
with g(k) < g(k′) for any k < n

2 ≤ k′ that maps the support of a literal to a

Springer Nature 2021 LATEX template

8 Participatory Budgeting with Additional Constraints

PB profile A
PB instance I ∈ I

} Feasible budget
allocation
π ∈ A(I)

JA instance Γ ∈ LX

JA profile J

} Admissible
outcome
J ∈ J(Γ)

PB rule

Profile
equivalence

Embedding E

JA rule

Outcome
translation τ

Fig. 1 Full process to use JA rules for PB instances.

score, and is an additive rule defined with respect to the function f such that:

f(J , `) = g(nJ`).

Three additive rules are of particular importance for our purposes:

• The Slater rule (Miller and Osherson, 2009; Lang et al., 2011) selects the
admissible outcome closest to the majoritarian outcome in terms of the
number of propositions they agree on. It is the AMR associated with the
following gain function g:

g(x) =

{
0 if 0 ≤ x < n

2 ,

1 if n
2 ≤ x ≤ n.

• The Kemeny rule (Pigozzi, 2006; Miller and Osherson, 2009) selects the
feasible outcome that is the closest to the profile as a whole. It is both an
AMR with the gain function g(x) = x, and a scoring rule with the scoring
function s(J, `) = 1`∈aug(J).

• The leximax rule (Everaere et al., 2014; Nehring and Pivato, 2019) favours
the propositions supported by the largest majorities. It is the AMR defined
by the gain function g(x) = |X|x.

Note that the three rules presented above are all majority-consistent, mean-
ing that whenever the majoritarian outcome is admissible, it is the unique
judgement returned by the rules.

2.3 Embedding PB into JA

The aim of this paper is to design rules to decide on outcomes for PB problems.
To this end, we want to embed PB into JA and then use JA rules to compute
budget allocations. A full schematic representation of the process is presented
in Figure 1.

For a given PB instance, we introduce one proposition for each project
to obtain X. So we have a direct correspondence between budget allocations

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 9

π ⊆ P and judgments J ⊆ X, and thus also between PB profiles and JA
profiles. Similarly, any JA outcome can be translated back into the PB setting.

Definition 2 (Outcome translation) Let I = 〈R, b,P, c〉 be a PB instance and let
Γ ∈ LX be an integrity constraint expressed over the atoms X = {xp | p ∈ P}. The

outcome translation τ : 2X → 2P maps any judgment J ∈ 2X to a budget allocation
π = τ(J) such that:

τ(J) = {p ∈ P | xp ∈ J}.

We moreover extend the outcome translation to sets J ⊆ 2X of judgments by
stipulating that τ(J) = {τ(J) | J ∈ J }.

We now define one of the fundamental elements of our approach: embed-
dings. An embedding is a function E : I → LX that takes a PB instance as
input and returns an integrity constraint (i.e., a JA instance). Given an embed-
ding, we can translate any input of a PB rule into an input for a JA rule,
apply the JA rule, and finally translate the result obtained into a set of budget
allocations (see Figure 1). However, to be meaningful, the integrity constraint
should express the budget constraint of the PB instance. This is captured by
the notion of correctness that states that the outcome translation τ defines a
bijection between the set of budget allocations on the PB side and the set of
admissible judgments on the JA side.

Definition 3 (Correct embedding) An embedding E : I → LX is said to be correct
if, for every PB instance I ∈ I, we have:

τ (J(E(I))) = A(I).

3 Efficient Embeddings

In this section we present specific embeddings of enriched PB instances into
JA. Given that the problem of computing outcomes for the JA rules defined
in Section 2.2 is known to be highly intractable in general (Endriss et al.,
2020), if we nevertheless want to design PB rules that are tractable, we need
to ensure that PB instances are mapped into JA instances that permit efficient
outcome determination. To this end, we first present a class of Boolean func-
tions (to encode integrity constraints) for which the outcome determination
can be solved efficiently.

3.1 Tractable Language for Judgment Aggregation

As shown by De Haan (2018), computing outcomes under Kemeny and Slater
can be done efficiently when the integrity constraint is a Boolean circuit in
decomposable negation normal form (DNNF). We are going to extend this
result to all additive rules. But let us first recall the definition of a DNNF
circuit (Darwiche and Marquis, 2002).

Springer Nature 2021 LATEX template

10 Participatory Budgeting with Additional Constraints

∨

∧

∨

∧

x2x1 ¬x3 ¬x2 ¬x1

Fig. 2 Example of a decomposable negation normal form (DNNF) circuit.

Definition 4 (DNNF circuits) A circuit in negation normal form (NNF) is a rooted
directed acyclic graph whose leaves are labelled with >,⊥, x or ¬x, for x ∈ X and
whose internal nodes are labelled with ∧ or ∨. A DNNF circuit C is an NNF circuit
that is decomposable in the sense that, for every conjunction in C, no two conjuncts
share a common propositional atom.

Figure 2 shows an example for a DNNF circuit. It can easily be checked that
no two conjuncts share a common propositional atom.

For a given JA rule F , we define the outcome determination problem as
the following decision problem:

Outcome(F)

Input: An integrity constraint Γ, a judgment profile J ,
and a subset of literals L ⊆ Lit(X).

Question: Is there a J ∈ F (Γ,J) such that L ⊆ aug(J)?

We now show that for most additive JA rules F we can solve Outcome(F)
efficiently when Γ is given as a DNNF circuit. The result does not apply to all
additive rules, but only to those for which the associated function f does not
require expensive computation. This is captured by the notion of polynomial-
time computable functions, i.e., functions for which there exists an algorithm
computing the outcome of the function and running in time that is polynomial
in the size of the input.

Theorem 1 Let F be an additive JA rule defined with respect to some polynomial-
time computable function f . Then Outcome(F) is polynomial-time solvable when
the integrity constraint Γ in the input is represented as a DNNF circuit.

Proof We show that when Γ is a DNNF circuit, we can use the Algebraic Model
Counting (AMC) problem to solve Outcome(F). Given a propositional formula
ϕ ∈ LX, a commutative semi-ring

〈
A,⊕,⊗, e⊕, e⊗

〉
,4 and a labeling function λ :

4A semi-ring
〈
A,⊕,⊗, e⊕, e⊗

〉
is an algebraic structure such that ⊕ and ⊗ are associative

binary operations over A; ⊕ is commutative; e⊕ is the identity element of ⊕ and e⊗ that of ⊗; ⊗
is left and right distributive over ⊕; and finally e⊕ ⊗ a = a⊗ e⊕ = e⊕ for any a ∈ A. A semi-ring
is commutative if ⊗ is commutative too.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 11

Lit(X)→ A, the AMC problem is to compute:

AMC(ϕ) =
⊕

α: X→{0,1}
α|=ϕ

⊗
`∈Lit(X)
α(`)=1

λ(`).

The pair 〈⊕, λ〉 is called neutral if and only for every propositional atom x ∈ X,
λ(x) ⊕ λ(¬x) = e⊗. Kimmig et al. (2017) proved that when ϕ is a DNNF circuit,
⊕ is idempotent,5 and 〈⊕, λ〉 is neutral, then the AMC problem can be solved in
polynomial time.

We now show that Outcome(F) can be solved using the AMC problem when F
is an additive rule. Consider the max-plus algebra—a commutative and idempotent
semi-ring (Akian et al., 2006)—defined by A = R∪{−∞,∞}, e⊕ = −∞, and e⊗ = 0,
where ⊕ and ⊗ are the usual max and + operators over R ∪ {−∞,∞}.

Consider now an additive JA rule F associated with f . For a profile J we intro-
duce a labelling function λJ (·) defined as follows for every literal `x ∈ Lit(X) of the
atom x ∈ X:

λJ (`x) = f(J , `x)−max (f(J , x), f(J ,¬x)) ,

where f is the function with respect to which F is an additive rule.
Since we have max(λJ (x), λJ (¬x)) = 0 for every x ∈ X, it is easy to see that the

pair 〈λJ ,⊕〉 = 〈λJ ,max〉 is neutral.
For every such labelling function, we then have:

argmax
J∈J(Γ)

∑
`x∈aug(J)

λJ (`x)

= argmax
J∈J(Γ)

 ∑
`x∈aug(J)

(
f(J , `x)−max (f(J , x), f(J ,¬x))

) (1)

= argmax
J∈J(Γ)

 ∑
`x∈aug(J)

f(J , `x)− 2×
∑
x∈X

max (f(J , x), f(J ,¬x))

 (2)

= argmax
J∈J(Γ)

∑
`∈aug(J)

f(J , `)) = F (Γ,J)

Let us briefly explain the computations above. The transition between lines (1) and
(2) comes from the fact that aug(J) include exactly one literal for each propositional
atom in X. Observe then that 2×

∑
x∈X max (f(J , x), f(J ,¬x)) does not depend on

the J over which the argmax loops, and can thus be dropped.
We can then solve Outcome(F) by using the AMC problem. For Γ, J and

L ⊆ Lit(X) given as inputs of the Outcome(F) problem, we will solve the AMC
problem twice: first for ϕ = Γ and then for ϕ = Γ′, where Γ′ is obtained from Γ by
fixing the value of the atoms as in L. If the solution of the AMC problem is the same
in both cases, we answer the Outcome(F) problem by the positive.

To conclude the proof, observe that the pair 〈max, λ〉 is neutral. Thus, the AMC
problem can be solved in polynomial time when ϕ is a DNNF circuit (Kimmig et al.,
2017). Hence, the Outcome(F) problem can also be solved in polynomial time when
Γ is a DNNF circuit. �

5A binary operator ⊕ over A is idempotent if for every a ∈ A, we have: a⊕ a = a.

Springer Nature 2021 LATEX template

12 Participatory Budgeting with Additional Constraints

This general result immediately implies tractability of outcome determination
for the rules we are interested in here and will allow us to use these rules to
compute budget allocations for PB instances embedded into JA.

Corollary 2 When the integrity constraint is represented as a DNNF circuit, then
the problem Outcome(F) can be solved in polynomial time when F is either the
Kemeny, the Slater, or the leximax rule.

3.2 DNNF Circuit Embeddings

At this point we know that we can efficiently compute the outcome of JA
rules when the integrity constraint is represented as a DNNF circuit, but we
still need to demonstrate that it in fact is possible to encode PB problems as
integrity constraints of this kind. So we move on to the description of embed-
dings of PB into JA returning integrity constraints represented as DNNF
circuits. In doing so, we follow De Haan (2018) but use a slight generalisation
of his approach, allowing us to deal with PB instances with multiple resources.

The basic idea is that every ∨-node in the DNNF circuit will represent the
choice of selecting (or not) a given project. To know whether it is possible to
select a given project, we keep track of the amount of resources that has been
used so far. Selecting a project can thus only be done if it would not lead to a
violation of the budget constraint.

For a project index j and a vector of used quantities per resources v ∈ Rd≥0,
we introduce the ∨-node N(j,v), corresponding to the situation where we
previously made a choice on projects with indices 1 to j − 1, and where for
these choices we used resources according to v. These nodes N(j,v) are defined
as follows:

N(j,v) =

> if j = m+ 1,

∨
(
xpj ∧N(j + 1,v + c(pj))

)(
¬xpj ∧N(j + 1,v)

) if v + c(pj) ≤ b,(
¬xpj ∧N(j + 1,v)

)
∨ (xpj ∧ ⊥) otherwise.

For a PB instance I = 〈R, b,P, c〉, the tractable embedding TE(I) returns
the integrity constraint defined by N(1,0d), where 0d denotes the vector of
length d whose components are all equal to 0.

Let us illustrate this embedding on a simple example.

Example 1 Consider an instance I with just one resource r and projects p1, p2, and
p3. The cost of the projects in r is c(p1) = c(p2) = 1 and c(p3) = 2 and the budget
limit is b = 2. Call xp1 , xp2 , and xp3 the propositional atoms corresponding to p1, p2,
and p3, respectively. TE on I would construct the DNNF circuit presented in Figure
3. Note that we simplified the DNNF circuit a bit to improve its readability. M

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 13

N(1, 0)

∧

xp1

N(2, 1) ∧

¬xp1

N(2, 0)

∧

N(3, 2)

xp2

∧

N(3, 0)

¬xp2∧

N(3, 1)

∧

∧ ∧ ∧

¬xp3
xp3

⊥ >
Fig. 3 (Simplified) DNNF circuit produced by TE on the instance of Example 1.

We can show that the tractable embedding does encode PB instances correctly.

Proposition 3 The tractable embedding TE is correct, and for any given PB
instance I = 〈R, b,P, c〉 returns an integrity constraint TE(I) represented as a DNNF
circuit of size in O(m× |{c(π) | π ⊆ A(I)}|).

Proof Let I = 〈R, b,P, c〉 be a PB instance, and Γ an integrity constraint such that
Γ = TE(I).

We first show that Γ is represented as DNNF circuit. First, observe that Γ is a
Boolean circuit rooted in N(0,0d). Next, observe that every ∨-node is of the form
(x ∧ β1) ∨ (¬x ∧ β2), where x ∈ X is a propositional atom and β1, β2 are either ∨-
nodes, ⊥, or >. This implies that Γ is represented as an NNF circuit. Because each
project is only considered once, the propositional atom corresponding to the project
cannot appear in two distinct conjuncts. Hence, Γ is a DNNF circuit.

Observe that there are at most m × |{c(π) | π ⊆ A(I)}| ∨-nodes in Γ—one for
each N(j,v) for which the budget is not exceeded—all of them having at most two
child ∧-nodes. There are moreover 2m+ 2 leaves, one per literal and two for ⊥ and
>, hence the size of the DNNF circuit.

We now show that the tractable embedding is correct. Observe that a branch
leading to the ⊥-leaf is chosen if and only if one would violate the budget limit by
selecting a project pj . Hence, finding an assignment that does not lead to a ⊥ leaf
in Γ can only be done by selecting feasible projects. The set of such assignments
defines the set of outcomes satisfying Γ, so τ(E(I)) ⊆ A(I). Now, consider π ∈ A(I).
Since π is feasible, it is clear that there exists a branch in the DNNF circuit Γ along
which the selected projects correspond exactly to those that are in π. We thus have
τ(E(I)) = A(I). �

Springer Nature 2021 LATEX template

14 Participatory Budgeting with Additional Constraints

At this point, it should be noted that the exponential factor in the size of the
embedding, namely |{c(π) | π ⊆ A(I)}|, is bounded from above by the product
of the budget limits for each resource. Hence, the corresponding DNNF circuit
is of size in O(m×

∏
r∈R br). This is pseudo-polynomial in the size of the PB

instance when the number of resources is fixed. The next natural question then
is whether we can do better. For instance, is it possible to reduce the size to
something pseudo-polynomial in the size of the PB instance regardless of the
number of resources, i.e., in O(m ×

∑
r∈R br)? The following result answers

this question in the negative.

Proposition 4 There exists no embedding into a DNNF circuit that can be computed
in time polynomial in m+

∑
r∈R br for any instance I = 〈R, b,P, c〉, unless P = NP.

Proof We first show that the following problem is strongly NP-complete.

Maximal Exhaustive Allocation

Input: A PB instance I and a natural number k ∈ N
Question: Is there a π ∈ AEX(I) such that |π| ≥ k?

First, note that Maximal Exhaustive Allocation obviously is in NP, given that
checking that a budget allocation is exhaustive and selects at least k projects is just
a matter of looping through all the projects of the instance.

We now show that Maximal Exhaustive Allocation is strongly NP-hard. To
do so we reduce from the 3-dimensional Matching problem, which was shown to
be NP-complete by Karp (1972). Note that, since its input does not involve numbers,
the 3-dimensional Matching problem is immediately also strongly NP-complete.

3-dimensional Matching

Input: A finite set T and a set X ⊆ T × T × T
Question: Is there a set M ⊆ X such that |M | = |X|, and for all (x1, x2, x3)

and (y1, y2, y3) in M , we have x1 6= y1 and x2 6= y2 and x3 6= y3?

Consider, without loss of generality, an instance of the 3-dimensional Matching
problem 〈T,X〉 such that T = {1, . . . , t} and X = {x1, . . . , x|X|}. The correspond-

ing PB instance is I = 〈R, b,P, c〉 where the set of resources is R = {rji | i ∈
T, j ∈ {1, 2, 3}} and for every resource r ∈ R, we have br = 1. The set of projects is
P = {p1, . . . , p|X|}. Consider project pi ∈ P corresponding to xi = (x1

i , x
2
i , x

3
i) ∈ X,

its cost is 1 for the three resources r1
x1
i
, r2
x2
i

and r3
x3
i

and 0 for any other resource.

Moreover we set k = |X|. We claim that the answer for the 3-dimensional Match-
ing problem on 〈T,X〉 is yes if and only if the answer for the Maximal Exhaustive
Allocation problem on 〈I, k〉 is yes too.

To a matching M ⊆ X corresponds the budget allocation π = {pi | xi ∈ M}. A
matching M ⊆ X is a solution of the 3-dimensional Matching problem if and only
if no triplet in M share a coordinate. Because of the budget limit, this is possible
if and only if the corresponding budget allocation π is feasible. Moreover |M | = |X|

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 15

if and only if |π| = |X| = k. Note that in this case π would be exhaustive, which
proves the claim. The reduction is clearly done in polynomial time which shows that
the Maximal Exhaustive Allocation problem is strongly NP-complete.

To conclude the proof, we now show that, if there exists an embedding of PB
into a DNNF circuit of size polynomial in m +

∑
r∈R br, then we would be able to

solve the Maximal Exhaustive Allocation problem in pseudo-polynomial time,
which would imply that P = NP.

Let us prove that last claim. Let Γ be the integrity constraint returned by a
suitable exhaustive embedding on an arbitrary instance I. Note that the answer to
Maximal Exhaustive Allocation problem is yes if and only if the outcome of
the Algebraic Model Counting (AMC) problem is at least k−m when run on Γ
with the max-plus algebra (see the proof of Theorem 1 for the definitions) and the
labeling function λ such that λ(x) = 0 and λ(¬x) = −1 for all x ∈ X. Since Γ is
a DNNF circuit and the pair 〈λ,⊕〉 is neutral, we can compute the outcome of the
AMC problem in polynomial, proving the claim. �

Even though there is no hope to find pseudo-polynomial embeddings when
the number of resources is unbounded, we still argue that the embedding is
efficient for realistic scenarios. First in most typical PB processes, the number
of resources would likely be small. Indeed the difficulty of assessing the different
costs and of the deliberation and voting processes increases significantly with
the number of dimensions. It thus seems particularly unlikely that the cost
will be expressed in more than, say, five dimensions. Moreover, if the number
of resources is fixed, or at least bounded, the size of the DNNF circuit will not
really present a serious limitation with state-of-the-art solvers.

In the remainder of this section we investigate to what extent this approach
allows us to introduce additional distributional constraints for PB.

3.3 Dependencies between Projects

We now consider the situation where the completion of some projects is directly
dependent on the completion of some others.

Take a PB instance I = 〈R, b,P, c〉. We introduce a set of implications,
Imp ⊆ LX, linking projects together. A set of implications is a set of proposi-
tional formulas of the form `xp → `xp′ for p and p′ that are two projects in P,
with `xp and `xp′ being the corresponding literals. Note that this corresponds
to 2-CNF formulas. In the case that `xp is positive (resp. negative), such an
implication indicates that p can be selected (resp. cannot be selected) only if
p′ is selected, when `xp′ is positive, or not selected, when `xp′ is negative. A
budget allocation π satisfies the set of implications Imp if and only if the pre-
viously described semantics is satisfied. Moreover, we will write `xp →∗ `xp′ if
there is a chain of implication in Imp linking `xp to `xp′ .

In terms of applications, this approach to model dependencies is quite
flexible. For instance, it allows us to model the fact that project p1 can only
be implemented if projects p2 and p3 would also be implemented. This would
be encoded as Imp = {xp1 → xp2 , xp1 → xp3}. At the same time, we can
also model “negative” dependencies, or “incompatibilities”, where p1 can only

Springer Nature 2021 LATEX template

16 Participatory Budgeting with Additional Constraints

be implemented if p2 is not: Imp = {xp1 → ¬xp2}. We are not aware of any
previous work that would allow for such constraints to be expressed within the
PB framework. Note though that one can implement dependencies of the type
xp → ¬xp′ by having specific budget constraints over categories over project
as done by Jain et al. (2021).

To start our analysis, we show that finding a feasible budget allocation
when there are implications between project is an NP-complete problem.

Proposition 5 Let I = 〈R, b,P, c〉 be a PB instance and Imp a set of implications
over I. Deciding whether there exists a feasible budget allocation for I satisfying Imp
is NP-complete, and NP-hardness holds even for the case of a single resource.

Proof The problem of finding a feasible budget allocation satisfying Imp is clearly in
NP. Indeed, checking that the budget limit is not exceeded can be done by summing
the costs of the selected projects. Moreover, verifying that the set of implications
is satisfied simply amounts at checking the truth value of each implication in Imp.
Both of these problems can be solved in polynomial time.

To show that the problem is NP-hard, we reduce from the NP-complete problem
2-CNF Minimal Model6 (Ben-Eliyahu and Dechter, 1996).

2-CNF Minimal Model

Input: A formula ϕ ∈ LX in conjunctive normal form
with exactly two literals per clauses and k ∈ N.

Question: Is there a model α such that α |= ϕ and
|{p ∈ X | α(p) = 1}| ≤ k?

Take an instance 〈ϕ, k〉 of the 2-CNF Minimal Model problem. We construct the
following participatory budgeting instance I. The set of resources is R = {r} with
budget limit br = k. There is one project per propositional atom in ϕ, P = {px | x ∈
P}, and c(p) = 1 for every p ∈ P. Finally, the set of implications Imp is the set of
clauses in ϕ.

We claim that there exists a model of ϕ setting no more than k variables to true
if and only if there exists a feasible budget allocation for I that satisfies the set of
implications Imp. Indeed, to a given truth assignment α, corresponds the budget
allocation π = {px | α(x) = 1}. Observe first that there exists α |= ϕ if and only if π
satisfies Imp. Moreover, since every project is of cost 1, the cost of π is exactly the
number of project that are selected. As the set of projects is the set of variables in
ϕ, the cost of π is also equal to the number of variables set to true in α. Because the
budget limit for resource r is k, the budget allocation π satisfies the budget limit if
and only no more than k propositional atoms are set to true in α.

Observing that this reduction clearly can be done in polynomial time concludes
the proof. �

6A propositional logic formula ϕ ∈ LX is in Conjunctive Normal Form (CNF) if it is expressed
as a conjunction of clauses, where a clause is a disjunction of literals. It is moreover a 2-CNF
formula if all clauses are of size 2, i.e., if ϕ is a conjunction of disjunctions over two literals.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 17

Based on this result, we cannot hope to find an embedding into a DNNF
circuit of polynomial size. However, we can still define an interesting embed-
ding the size of which is parameterized by some parameter on the structure
of the implication set (in the spirit of parameterized complexity (Downey and
Fellows, 2013)). The parameter in question is the pathwidth (Robertson and
Seymour, 1983; Bodlaender, 1998) of the interconnection graph. Let us define
these two terms.

First, we introduce the interconnection graph G of a set of implications
Imp. It is the graph G = 〈P, E〉 where there is an edge {p, p′} ∈ E between
projects p and p′ if and only if there exists an implication in Imp linking the
two projects, i.e., Imp includes at least one implication of the form `xp

→ `xp′

for some `xp
∈ {xp,¬xp}, `xp′ ∈ {xp′ ,¬xp′}.

Second, let us discuss the pathwidth of a graph G = 〈V,E〉. A path-
decomposition of a graph G is a vector of subset of vertices (V1, . . . , Vq), called
bags, such that: (i) for every edge (v1, v2) ∈ E, there is a bag Vi such that v1

and v2 are in Vi, and (ii) for every i ≤ j ≤ k we have Vi∩Vk ⊆ Vj . The second
property should be understood as saying that the set of bags in which a given
vertex appears is contiguous. The width of a tree decomposition is the size of
the largest bag minus one. The pathwidth of a graph G is the minimum width
of any of its path-decomposition.

We are now equipped with all the definitions we need to formulate our
embedding for dependencies, denoted by TEdep .

Theorem 6 Let I = 〈R, b,P, c〉 be a PB instance and Imp a set of implications
over I. Then there exists a correct embedding from I and Imp to an integrity con-

straint expressed as a DNNF circuit Γ with size in O
(
m× |{c(π) | π ⊆ A(I)}| × 2k

)
,

where k is the pathwidth of the interconnection graph of Imp.

Proof The proof will be presented in several steps. We will first present our embed-
ding TEdep , then investigate the size of the integrity constraint returned and finally
show that the embedding is correct. In the following we assume that X is exactly the
set {xp | p ∈ P}.

Let G = 〈P, E〉 be the interconnection graph of Imp. We order the projects in
the same order in which they are introduced in an optimal path-decomposition of G.
Then, following the idea developed for TE, we introduce ∨-nodes N(j,v, L) where j
is a project index, v ∈ Rd≥0 a vector of used quantities per resource and L ⊆ Lit(X) a
subset of literals. Intuitively, the set L specifies the literals that we selected and that
we should remember because they might trigger implications later on. The nodes
N(j,v, L) are then defined such that:

• If j = m+ 1, then N(j,v, L) = >;
• If both the positive literal xpj and the negative literal ¬xpj are implied by some

literal in L according to Imp, then N(j,v, L) = ⊥;
• If the positive literal xpj is implied by some literal in L according to Imp, and v+
c(pj) ≤ b, then N(j,v, L) = N(j + 1,v + c(pj), L ∪ {xpj});

Springer Nature 2021 LATEX template

18 Participatory Budgeting with Additional Constraints

• If the positive literal xpj is implied by some literal in L according to Imp, but
there exists a resource rq ∈ R such that vq + c(pj , rq) > bq, then N(j,v, L) = ⊥;

• If the negative literal ¬xpj is implied by some literal in L according to Imp,
then N(j,v, L) = N(j + 1,v, L ∪ {¬xpj});

• Otherwise, if v + c(pj) ≤ b, then:

N(j,v, L) = (xpj ∧N(j+1,v+ c(pj), L∪{xpj}))∨ (¬xpj ∧N(j+1,v, L∪{¬xpj}));

• Otherwise, N(j,v, L) = (xpj ∧ ⊥) ∨ (¬xpj ∧N(j + 1,v, L ∪ {¬xpj})).

The tractable embedding with dependencies, written TEdep , refers to the integrity
constraint defined by N(j,0m, ∅).

It is clear that the integrity constraint returned by the embedding described
above is represented as a DNNF circuit. The proof is very similar to the one for the
tractable embedding (Proposition 3).

We now investigate the maximum size of the DNNF circuit. We need to count
the maximum number of ∨-nodes, that is the number of N(j,v, L). At a first glance,

the number of possible L ⊆ Lit(X) is upper-bounded by 2|P|. However, we can have
a more fine-grained analysis of this last term. The set L is used to keep track of the
projects for which a truth value has already been assigned and that could imply the
truth value of some other project appearing later in the ordering. However, since the
projects are considered following an optimal path-decomposition of the interconnec-
tion graph, we know that we never need to remember the truth value of more than
k + 1 projects, where k is the pathwidth of the interconnection graph. Indeed, by
definition of a path-decomposition, for any project pj , whenever we consider another
project pj′ such that pj′ never appears in a bag together with pj , we no longer need
to keep track of the truth value associated with xpj as pj will never be involved in
implications with subsequent projects. Overall, the size of the DNNF circuit is in

O
(
m× |{c(P) | P ⊆ P}| × 2k

)
.

Finally, we show that TEdep is correct. Remember that this is the case if for
every instance I:

{τ(J) | J ∈ J(TEdep(I, Imp))} = A(I, Imp).

Consider a JA outcome J ∈ J(TEdep(I, Imp)). It is clear that τ(J) does not exceed
the budget limit as every were selecting a project could lead to a too high cost,
the branch in the DNNF circuit ends up in the ⊥ leaf. We then need to prove that
τ(J) satisfies Imp. Observe that every time a literal is implied by a literal that has
been previously given a truth value, we follow the implication. Hence it can never
be the case that the premise of an implication is set to true but not the conclusion.
Moreover, every time triggering implications would lead to an inconsistent outcome
(a project being both selected and not selected), the branch in the DNNF circuit
also leads to the ⊥ leaf. Overall τ(J) does satisfy Imp. We have thus proved that
{τ(J) | J ∈ J(TEdep(I, Imp))} ⊆ A(I, Imp). The proof for the reversed inclusion is
exactly as that presented in Proposition 3. �

The size of the DNNF circuit produced by the embedding includes a factor 2k,
where k is the pathwidth of the interconnection graph of Imp. The value of
k is in general upper-bounded by the number of projects, for instance in the
case where the interconnection graph is complete (when there are dependencies
between any two projects). Once again, it seems fair to assume projects not
to be very interconnected, leading to small values of k in practice.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 19

N(1, 0, ∅)

∧

xp1

N(2, 1, {xp1}) ∧

¬xp1

N(2, 0, {¬xp1})

∧

N(3, 2, ∅)

xp2 ∧

N(3, 0, ∅) ¬xp2N(3, 1, ∅)

∧

∧ ∧ ∧

¬xp3
xp3

⊥ >
Fig. 4 (Simplified) DNNF circuit produce by TEdep on the instance of Example 2.

Let us illustrate the embedding used in the proof on an example.

Example 2 Consider the instance described in Example 1. Assume that, if project
p1 is selected, then also project p2 should be selected. In our model, this means that
Imp = {xp1 → xp2}. An optimal path-decomposition of the interconnection graph is
thus ({p1, p2}, {p3}). So we will consider the projects in the following order: p1, p2,
p3. The embedding TEdep would return the DNNF circuit presented in Figure 4. It
is important to understand how we can “forget” about the truth values of xp1 and
xp2 once we consider project p3. M

We conclude this section with a small detour into the field of Knowledge Com-
pilation (see, e.g., Marquis, 2015). Embedding PB problems with dependencies
into a DNNF circuit is actually equivalent to asking whether the conjunction
of a 2-CNF formula with a DNNF circuit can be efficiently encoded as a DNNF
circuit of polynomial size. It turns out to be impossible to do so unless the
polynomial hierarchy collapses.

Proposition 7 A 2-CNF formula ϕ ∈ LX cannot be compiled into a DNNF circuit
of size polynomial in the size of ϕ unless the polynomial hierarchy collapses to the
second level.

Proof We will prove that if 2-CNF formulas can be compiled into polynomial-size
DNNF circuits, then the NP-complete problem Clique would be in P/poly, using sim-
ilar techniques as Cadoli et al. (2002). Because of the Karp-Lipton theorem (Karp and
Lipton, 1980), this would immediately entail the Polynomial Hierarchy to collapse
at the second level.

Let us first introduce the problem Clique shown to be NP-complete by Karp
(1972). Given an undirected graph G = 〈V,E〉, we say that a subset of vertices

Springer Nature 2021 LATEX template

20 Participatory Budgeting with Additional Constraints

V ′ ⊆ V forms a clique in G if for every v1, v2 ∈ V ′, we have {v1, v2} ∈ E. The
decision problem Clique is then defined as follows.

Clique

Input: An undirected graph G = 〈V,E〉 and an integer k ∈ N.
Question: Is there a clique V ′ ⊆ V such that |V ′| = k in G?

For any two integers n, k ∈ N, we introduce a 2-CNF formula ϕ(n, k) such that
the answer of Clique on a graph G = 〈V,E〉 with |V | = n and k can be deduced by
means of queries of the following problem the we call Max SAT Extension: Given a
partial truth assignment α of ϕ, what is the maximum number of variables that can
be set to true in any extension of α in such a way that α satisfies ϕ(n, k). Importantly,
the formula ϕ(n, k) is the same for all graphs with n vertices and inquired clique size
k. In the following we will assume that the vertices in V are named v1, . . . , vn.

Let us describe how to construct ϕ(n, k). For every i, i′ ∈ {1, . . . , n} and each
1 ≤ j < j′ ≤ k, we introduce the variable xj,j′,i,i′ . The idea of these variables is
to indicate which vertex was selected at a given position in an arbitrary ordering of
the clique. So having xj,j′,i,i′ set to true means that in the ordering of the clique in
which vertex vi is at position j, then vertex vi′ is at position j′. Now for this to be
correct, we need to enforce that no two vertices can be selected at the same position.
For every j1, j2, j3, j4 ∈ {1, . . . , k} such that j1 < j2, j1 < j3 and j4 < j2, and for
every i1, i2, i3, i4 ∈ {1, . . . , n}, we thus add the following two clauses to the formula
ϕ(n, k):

(¬xj1,j2,i1,i2 ∨ ¬xj1,j3,i3,i4)

(¬xj1,j2,i1,i2 ∨ ¬xj4,j2,i3,i4)

Now, we want to check whether any given graph G = 〈V,E〉 with |V | = n has a clique
of size k. Consider the formula ϕ(n, k). We first create a partial truth assignment α
that sets xj,j′,i,i′ and xj,j′,i′,i to false for all 1 ≤ j < j′ ≤ k and all i, i′ ∈ {1, . . . , n}
such that {vi, vi′} /∈ E. Now it is easy to see that G has a clique of size k if and only
if we can extend this α to a (non-partial) truth assignment that satisfies ϕ(n, k) and
that sets at least k(k − 1)/2 variables to true.

At this point, it is important to observe that the problem Max SAT Extension
can be solved in polynomial time if the formula provided is a DNNF circuit. It is
a simple variant of the Maximum Model problem that we can solve via dynamic
programming on DNNF circuits.

Now, suppose we can compile 2-CNF formulas into DNNF circuits in polynomial-
space, then we compile ϕ(n, k) into a DNNF for each n and each k. Call this DNNF
circuit D(n, k). From the above, it should be clear now that with D(n, k) we can
solve the Clique problem on a graph G with n nodes and an inquired clique size of
k in polynomial time.

To conclude the proof we show that this would then all mean that Clique is in
P/poly. We first informally define P/poly, we refer the reader to Chapter 6 in the book
by Arora and Barak (2009) for a formal definition. P/poly is a complexity class that
contains problems that can be solved in polynomial time by a deterministic Turing
machine that has access to one advice string per size of the input. In our case, the
advice string for an input of size n will be the sequence (D(n, 1), . . . , D(n, n)). Note
that the size of the advice string is polynomial in n as each DNNF circuit in it is. For
any input of Clique, we can then find the corresponding DNNF circuit D(n, k) to

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 21

solve the problem in polynomial time. This proves that Clique would be in P/poly,
and so that NP ⊆ P/poly (since Clique is NP-complete). The Karp-Lipton Theorem
(Karp and Lipton, 1980) then immediately implies that the polynomial hierarchy
would collapse to the second level. �

We already knew that there was little hope for a DNNF circuit encoding of
PB instances with dependencies in polynomial-time (unless P = NP). Under a
stronger computational complexity assumption, we now have gone further by
showing that it is also unlikely to be able to do this in polynomial space.

3.4 Quotas on Types of Projects

The second extension of PB we consider is when projects are grouped into
categories, or types, that are constrained by quotas.7 The idea is that the
projects belong to various types (health, education, environment to name a
few) and that certain quotas over these types are to be respected by the final
budget allocation (at least two health-related projects must be funded, for
instance). We model this idea by defining a type system.

Let us now define what a type system is. For a given PB instance I =
〈R, b,P, c〉, a type system is a tuple 〈T ,Q, q, f〉, where:

• T ∈ 22P is a set of types, each type being a subset of projects;
• Q = 〈Q,⊕, e⊕,≤Q〉 is an ordered group8 over which the quotas are

expressed;
• q : T → Q2 is a quota function such that for any type t ∈ T , q(t) = (a, b) ∈
Q2 with a ≤Q b;

• f : T × A(I)→ Q is a type aggregator.

For any T ∈ T such that q(T) = (a, b), we write q(T)− = a and q(T)+ = b,
which indicate the lower and upper quota for type T respectively. A budget
allocation π is feasible if the quotas are respected—that is, if and only if for
every type T ∈ T , we have q(T)− ≤Q f(T, π) ≤Q q(T)+.

The type aggregator f(·) can be defined in several different ways. We
provide two type aggregators that are very natural.

• Cardinality-type aggregator. The quotas express lower and upper
bounds on the number of projects selected for each type. We have Q = N, ⊕
is the usual addition operator on numbers with identity element 0, and ≤Q
is the usual linear order on numbers. Now for every type T ∈ T and budget

7After our initial work on this topic (Rey et al., 2020), Jain et al. (2021) studied a specific
subcase of our model, namely PB instances in which projects are grouped into categories and
quotas regarding the total cost of projects from within each category need to be satisfied. There
is a small overlap between the two papers: Proposition 8 in this section is implied by Theorem 10
of Jain et al. (2021). Other results are incomparable and the two papers nicely complement one
another.

8A group
〈
Q,⊕, e⊕

〉
is an algebraic structure equipped with a binary operation ⊕ over Q that

is associative, that has an identity element e⊕, and such that for every a ∈ Q, there exists a
unique b ∈ Q such that a⊕ b = e⊕ and b⊕ a = e⊕. An ordered group

〈
Q,⊕, e⊕,≤Q

〉
is a group〈

Q,⊕, e⊕
〉

equipped with a total order ≤Q over Q.

Springer Nature 2021 LATEX template

22 Participatory Budgeting with Additional Constraints

allocation π, the cardinality-type aggregator is defined as follows:

f card(T, π) = |π ∩ T |.

• Cost-type aggregator. The quotas define lower and upper bounds on the
total cost of the projects selected for each type. Here Q = Rd≥0, ⊕ is the
component-wise addition over vectors with identity element 0d, and ≤Q is
the component-wise order over vectors.9 Now for every type T ∈ T and
budget allocation π, the cost-type aggregator is defined as follows:

f cost(T, π) =
∑

p∈π∩T

c(p).

We first show that deciding whether there is a feasible budget allocation with
a given type system is NP-complete, for both the cardinality- and the cost-type
aggregator.

Proposition 8 Let I = 〈R, b,P, c〉 be a PB instance and 〈T ,Q, q, f〉 a type system
over I. Deciding whether there exists a feasible budget allocation π is NP-complete
when f is either the cardinality or the cost-type aggregator, and NP-hardness holds
even for a single resource.

Proof The problem is clearly in NP. Indeed, verifying that the budget allocation π
does not exceed the budget limit can be done easily by summing the costs of the
selected projects. Note that both the cardinality- and the cost-type aggregators can
be computed in polynomial time. Then, verifying that every quota is respected is
just a matter of scanning π for each quota.

Let us show now that the problem is NP-hard. To do so we reduce from the
NP-hard Set Splitting problem (Garey and Johnson, 1979) described below.

Set Splitting

Input: A collection C of subsets of a given set S.
Question: Are there two sets S1 and S2 partitioning S

such that ∀c ∈ C, c * S1 and c * S2?

Let 〈C, S〉 be an instance of Set Splitting. We construct a participatory budgeting
instance I = 〈R, b,P, c〉 such that R = {r}, and br = |S|. There is one project per
element in S, P = {ps | s ∈ S}, and c(ps) = 1 for every s ∈ S. Thus, the budget limit
can never be exceeded. The corresponding set of types is T = {{ps | s ∈ c} | c ∈ C}
and for a given T ∈ T , the quota is q(T) = (1, |T | − 1). With one resource and
projects whose costs are in {0, 1}, the cardinality-type aggregator and the cost-type
aggregator coincide.

We claim that 〈C, S〉 is a yes-instance of Set Splitting if and only if there exists
a feasible budget allocation in the instance I with the previous type system. For a

9For two vectors v and v′ of the same length we write v ≤ v′ whenever each component of v
is no larger than the corresponding component in v′.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 23

given partition of S, (S1, S2), a suitable corresponding budget allocation is π = S1

(or equivalently π = S2).
A partition (S1, S2) is a solution of the Set Splitting problem if and only if for

every c ∈ C, at least one element of c is in S1 and at least one element of c is not in
S1 (and is then in S2). Based on the type system we defined, this is equivalent to π
satisfying the quota associated to c. Moreover, observe that every budget allocation
respects the budget limit. Hence (S1, S2) is a solution of the Set Splitting problem
if and only if π is a feasible budget allocation.

The reduction is clearly done in polynomial time, hence the problem of finding
whether a feasible budget allocation exists is NP-complete when using both the cost
and the cardinality type aggregator. �

Once again, this implies that no efficient embedding can be defined for this
extension. In what follows we present a parameterized embedding for PB with
types and quotas.

The embedding works for any additive type aggregator f : T ×A(I)→ Q,
that is, any type aggregator f for which there exists a score type function s
that takes as input a project p ∈ P and returns an element in Q such that for
every type T ∈ T and every allocation π ∈ A(I):

f(T, π) =
∑
p∈π

s(p).

Note that both the cardinality- and the cost-type aggregators are additive,
with scard(p) = 1 and scost(p) = c(p) respectively.

As for the dependencies case, the size of our embedding will be parameter-
ized by the pathwidth of a graph. This time, it will be the overlap graph of a
type system. Let I be an instance and 〈T ,Q, q, f〉 a type system over I, the
overlap graph of the type system is the graph G = 〈T , E〉, where there is an
edge {T, T ′} ∈ E between types T and T ′ if and only T ∩ T ′ 6= ∅, i.e., T and
T ′ do not overlap.

We are now ready to present the embedding.

Theorem 9 Let I = 〈R, b,P, c〉 be a PB instance and 〈T ,Q, q, f〉 a type sys-
tem where f is an additive type aggregator defined with respect to the score type
function s. Then there exists a correct embedding for I and 〈T ,Q, q, f〉 that
returns an integrity constraint represented as a DNNF circuit whose size is in
O (m× |{c(π) | π ⊆ A(I)}| × k?) where k? = maxT∈T (|{f(T, π) | π ∈ A(I)}|)k+1

and where k is the pathwidth of the overlap graph of 〈T ,Q, q, f〉.

Proof We use a similar strategy as for Theorem 6. The general idea is that because
the type aggregator is additive, we can keep track of the current value of the quotas,
and then, when deciding whether a project can be selected or not, we can check the
current quota value before making our choice.

Let G = 〈P, E〉 be the overlap graph of 〈T ,Q, q, f〉. We order the projects in
the same order in which they are introduced in an optimal path-decomposition of

Springer Nature 2021 LATEX template

24 Participatory Budgeting with Additional Constraints

G. As usual, we will then define the ∨-nodes N(j,v, q), where j is a project index,

v ∈ Rd≥0 a vector of used resources and q ∈ Q|T | is a vector of current quota value.
We introduce extra notation before defining them. Let Tpj = {T ∈ T | pj ∈ T}
be the set of types containing project pj . For a given q ∈ Q|T |, define qpj such
that q

pj
T = qT for every T /∈ Tpj , and such that q

pj
T = qT ⊕ s(pj) for every T ∈ Tpj .

The ∨-nodes N(j,v, q) are then defined as follows:

• If j = m+ 1 we have N(j,v, q) = >;
• If there are two types T1, T2 ∈ Tpj such that pj is the last project in T2 to

be considered, and the quotas satisfy q
pj
T1

>Q q(T1)+ but q
pj
T2

<Q q(T2)−,
then N(j,v, q) = ⊥;

• If there is a type T ∈ Tpj such that q
pj
T >Q q(T)+, then:

N(j,v, q) = (xpj ∧ ⊥) ∨ (¬xpj ∧N(j + 1,v, q));

• If there is a type T ∈ Tpj such that pj is the last project from T to be considered

and the quota over T satisfies qT <Q q(T)− and q
pj
T <Q q(T)−, then:

N(j,v, q) =

{
(xpj ∧N(j + 1,v + c(pj), q

pj)) ∨
(
¬xpj ∧ ⊥

)
if v + c(pj) ≤ b,

⊥ otherwise;

• If v + c(pj) ≤ b, then:

N(j,v, q) = (xpj ∧N(j + 1,v + c(pj), q
pj)) ∨

(
¬xpj ∧N(j + 1,v, q)

)
;

• If there exists r ∈ R such that v + c(pj , r) > br, then:

N(j,v, q) = (xpj ∧ ⊥) ∨ (¬xpj ∧N(j + 1,v, q)).

The tractable embedding for types and quotas, written TEquo , refers to the integrity
constraint defined by N(1,0m,0|T |).

Similarly to the proof of Theorem 6, we can order the projects according to the
ordering of types in a suitable path-decomposition of the overlap graph. By doing so,
in each node N(j,v, q), we can “forget” all types in q for which we already considered
all projects—thereby reducing the number of nodes N(j,v, q) for each j and v.

It is clear that TEquo returns an integrity constraint represented as a DNNF
circuit. We now show that the size of DNNF circuit is in:

O
(
m× |{c(π) | π ⊆ A(I)}| ×max

T∈T
(|{f(T, π) | π ∈ A(I)}|)k+1

)
,

where k is the path-width of the overlapping graph.
Let us begin by observing that the first two term of the product above are the

same as for the other tractable embeddings presented before, we do not expend on
them. Then, observe that a quota can take at most maxT∈T (|{f(T, π) | π ∈ A(I)}|)
different values. Hence, each component of q can only have maxT∈T (|{f(T, π) | π ∈
A(I)}|) distinct values. Now, how do we get it to the power k and not |T | in the size
of the DNNF circuit? The idea is similar to that of the proof of Theorem 6: Whenever
all projects of a given type have been considered, the value of the corresponding quota
will no longer change and we can thus “forget” about that type. Hence, the maximum
number of types we need to keep track of their quota is upper bounded by k+1. That
proves the claim about the size of the DNNF circuit. Once again, remember that we
can use known FPT algorithm to find an optimal path-decomposition (Bodlaender
and Kloks, 1996).

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 25

N(1, 0, 0)

∧

xp1

N(2, 1, 1) ∧

¬xp1

N(2, 0, 0)

∧ xp2

∧

N(3, 0, (.))

¬xp2∧

N(3, 1, (.))

∧

∧ ∧ ∧

¬xp3
xp3

⊥ >
Fig. 5 (Simplified) DNNF circuit produce by TEdep on the instance of Example 3 where
(.) indicates the empty vector.

We now show that the embedding is correct. Consider a JA outcome J ∈
J(TEquo(I, Imp)). It is clear from the two previous embeddings that τ(J) satis-
fies the budget constraint. Moreover, in TEquo , before considering any project, if
the current value of a quota violate the quota constraint associated with it, the
branch in the DNNF circuit ends up on the ⊥ leaf. Because the type aggregator
is additive, we know that the quota values in v are the quota values of the corre-
sponding budget allocation. Hence we have τ(j) ∈ A(I). We have thus proved that
{τ(J) | J ∈ J(TEdep(I, Imp))} ⊆ A(I, Imp). The proof for the reversed inclusion is
exactly as the one presented for the proof of Proposition 3. �

Before discussing the size of the DNNF circuit produced by the embedding,
we will present TEquo on an example.

Example 3 Consider the instance described in Example 1. Assume that, projects
p1 and p2 are health-related projects and that no more than one should be
selected. In terms of our model, this means that we are considering the type sys-

tem
〈
{T}, 〈N,+, 0,≤〉 , q, fcard

〉
, where T = {p1, p2} and q(T) = (0, 1). An optimal

path-decomposition of the overlap graph is thus ({p1, p2}, {p3}). So we will consider
the projects in the following order: p1, p2, p3. The embedding TEquo would return
the DNNF circuit presented in Figure 5. It is important to understand how we can
“forget” about the truth values of xp1 and xp2 once we consider project p3. M

Regarding the size of the DNNF circuit, it should be noted that the fac-
tor maxT∈T (|{f(T, π) | π ∈ A(I)}|)k+1 can be very high. However, for the

Springer Nature 2021 LATEX template

26 Participatory Budgeting with Additional Constraints

cardinality and the cost-type aggregators, we can derive the following bounds:

max
T∈T
|{f card(T, π) | π ∈ A(I)}| = max

T∈T
q(T)+ ≤ |P|,

max
T∈T
|{f cost(T, π) | π ∈ A(I)}| = max

T∈T
q(T)+ ≤

∏
r∈R

br.

This in particular implies that the integrity constraint for these quota aggre-
gators would be reasonable of reasonable size, as long as k, the pathwidth of
the overlap graph, is small.

The question is then how small or large k can be. Of course, in principle,
it can be as large as the number of projects. That is the case if all projects
appear in all types. On the other hand, the pathwidth of the overlapping graph
would be 0 in the case where the types are non-overlapping. This special case
is actually very natural. For instance, if one takes types to represent distinct
areas of a city that are to be developed, then no project concerning one area
will also concern another area. We get the following result for non-overlapping
types.

Corollary 10 Let I = 〈R, b,P, c〉 be a PB instance and 〈T ,Q, q, f〉 a type sys-
tem where f is an additive type aggregator defined over the score type function s.
If the types are not overlapping, that is, if the overlapping graph of 〈T ,Q, q, f〉
is the empty graph, the size of the integrity constraint returned by TEquo is in
O (m× |{c(P) | P ⊆ P}| ×maxT∈T (|{f(T, π) | π ∈ A(I)}|)).

4 Enforcing Exhaustiveness

Amongst the most basic requirements of a budget allocation is that of exhaus-
tiveness (Aziz et al., 2018), sometimes also referred to as budget monotonicity
(Talmon and Faliszewski, 2019). It states that the budget should be used as
much as possible. This property is crucial for PB, given that it is usually
assumed that achieving a project is always better than not achieving it. We
first recall the definition.

Definition 5 (Exhaustiveness) Given a PB instance I = 〈R, b,P, c〉, a budget allo-
cation π ∈ A(I) is said to be exhaustive if, for every project p ∈ P \ π, there exists
at least one resource r ∈ R such that c(π ∪ {p}, r) > br.

Let us extend this definition to rules and embeddings. Remember that AEX(I)
is the set of feasible and exhaustive budget allocations for an instance I. An
embedding E : I → LX is said to be exhaustive if, for every instance I ∈ I,
we have τ(J(E(I))) ⊆ AEX(I). On the other hand, an exhaustive embedding
E is correct if AEX(I) = τ(J(E(I))) for every instance I. Finally, a JA rule F
is said to be exhaustive if for every correct embedding E, every instance I ∈ I

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 27

and every profile A, it is the case that τ(F (E(I),A)) ⊆ AEX(I). Similarly, a
PB rule is said to be exhaustive if it only returns exhaustive budget allocations.

Because the scenarios typically modelled using JA are rather different from
PB, the exhaustiveness axiom is not satisfied by common JA rules. Indeed,
JA rules are usually designed to be majority-consistent—they would always
return the majoritarian outcome if it is admissible—which is incompatible with
exhaustiveness. This has to do with the semantics of rejection (of a proposition)
in the context of JA.

Proposition 11 No majority-consistent JA rule is exhaustive.

Proof Consider a correct but not exhaustive embedding E (for instance TE as defined
above). As E is not exhaustive, there exists a PB instance I such that there is at least
one admissible JA outcome J ∈ J(E(I)) with τ(J) /∈ AEX(I). Now consider a profile
A with n agents in which dn/2e+ 1 agents only approve of the projects in τ(J); the
other agents being unconstrained. On the JA side, the majoritarian outcome will
be J . Since the majoritarian outcome is admissible, any majority-consistent rule F
must return {J} on E(I) and A, which does not correspond to an exhaustive budget
allocation. �

This result is far-reaching because exhaustiveness really clashes with basic
properties of JA.10 To circumvent this problem and to enforce exhaustive-
ness, we will investigate two approaches: either encoding exhaustiveness in the
integrity constraint or designing new JA rules.

4.1 Exhaustive Embeddings

We introduce the exhaustive tractable embedding, which is an adaptation of
the tractable embedding to maintain exhaustiveness when there is exactly one
resource.

Consider a PB instance I = 〈R, b,P, c〉 with R = {r}. Similarly to the
previous embeddings, we introduce the ∨-nodes of the integrity constraint as
N(j, v, c∗), where j is a project index, v is the budget used in terms of resource
r, and c∗ is the cost of the cheapest non-selected project. They are defined as
follows:

• If j = m+ 1, we have:

N(j, v, c∗) =

{
> if c∗ > b− v
⊥ otherwise.

• If v + c(pj) ≤ b, let c∗′ = min(c∗, c(pj)), then we have:

10Were it not for our assumption that every project must have at least one supporter (which
rules out certain profiles), Proposition 11 could be strengthened to say that no unanimous JA rule
is exhaustive (F is unanimous if F (J, . . . , J) = {J} for all judgments J).

Springer Nature 2021 LATEX template

28 Participatory Budgeting with Additional Constraints

N(j, v, c∗) =
(
xpj ∧N(j + 1, v + c(pj), c

∗)
)
∨
(
¬xpj ∧N(j + 1, v, c∗′)

)
.

• Otherwise, N(j, v, c∗) =
(
¬xpj ∧N(j + 1,v, c∗)

)
∨ (xpj ∧ ⊥).

The exhaustive tractable embedding ETE returns the integrity constraint
defined by N(1, 0,maxp∈P c(p)). We can prove that the embedding ETE
behaves as it is expected to.

Proposition 12 The exhaustive tractable embedding is correct and exhaustive, and
returns an integrity constraint Γ represented as a DNNF circuit of size O(m2 ×
|{c(π) | π ⊆ A(I)}|), for any I = 〈R, b,P, c〉 where |R| = 1.

Proof The structure of the embedding is very similar to that of the tractable embed-
ding TE presented above. We only prove that the embedding is exhaustive. Let
I = 〈R, b,P, c〉 be a PB instance. Consider an outcome J ∈ J(ETE(I)) and the bud-
get allocation π such that π = τ(J). Note that the budget allocation π is exhaustive
if and only if the cheapest not selected project does not fit in it. Observe that in the
exhaustive tractable embedding we are keeping track of the cheapest project that has
not been selected so that whenever all the projects have been considered two cases
can be are left. If the cheapest project fits in the budget allocation then the latter is
not exhaustive and we link the branch to the ⊥ leaf. Otherwise the budget allocation
is exhaustive and the > leaf can be linked to it. This proves that the embedding is
exhaustive. The fact that the constructed integrity constraint is a DNNF circuit of
the suitable size is almost immediate given all the proofs we have already seen on
that topic. �

This embedding is only defined for instances with a single resource and,
unfortunately, the idea does not generalise (under some widely accepted com-
putation complexity assumptions). The reason is that, when there are several
resources, then there could be exponentially many “cheapest projects”.

In the following we turn to another way to enforce exhaustiveness:
asymmetric JA rules.

4.2 Asymmetric Judgment Aggregation Rules

In the context of PB, when an agent does not include a project in her approval
ballot, this does not imply that she does not want to see the project being
funded, but rather that it is not one of her top projects. Therefore, to imple-
ment PB via JA we need to adapt the familiar JA rules so that not selecting
a project (i.e., not accepting a proposition) is not interpreted as a rejection.
To this end we introduce the new family of asymmetric JA rules. They avoid
the symmetric treatment of acceptance and rejection common in most, if not
all, established JA rules.

Definition 6 (Asymmetric Additive Rules) Let F be an additive JA rule associated
with f : (2X)n × Lit(X) → R≥0. Then its asymmetric counterpart Fasy is the rule

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 29

where for every integrity constraint Γ and every profile J , we have:

Fasy (Γ,J) = argmax
J∈J(Γ)

∑
`∈aug(J)
` is positive

f(J , `) + ε.

Here ε is a small positive constant such that:

ε <
1

|X| ×min
{
f(J , `) 6= 0 | J ∈ (2X)n, ` ∈ aug(J), ` is positive

}
.

Importantly, this definition applies only if f is R≥0-valued. The use of ε guar-
antees that accepting positive literals will always be more appealing than
accepting negative ones, while being small enough so as to not impact the rel-
ative values of positive literals. Note that ε = 1

|X|+1 is a suitable choice for the

three rules defined near the end of Section 2.2.
The class of asymmetrical additive rules is particularly interesting for us,

as we can show that every rule in this class satisfies exhaustiveness.

Proposition 13 Let F be an additive JA rule associated with an R≥0-valued
function f . Then the asymmetric counterpart of F satisfies exhaustiveness.

Proof Executing Fasy involves computing a score for every admissible candidate out-
come J . By definition, no negative literal in J can contribute to its score, while every
positive literal makes a strictly positive contribution of at least ε. Thus, flipping a
negative literal always results in an increased score. So Fasy only returns admissible
judgments for which flipping any negative literal would violate the integrity con-
straint. This corresponds to exhaustiveness. �

Observe that the asymmetric counterpart of any additive rule is itself additive
(and similarly for scoring rules, albeit not for AMRs). Finally, it is interesting
to note that the asymmetric variant of the leximax rule is very similar to the
well-known greedy approval rule for PB (Aziz and Shah, 2020).11

5 Axiomatic Analysis

Axioms are means for encoding formal properties related to the normative
adequacy of mechanisms for collective decision making (Thomson, 2001).
Exhaustiveness is an example for such an axiom. In this section we investi-
gate to what extent other important axioms proposed in the literature on PB
are satisfied by JA rules when used for the purpose of PB. The results of this
section are summarised in Table 1.

The literature on axioms for PB is still sparse. We focus on the monotonic-
ity axioms introduced by Talmon and Faliszewski (2019), generalising their
definitions to allow for multiple resources and irresolute rules. Formally, for

11This rule selects projects based on their approval score in a greedy fashion, until the budget
limit is reached. It actually corresponds to the asymmetric variant of the ranked-agenda rule
(Lang et al., 2011).

Springer Nature 2021 LATEX template

30 Participatory Budgeting with Additional Constraints

KEM SLAT LEXIMAX
sym asym sym asym sym asym

Exhaustiveness 7 3 7 3 7 3

Limit Monotonicity 7 7 7 7 7 7
Discount Monotonicity 3 3 3 3 3 3
Splitting Monotonicity 7 3 7 3 7 3
Merging Monotonicity 7 7 7 7 7 7

Table 1 Axiomatic results: “sym” denotes the usual rule and “asym” its asymmetric
counterpart.

a given PB axiom A, we say that the JA rule F satisfies A with respect to
embedding E if, for every PB instance I and profile A, the PB rule mapping
I and A to τ(F (E(I),A)) satisfies A.

Moreover, for a resolute rule F , the axioms of Talmon and Faliszewski
(2019) are usually stated as “when one moves from an instance/profile pair
(I,A) to another pair (I ′,A′), then if F (I,A) satisfies a certain property,
F (I ′,A′) should satisfy a corresponding property.” We generalise these axioms
to the irresolute case by requiring that, if every budget allocation returned
by our rule for (I,A) satisfies the property in question, then every budget
allocation for (I ′,A′) should satisfy the corresponding property. Note that, still
in the context of PB, Baumeister et al. (2020) chose a different generalisation,
involving existential rather than universal quantification.

The first axiom we study is called limit monotonicity. It states that after
any increase in the budget limit that is not so substantial as to make some
previously unaffordable project affordable, any funded project should continue
to get funded. This axiom is closely related to that of committee monotonicity
for multiwinner voting rules (Elkind et al., 2017).

Definition 7 (Limit monotonicity) A PB rule F is said to be limit-monotonic if, for
any two PB instances I = 〈R, b,P, c〉 and I ′ =

〈
R, b′,P, c

〉
with b ≤ b′ and c(p) ≤ b

for all projects p ∈ P, it is the case that
⋂
F (I,A) ⊆

⋂
F (I ′,A) for all profiles A.

In the following, we show that this axiom is not satisfied by any of the JA
rules of interest, even when there is only one resource.

Proposition 14 None of the Kemeny, the Slater, or the leximax rules, or their
asymmetric counterparts satisfy limit monotonicity with respect to any correct
embedding.

Proof Assume the embedding is correct. Consider two instances I = 〈R, b,P, c〉 and
I ′ =

〈
R, b′,P, c

〉
such that |R| = 1. There are three projects p1, p2, and p3, and the

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 31

budget limits are b = (4) and b′ = (5). The profile of interest A together with the
instances I and I ′ are presented below, I on the left and I ′ on the right.

p1 p2 p3

Cost 3 2 1

A1 3 3 3

A2 3 3 3

A3 3 3 3

A4 3 3 7

A5 3 7 7

b = (4)

p1 p2 p3

Cost 3 2 1

A1 3 3 3

A2 3 3 3

A3 3 3 3

A4 3 3 7

A5 3 7 7

b = (5)

We claim that on I, the Kemeny, the leximax rules, and their asymmetric counterpart
would all return {{p1, p3}}. However, they would all return {{p1, p2}} on I ′. Project
p3 is thus a witness of the violation of limit monotonicity.

For the Slater rule and its asymmetric counterpart, consider the situation
depicted below with two instances I = 〈R, b,P, c〉 and I ′ =

〈
R, b′,P, c

〉
involving

three projects and a single resource, i.e., |R| = 1. The budget limits are b = (4)
and b′ = (6). We denote by A (on the left) and A′ (on the right) the corresponding
profiles, presented below.

p1 p2 p3

Cost 1 2 4

A1 3 3 3

b = (4)

p1 p2 p3

Cost 1 2 4

A1 3 3 3

b′ = (6)

On I and A, both the Slater rule and its asymmetric counterpart would
return {{p1, p2}}. On the other hand, on I ′ and A, both rules would return
{{p1, p2}, {p1, p3}, {p2, p3}}. Since

⋂
{{p1, p2}, {p1, p3}, {p2, p3}} = ∅, both projects

p1 and p2 are witnesses of the violation of limit monotonicity. �

We move on to discount monotonicity, an axiom stating that, if the cost of a
selected project is reduced, then that project should continue to be selected.

Definition 8 (Discount monotonicity) A PB rule F is said to be discount-monotonic
if, for any two PB instances I = 〈R, b,P, c〉 and I ′ =

〈
R, b,P, c′

〉
such that for

some distinguished project p? ∈ P, we have c(p?) ≥ c′(p?), and c(p) = c′(p) for
all p ∈ P \ {p?}, it is the case that p? ∈

⋂
F (I,A) implies p? ∈

⋂
F (I ′,A) for all

profiles A.

To study how JA rules deal with discount monotonicity, we introduce a new
axiom for JA. This axiom is relevant for us, since it is a sufficient condition
for discount monotonicity.

Springer Nature 2021 LATEX template

32 Participatory Budgeting with Additional Constraints

Definition 9 (Constraint monotonicity) A JA rule F is said to be constraint-
monotonic if, for any two integrity constraints Γ,Γ′ ∈ LX with J(Γ) ⊆ J(Γ′) and any
profile J , it is the case that F (Γ′,J) \ F (Γ,J) ⊆ J(Γ′) \ J(Γ).

We obtain the following formal connection between the two axioms.

Lemma 15 Every constraint-monotonic JA rule is discount-monotonic with respect
to any correct embedding.

Proof Let F be a JA rule that is constraint-monotonic. Let E be a correct embedding.
Consider the instances I = 〈R, b,P, c〉 and I ′ =

〈
R, b,P, c′

〉
, where a project p ∈ P

became cheaper from I to I ′ as in Definition 8.
Let A be an arbitrary profile with p ∈

⋂
τ(F (E(I),A)). We need to show that

p ∈
⋂
τ(F (E(I ′),A)). Observe that A(I) ⊆ A(I ′). Because E is correct, we also

have J(E(I)) ⊆ J(E(I ′)). Moreover, for every π ∈ A(I ′) \ A(I), we have p ∈ π
as only c′(p) changed in I ′. Hence, for every outcome J ∈ J(E(I ′)) \ J(E(I)), we
have p ∈ τ(J). From constraint-monotonicity, we have that for every profile A,
F (E(I ′),A) ⊆ F (E(I),A) ∪ J(E(I ′)) \ J(E(I)). Hence, for every J ∈ F (E(I ′),A),
we have p ∈ τ(J). �

Our axiom turns out to be satisfied by many JA rules.

Proposition 16 Every additive rule is constraint-monotonic.

Proof Consider any additive rule F . Suppose, that F is not constraint-monotonic.
Then there exist two integrity constraints Γ and Γ′ with J(Γ) ⊆ J(Γ′) and a profile J
for which there exists a J ∈ F (Γ′,J)\F (Γ,J) with J ∈ J(Γ)\J(Γ′). As J /∈ F (Γ,J),
there exists some J ′ ∈ J(Γ) with a higher total score than that of J . Moreover, since
J(Γ) ⊆ J(Γ′), this same J ′ would outperform J also under Γ′. This implies that
J /∈ F (Γ′,J), which is a contradiction, so we are done. �

Recall that several well-known JA rules are additive and thus subject to this
result.

Corollary 17 The Kemeny, Slater, and leximax rules as well as their asymmetric
counterparts are all discount-monotonic with respect to any correct embedding.

The last two axioms we consider deal with situations where projects are split
into subprojects (and the dual operation of merging projects). First, splitting
monotonicity states that, if a selected project is split into a set of projects
approved by the same agents, then some of these new projects should still
be selected. The axiom of merging monotonicity expresses a similar condition
when merging projects.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 33

Given a PB instance I = 〈R, b,P, c〉 and a profile A, we say that I ′ =
〈R, b,P ′, c′〉 and A′ are the result of splitting project p ∈ P into P (with
P ∩ P = ∅), if the following conditions are satisfied:

• The project p is replaced by P in the set of projects: P ′ = (P \ {p}) ∪ P .
• The total cost of P is that of p: for all p′ ∈ P , it is the case that c′(p′) 6= 0d

and c′(P) = c(p).
• The cost of every other project is as in I: c′(p′) = c(p′) for all projects
p′ ∈ P ′ \ P .

• The project p is replaced by P in the ballots containing it: for every i ∈ N
with p /∈ Ai, we have A′i = Ai; and A′i = (Ai \ {p}) ∪ P for all other i ∈ N .

We also say that I and A are the result of merging P into p given I ′ and A′.

Definition 10 (Splitting monotonicity) A PB rule F is said to be splitting-
monotonic if, for any two PB instances I = 〈R, b,P, c〉 and I ′ =

〈
R, b,P ′, c′

〉
with

corresponding profiles A and A′ such that I ′ and A′ are the result of splitting
project p into P given I and A, it is the case that if p ∈

⋂
F (I ′,A) then A′ ∩P 6= ∅

for all A′ ∈ F (I ′,A).

Definition 11 (Merging monotonicity) A PB rule F is said to be merging-monotonic
if, for any two PB instances I = 〈R, b,P, c〉 and I ′ =

〈
R, b,P ′, c′

〉
with corresponding

profiles A and A′ such that I ′ and A′ are the result of merging project set P into
project p given I and A, it is the case that P ⊆

⋂
F (I,A) implies p ∈

⋂
F (I ′,A).

We first show that splitting monotonicity is satisfied by AMRs and their
asymmetric counterparts.

Proposition 18 Every AMR as well as the asymmetric counterpart of every AMR
are splitting-monotonic with respect to any correct embedding.

Proof Let F be either an AMR or the asymmetric counterpart of an AMR, and let
E be a correct and exhaustive embedding. Consider a PB instance I = 〈R, b,P, c〉
and a profile A. Let J be the JA profile corresponding to A. Let I ′ =

〈
R, b,P ′, c′

〉
and A′ be the instance and profile resulting from splitting a given project p? ∈⋂
τ(F (E(I),J)) into the set of projects P ?. Let J ′ be the JA profiles corresponding

to A′.
Consider an outcome J1 ∈ F (E(I),J). Note that any outcome J that is admis-

sible before and after the splitting, i.e., any J ∈ J(E(I)) ∩ J(E(I ′)), cannot include
either p? or any project from P ?. Since p? ∈

⋂
τ(F (E(I),J)), this implies that J1

has a higher total score than any J ∈ J(E(I)) ∩ J(E(I ′)).
Consider now an outcome J ′1 = (J1 \ {p?})∪ {p} for some newly created project

p ∈ P ?. By definition of the new cost function, and since E is a correct embedding,
we have J ′1 |= E(I ′). J ′1 thus determines an admissible outcome for the constraint

corresponding to I ′. Based on the definition of J ′, it is clear that nJ` = nJ
′

` for

Springer Nature 2021 LATEX template

34 Participatory Budgeting with Additional Constraints

every ` ∈ aug(J1 \ {xp?}) and that nJx?
p

= nJ
′

xp
. Hence, because the internal score

used by F only depends on the number of supporters, we know that J1 and J ′1
have the same total score. This implies that J ′1 has a higher total score than any
J ∈ J(E(I)) ∩ J(E(I ′)). Thus, J(E(I)) ∩ F (E(I ′),J ′) = ∅. As for every newly
admissible judgement J ′ ∈ J(E(I ′))\J(E(I)) we have P ?∩τ(J ′) 6= ∅, every outcome
returned by F would have a non-empty intersection with P ?. �

Interestingly, this result provides a sufficient condition for PB rules to sat-
isfy splitting monotonicity: any rule behaving as an AMR (with a suitable
definition of AMR for PB) will satisfy it.

For the specific set of rules we study, we obtain the following corollary.

Corollary 19 The Kemeny, Slater, and leximax rules as well as their asymmetric
counterparts are all splitting-monotonic with respect to any correct embedding.

Interestingly, when enforcing exhaustiveness through the embedding, this
last result is no longer valid for symmetric rules.

Proposition 20 None of the Kemeny, the Slater, or the leximax rules satisfy
splitting monotonicity with respect to any correct and exhaustive embedding.

Proof Consider the following pairs of instances and three-agent profiles: I and A on
the left and I ′ and A′ on the right. Both involve just one resource.

p1 p2 p3 p4

Cost 2 2 1 1

A1 3 7 7 7

A2 3 7 7 7

A3 7 3 3 3

b = (4)

p1 p1
2 p2

2 p3
2 p4

2 p3 p4

Cost 2 1/2 1/2 1/2 1/2 1 1

A1 3 7 7 7 7 7 7

A2 3 7 7 7 7 7 7

A3 7 3 3 3 3 3 3

b = (4)

Observe that I ′ and A′ are the result of splitting p2 into {p1
2, p

2
2, p

3
2, p

4
2}, given I and

A. We leave the relevant computations to the reader, but the Kemeny, the Slater,
and the leximax rules would all return {{p1, p2}} on (I,A) when used with a correct
and exhaustive embedding. However, they would return {{p1, p3, p4}} on (I ′,A′).
Hence, p2 is a witness of a violation of splitting monotonicity. �

We finally investigate merging monotonicity. It turns out that none of the rules
we are considering in this paper satisfy it. A simple counterexample proving
this claim is provided next.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 35

Proposition 21 None of the Kemeny, the Slater, or the leximax rules, or their
asymmetric counterparts satisfy merging monotonicity with respect to any correct
embedding.

Proof Consider the following pairs of instances and one-agent profiles: I and A on
the left and I ′ and A′ on the right. Both involve just one resource.

p1 p2 p3 p4 p5 p6

Cost 2 2 1 1 1 1

A1 3 3 3 3 3 3

b = (4)

p1 p2 p′3

Cost 2 2 4

A1 3 3 3

b = (4)

Observe that I ′ and A′ are the result of merging {p3, p4, p5, p6} into project p′3, given
I and A. It is easy to see that the Kemeny, the Slater, and the leximax rules would
all return {{p3, p4, p5, p6}} on (I,A) when used with a correct embedding. However,
they would return {{p1, p2}} on (I ′,A′). Hence, p′3 is a witness of a violation of
merging monotonicity. Moreover, since the only agent approves of every projects, the
same hold for the asymmetric counterpart of the rules. �

To conclude this section, we shortly discuss the overall axiomatic picture for
JA rules. The most striking results are that none of our rules satisfy limit
and merging monotonicity. For limit monotonicity, it should be noted that no
PB rule we know of satisfies it (Talmon and Faliszewski, 2019). It seems to
be too strong a requirement. For merging monotonicity, the situation is less
clear-cut: Some PB rules satisfy it but none that are widely used. Our other
axiomatic results are in line with those of Talmon and Faliszewski (2019).
Overall, relative to the range of axioms we have considered here, we may
summarise the situation by saying that JA rules perform similarly to other PB
rules in normative terms.

6 Conclusion

We have proposed an efficient way of determining the outcome for PB prob-
lems by means of JA rules. The richness of the JA framework allowed us to
develop embeddings for generalised forms of PB. While the resulting problems
are computationally hard in general, we nevertheless were able to present use-
ful parameterized embeddings for them. Regarding the axiomatic properties
of JA rules for PB, we observed that a näıve way of embedding PB into JA
leads to rules that violate the crucial exhaustiveness requirement of PB. We
then suggested two ways of enforcing exhaustiveness: either through exhaus-
tive embeddings or by using asymmetric JA rules. We also analysed several
common JA rules and their asymmetric counterparts in view of basic mono-
tonicity axioms for PB and found that the asymmetric rules fare better than
the original rules.

Springer Nature 2021 LATEX template

36 Participatory Budgeting with Additional Constraints

In terms of future work, it would be interesting to study a wider range
of PB axioms, to allow us to better differentiate between different JA rules.
Indeed, for now, the Kemeny, Slater, and leximax rule cannot be distinguished
based on the PB-specific axioms we studied (although they of course can be
distinguished by means of axioms studied in the JA literature). A particu-
larly exciting direction would be to investigate proportionality axioms such
as those introduced by Aziz et al. (2018), Haret et al. (2020), and Chingoma
et al. (2022). Interestingly, Chingoma et al. (2022) introduced proportionality
requirements in the context of JA. However the rules satisfying those require-
ments are not additive rules and thus do not fit within our framework. It
would therefore be interesting to investigate in more depth whether we can
find additive rules that satisfy a relevant notion of proportionality. Another
important direction would be to establish direct links between certain JA rules
and their counterparts for PB. We, for instance, observed that the leximax rule
is a refinement of the greedy approval rule—the most widely used PB rule in
practice. Drawing similar parallels between other JA and PB rules is a natural
next step for the research agenda initiated in this paper.

Beyond its immediate significance to the theory and practice of PB, we
believe our work also, more generally, highlights some important aspects of
working with different frameworks for collective decision making. The high
expressive power of JA permits us to encode many problems of practical inter-
est as well as properties and constraints. Finding efficient ways of solving
decision problems embedded into JA can be hard, but once identified, these
methods allow for great flexibility.

Acknowledgements

We would like to thank the anonymous reviewers of the KR-2020 conference,
the COMSOC-2021 workshop, and Social Choice and Welfare for their valuable
feedback. We are also grateful for the fruitful discussions we had with Jan
Maly when he visited us in Amsterdam in 2019.

References

Akian, M., R. Bapat, and S. Gaubert. 2006. Max-plus algebra, In Handbook
of Linear Algebra, ed. Hogben, L., Chapter 35. London: Chapman and Hall.

Allegretti, G. and S. Antunes. 2014. The Lisbon participatory budget: Results
and perspectives on an experience in slow but continuous transformation.
Field Actions Science Reports .

Arora, S. and B. Barak. 2009. Computational Complexity: A Modern Approach.
Cambridge: Cambridge University Press.

Aziz, H., B.E. Lee, and N. Talmon 2018. Proportionally representative par-
ticipatory budgeting: Axioms and algorithms. In Proceedings of the 17th

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 37

International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 23–31.

Aziz, H. and N. Shah. 2020. Participatory budgeting: Models and approaches,
Pathways between Social Science and Computational Social Science: Theo-
ries, Methods and Interpretations. Switzerland: Springer Nature.

Baumeister, D., L. Boes, and C. Laußmann 2022. Time-constrained partici-
patory budgeting under uncertain project costs. In Proceedings of the 31st
International Joint Conference on Artificial Intelligence (IJCAI).

Baumeister, D., L. Boes, and T. Seeger 2020. Irresolute approval-based bud-
geting. In Proceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 1774–1776.

Ben-Eliyahu, R. and R. Dechter. 1996. On computing minimal models. Annals
of Mathematics and Artificial Intelligence 18 (1): 3–27 .

Benade, G., N. Itzhak, N. Shah, A.D. Procaccia, and Y.K. Gal. 2018. Efficiency
and usability of participatory budgeting methods. Unpublished manuscript.

Bodlaender, H.L. 1998. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science 209 (1-2): 1–45 .

Bodlaender, H.L. and T. Kloks. 1996. Efficient and constructive algorithms
for the pathwidth and treewidth of graphs. Journal of Algorithms 21 (2):
358–402 .

Cabannes, Y. 2004. Participatory budgeting: A significant contribution to
participatory democracy. Environment and Urbanization 16 (1): 27–46 .

Cadoli, M., F.M. Donini, P. Liberatore, and M. Schaerf. 2002. Preprocessing
of intractable problems. Information and Computation 176 (2): 89–120 .

Chingoma, J., U. Endriss, and R. de Haan 2022. Simulating multiwinner vot-
ing rules in judgment aggregation. In Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

City of Amsterdam. 2022. Oost begroot. https://www.amsterdam.nl/
stadsdelen/oost/oost-begroot/. Last accessed on 29 April 2022.

City of Paris. 2022. Paris Budget Participatif. https://budgetparticipatif.
paris.fr/. Last accessed on 29 April 2022.

Conitzer, V., R. Freeman, and N. Shah 2017. Fair public decision making. In
Proceedings of the 18th ACM Conference on Economics and Computation
(ACM-EC), pp. 629–646.

https://www.amsterdam.nl/stadsdelen/oost/oost-begroot/
https://www.amsterdam.nl/stadsdelen/oost/oost-begroot/
https://budgetparticipatif.paris.fr/
https://budgetparticipatif.paris.fr/

Springer Nature 2021 LATEX template

38 Participatory Budgeting with Additional Constraints

van Dalen, D. 2013. Logic and Structure (5th ed.). Springer.

Darwiche, A. and P. Marquis. 2002. A knowledge compilation map. Journal
of Artificial Intelligence Research 17: 229–264 .

Dias, N. ed. 2018. Hope for Democracy: 30 Years of Participatory Budgeting.
Vila Ruiva and Faro: Epopeia Records and Oficina.

Dietrich, F. 2014. Scoring rules for judgment aggregation. Social Choice and
Welfare 42 (4): 873–911 .

Dietrich, F. and C. List. 2007. Arrow’s Theorem in judgment aggregation.
Social Choice and Welfare 29 (1): 19–33 .

Downey, R.G. and M.R. Fellows. 2013. Fundamentals of Parameterized
Complexity. London: Springer.

Elkind, E., P. Faliszewski, P. Skowron, and A. Slinko. 2017. Properties of
multiwinner voting rules. Social Choice and Welfare 48 (3): 599–632 .

Endriss, U. 2016. Judgment aggregation, In Handbook of Computational
Social Choice, eds. Brandt, F., V. Conitzer, U. Endriss, J. Lang, and A.D.
Procaccia, Chapter 17, 399–426. New York: Cambridge University Press.

Endriss, U. 2018. Judgment aggregation with rationality and feasibility con-
straints. In Proceedings of the 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), pp. 946–954.

Endriss, U., U. Grandi, R. de Haan, and J. Lang 2016. Succinctness of lan-
guages for judgment aggregation. In Proceedings of the 15th International
Conference on Principles of Knowledge Representation and Reasoning (KR).

Endriss, U., R. de Haan, J. Lang, and M. Slavkovik. 2020. The complexity
landscape of outcome determination in judgment aggregation. Journal of
Artificial Intelligence Research 69: 687–731 .

Everaere, P., S. Konieczny, and P. Marquis 2014. Counting votes for aggre-
gating judgments. In Proceedings of the 13th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 1177–1184.

Fain, B., A. Goel, and K. Munagala 2016. The core of the participatory
budgeting problem. In Proceedings of the 12th International Workshop on
Internet and Network Economics (WINE), pp. 384–399.

Fain, B., K. Munagala, and N. Shah 2018. Fair allocation of indivisible pub-
lic goods. In Proceedings of the 19th ACM Conference on Economics and
Computation (ACM-EC), pp. 575–592.

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 39

Fairstein, R., R. Meir, D. Vilenchik, and K. Gal 2022. Welfare vs. represen-
tation in participatory budgeting. In Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS).

Fluschnik, T., P. Skowron, M. Triphaus, and K. Wilker 2019. Fair knapsack. In
Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI),
Volume 33, pp. 1941–1948.

Freeman, R., D.M. Pennock, D. Peters, and J. Wortman Vaughan 2019.
Truthful aggregation of budget proposals. In Proceedings of the 20th ACM
Conference on Economics and Computation (ACM-EC), pp. 751–752.

Garey, M.R. and D.S. Johnson. 1979. Computers and Intractability. New York:
W.H. Freeman.

Goel, A., A.K. Krishnaswamy, S. Sakshuwong, and T. Aitamurto. 2019.
Knapsack voting: Voting mechanisms for participatory budgeting. ACM
Transaction on Economics and Computation 7 (2): 8:1–8:27 .

Grandi, U. and U. Endriss 2011. Binary aggregation with integrity constraints.
In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), pp. 204–209.

Grossi, D. and G. Pigozzi. 2014. Judgment Aggregation: A Primer. Syn-
thesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers.

de Haan, R. 2018. Hunting for tractable languages for judgment aggregation. In
Proceedings of the 16th International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 194–203.

Haret, A., M. Lackner, A. Pfandler, and J.P. Wallner 2020. Proportional
belief merging. In Proceedings of the 34th AAAI Conference on Artificial
Intelligence (AAAI), pp. 2822–2829.

Hershkowitz, D.E., A. Kahng, D. Peters, and A.D. Procaccia 2021. District-
fair participatory budgeting. In Proceedings of the 35th AAAI Conference
on Artificial Intelligence (AAAI).

Jain, P., K. Sornat, and N. Talmon 2020. Participatory budgeting with project
interactions. In Proceedings of the 29th International Joint Conference on
Artificial Intelligence (IJCAI).

Jain, P., K. Sornat, N. Talmon, and M. Zehavi 2021. Participatory budget-
ing with project groups. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence (IJCAI).

Springer Nature 2021 LATEX template

40 Participatory Budgeting with Additional Constraints

Karp, R.M. 1972. Reducibility among combinatorial problems, In Complex-
ity of Computer Computations, eds. Miller, R.E., J.W. Thatcher, and J.D.
Bohlinger, 85–103. Boston: Springer.

Karp, R.M. and R.J. Lipton 1980. Some connections between nonuniform
and uniform complexity classes. In Proceedings of the 12th Annual ACM
Symposium on Theory of Computing (STOC), pp. 302–309.

Kimmig, A., G. van den Broeck, and L. de Raedt. 2017. Algebraic model
counting. Journal of Applied Logic 22: 46–62 .

Lackner, M., J. Maly, and S. Rey 2021. Fairness in long-term participatory
budgeting. In Proceedings of the 30th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 299–305.

Lang, J., G. Pigozzi, M. Slavkovik, and L. van der Torre 2011. Judgment aggre-
gation rules based on minimization. In Proceedings of the 13th Conference
on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 238–246.

Lang, J. and M. Slavkovik 2013. Judgment aggregation rules and voting rules.
In Proceedings of the 3rd International Conference on Algorithmic Decision
Theory (ADT), pp. 230–243.

List, C. and P. Pettit. 2002. Aggregating sets of judgments: An impossibility
result. Economics & Philosophy 18 (1): 89–110 .

List, C. and C. Puppe. 2009. Judgment aggregation: A survey, In Handbook
of Rational and Social Choice, eds. Anand, P., P. Pattanaik, and C. Puppe.
Oxford University Press.

Los, M., Z. Christoff, and D. Grossi 2022. Proportional budget allocations:
Towards a systematization. In Proceedings of the 31st International Joint
Conference on Artificial Intelligence (IJCAI).

Lu, T. and C. Boutilier 2011. Budgeted social choice: From consensus to
personalized decision making. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI), pp. 280–286.

Marquis, P. 2015. Compile! In Proceedings of the 29th AAAI Conference on
Artificial Intelligence (AAAI), pp. 4112–4118.

Miller, M.K. and D. Osherson. 2009. Methods for distance-based judgment
aggregation. Social Choice and Welfare 32 (4): 575–601 .

Motamed, N., A. Soeteman, S. Rey, and U. Endriss 2022. Participatory budget-
ing with multiple resources. In Proceedings of the 19th European Conference
on Multiagent Systems (EUMAS).

Springer Nature 2021 LATEX template

Participatory Budgeting with Additional Constraints 41

Nehring, K. and M. Pivato. 2019. Majority rule in the absence of a majority.
Journal of Economic Theory 183: 213–257 .

Patel, D., A. Khan, and A. Louis 2021. Group fairness for knapsack problems.
In Proceedings of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS).

Peters, D., G. Pierczynski, and P. Skowron 2021. Proportional participa-
tory budgeting with additive utilities. In Proceedings of the 35th Annual
Conference on Neural Information Processing Systems (NeurIPS).

Pigozzi, G. 2006. Belief merging and the discursive dilemma: An argument-
based account to paradoxes of judgment aggregation. Synthese 152 (2): 285–
298 .

Rey, S., U. Endriss, and R. de Haan 2021. Shortlisting rules and incentives
in an end-to-end model for participatory budgeting. In Proceedings of the
30th International Joint Conference on Artificial Intelligence (IJCAI), pp.
370–376.

Rey, S., U. Endriss, and R. de Haan 2020. Designing participatory budgeting
mechanisms grounded in judgment aggregation. In Proceedings of the 17th
International Conference on Principles of Knowledge Representation and
Reasoning (KR).

Robertson, N. and P.D. Seymour. 1983. Graph minors. i. excluding a forest.
Journal of Combinatorial Theory, Series B 35 (1): 39–61 .

Shah, A. ed. 2007. Participatory Budgeting. Washington: The World Bank.

Sreedurga, G., M.R. Bhardwaj, and Y. Narahari 2022. Maxmin participatory
budgeting. In Proceedings of the 31st International Joint Conference on
Artificial Intelligence (IJCAI).

Talmon, N. and P. Faliszewski 2019. A framework for approval-based bud-
geting methods. In Proceedings of the 33rd AAAI Conference on Artificial
Intelligence (AAAI), pp. 2181–2188.

Thomson, W. 2001. On the axiomatic method and its recent applications
to game theory and resource allocation. Social Choice and Welfare 18 (2):
327–386 .

Wampler, B. 2012. Participatory budgeting: Core principles and key impacts.
Journal of Public Deliberation 8 (2): 12 .

Wampler, B., S. McNulty, and M. Touchton. 2021. Participatory Budgeting in
Global Perspective. Oxford: Oxford University Press.

	Introduction
	Related Work
	Paper Outline

	Frameworks
	Participatory Budgeting
	Judgment Aggregation
	Embedding PB into JA

	Efficient Embeddings
	Tractable Language for Judgment Aggregation
	DNNF Circuit Embeddings
	Dependencies between Projects
	Quotas on Types of Projects

	Enforcing Exhaustiveness
	Exhaustive Embeddings
	Asymmetric Judgment Aggregation Rules

	Axiomatic Analysis
	Conclusion

