
MEng Individual Project ReportA KE Based Theorem Proving AssistantAuthor: Ulrich Endri�Supervisor: Jeremy PittImperial College, Department of ComputingJune 20, 1996

AbstractThe project documented in this report mainly deals with the development ofa pedagogic tool for teaching logic and reasoning. This program uses the KECalculus, a relatively new method of automated deduction, which arguablyhas advantages, from a didactic point of view, over both the tableau methodand natural deduction. There already existed a prototype program of thedesired type, MacKE, which allows its user to build up a graphic KE prooftree, whose correctness can be checked automatically.The �rst step undertaken in this project was an evaluation of MacKE. Onthis evaluation a redesign was to be based. Unlike MacKE, which runs ona Macintosh platform, the new program { WinKE { has been designed fora PC running under Windows 95 because of the relative availability of thatplatform.This report presents the KE Calculus, comments on the evaluation of MacKE,documents the design of WinKE, and makes some remarks on its implemen-tation. Version 1.2 of WinKE described in this report exists as a workingstand-alone system.

Contents1 Introduction 41.1 The Project : 41.2 Overview : 51.3 Guide to Literature : 52 The KE Calculus 72.1 Introduction to KE : 72.2 Propositional KE : 82.2.1 Formulas : 82.2.2 Rules : 92.2.3 Analytic PB and � Simpli�cation : : : : : : : : : : : : 102.3 KE for First Order Logic : 112.3.1 Formulas : 112.3.2 Rules : 122.3.3 Restricting Instantiation and Fairness : : : : : : : : : 122.4 Modal KE : 142.4.1 Pre�xed Formulas : 142.4.2 Accessibility and Modal Rules : : : : : : : : : : : : : 152.4.3 A Problem : 162.5 Discussion : 161

CONTENTS 22.6 Summary : 173 The Program MacKE 183.1 Description of MacKE : 183.1.1 The Interface : 183.1.2 Using the Graphic Tools : : : : : : : : : : : : : : : : : 213.1.3 Applying KE Rules to the Proof Tree : : : : : : : : : 233.2 Evaluation : 253.3 Recommendations for the Redesign : : : : : : : : : : : : : : : 263.4 Summary : 274 Design 1: Requirements 284.1 Tasks : 284.2 Human Computer Interaction : : : : : : : : : : : : : : : : : : 294.2.1 Design of the Interface : : : : : : : : : : : : : : : : : : 294.2.2 Transparency : 294.2.3 Control : 294.2.4 Assistance : 304.3 Drawing the Proof Tree : 314.3.1 Trees to Display KE Proofs : : : : : : : : : : : : : : : 314.3.2 The Tree Drawing Algorithm of MacKE : : : : : : : : 314.3.3 Some Aesthetics for Drawing a Tree : : : : : : : : : : 334.3.4 An Aesthetic Tree Drawing Algorithm : : : : : : : : : 344.4 The Undo Tool : 354.5 Data Structure : 364.6 File Handling : 394.7 Rule Checking : 394.8 Architecture : 404.9 Summary : 42

CONTENTS 35 Design 2: Interface and Functionality 435.1 Interface : 435.1.1 The Menu Window : 435.1.2 The Tool Box : 445.1.3 The Graphic Window : : : : : : : : : : : : : : : : : : 445.1.4 The Little Graphic Window : : : : : : : : : : : : : : : 445.2 Functionality : 455.2.1 The File Menu : 455.2.2 The Problem Menu : 455.2.3 The Graphic Windows : : : : : : : : : : : : : : : : : : 465.2.4 The Graphic Tools : 465.2.5 The Analysis Menu : 475.2.6 The Options Menu : 475.2.7 Help : 485.3 Summary : 486 The Implementation of WinKE 496.1 WinProlog : 496.2 Modules and Global Values : : : : : : : : : : : : : : : : : : : 496.3 WinKE Version 1.2 : 506.4 Demonstration : 517 Conclusion 567.1 Results : 567.2 Further Work : 567.3 Acknowledgements : 57

Chapter 1Introduction1.1 The ProjectThere exists a program called MacKE that is to be used as a pedagogic toolto assist the teaching of logic and reasoning. It was intended to supporta textbook by Marcello D'Agostino and Marco Mondadori, which is to bereleased in the near future. MacKE is implemented in Prolog for a Macin-tosh platform and uses the KE Calculus. The actual version (v0.34, 1994by Jeremy Pitt) enables the user to perform a theorem proof in �rst orderpredicate logic by building up the respective proof tree via the graphicalinterface of the program according to the rules of KE. Two di�erent modesare available, in the Pedagogue mode the user is forced to apply the rulescorrectly, in Supervisor mode generally any input is accepted, i.e. the pro-gram only serves as a blackboard to design the tree and the user him/herselfis responsible for its correctness. The routines to check such a proof done inSupervisor mode are implemented, but haven't already been made availableby the MacKE interface.The projects aim is to create a new and improved version of such a KEbased theorem proving assistant, this time to run on a PC platform underWindows 95. The port to PC is due to the relative availability of thatplatform. The �rst milestone to achieve is an evaluation of MacKE to spotadvantages and disadvantages of the current version, regarding functionalityas well as usability. This evaluation should then lead to a complete redesignof the system and �nally to the implementation of WinKE.4

CHAPTER 1. INTRODUCTION 5In particular the new program should be equipped with a real Assistantoption, that means apart from its teaching facilities the system should alsoo�er the possibility to support users already experienced in Theorem Provingfor example by being able to perform parts of the proofs automatically orallowing time e�cient inputs via the mouse.1.2 OverviewThis report starts with an introduction to the KE Calculus in chapter 2. Therule systems for propositional as well as for �rst order logic are given andsome aspects of the design of a KE calculus for modal logics are presented.This chapter closes with a short comparison with other techniques in the�eld of automated deduction and discusses some advantages of the systemKE.The next chapter deals with the program MacKE. After a description of thesystem from a user's point of view in the evaluation part several problemswith the current design are addressed. As this evaluation is intended toproduce guidelines for the design of WinKE chapter 3 �nally lists somerecommendations for the redesign.In chapter 4 the design of WinKE is developed. First some general require-ments are addressed. This is followed by a discussion of some importantdesign decisions. The �nal speci�cation of the program is then presented inthe following chapter.How the speci�cation has been realised as a program is described in thechapter on implementation. To make the working of WinKE more trans-parent to the reader in that chapter also some screen dumps of the runningprogram are shown.This report ends with a short evaluation of the results gained and possibleareas for further work in the �eld are pointed out.1.3 Guide to LiteratureAt the end of this document a list of references is given, mainly coveringthe theoretical aspects of the project, i.e. theoretical presentations anddiscussions of the KE Calculus. Items [1] and [3] introduce the KE Calculus

CHAPTER 1. INTRODUCTION 6and also discuss its di�erences and in particular its advantages to other moreclassical methods of theorem proving like for example tableaux. In [7] besidesa short introduction to KE the design of leanKE, a theorem prover that usesKE, is presented and its performance is evaluated. An introduction to modallogic is given by [6] and [4] discusses KE in conjunction with multi-modallogics.The program MacKE is described in [9], a shorter description of its inter-face can be found in [8]. Also references to some other approaches towardsbuilding a teaching tool for theorem proving are given. Publications on theprograms Hyperproof [2], MacLogic [5], and Tableau II [10] are listed.

Chapter 2The KE Calculus2.1 Introduction to KEIn his PhD thesis [1] Marcello D'Agostino presents the KE Calculus, a rel-atively new method for proving theorems automatically, a problem whichclassically has been tackled by either resolution, natural deduction, or se-mantic tableaux.The typical problem the KE Calculus may be applied to is to show thatwhen a set of formulas, the so called premises are known to be true, anotherformula also has to hold. The last formula is called the conclusion, becauseone believes, that it might be concluded from the premises. A solution to thegiven problem would be to prove that the complement of the conclusion is acontradiction to the premises. This could be done by deducing further for-mulas from the premises and the complement of the conclusion respectivelyadding theorems until two formulas are found, that obviously contradicteach other (in the simplest case one of them would be the complement ofthe other).Because the KE Calculus uses this idea it is called a refutation system. The�rst step to perform the proof of the conclusion is to write all the premisesand the negation of the conclusion together one underneath the other asthe trunk of a so called proof tree, which then has to be build up followingthe rules of the KE Calculus. Those rules, which will be described below,extend the proof tree by further formulas and may also branch the (at thebeginning linear) tree. When on a branch of the proof tree one can identify7

CHAPTER 2. THE KE CALCULUS 8two complement formulas, this branch is said to be closed and no furtherrules will be applied to it. If it is possible to close all branches, the proof isdone, i.e. the conclusion is proven to hold. The reason why this is so lies inthe special nature of the KE rules. They only add new formulas to the tree,that can either be deduced from the formulas given so far, or in one case(the rule PB, see below) split a branch and add to one of the new branchesthe complement of the formula that is added to the other one. As everysingle branch has to be closed, this splitting is equivalent to the proving ofthe refutation for the two possible cases that an arbitrary formula may betrue or false.2.2 Propositional KE2.2.1 FormulasBefore the KE rules are presented a system of classi�cation for formulas ofpropositional logic has to be introduced. A formula is called an � formulaor said to be of conjunctive type, if it matches with one of the followingpatterns. �1 ^ �2 :(�1 _ �2) :(�1 ! �2)These formulas are called conjunctive, because the main connector of theircanonical representation is ^. In addition also formulas that are syntacticallythe double negation of another formula are counted towards the � formulas.They can be symbolised as ::�The second class consists of the � formulas, which are formulas of disjunctivetype. The possible patterns for them are�1 _ �2 :(�1 ^ �2) �1 ! �2Formulas whose main connector is $ form the class of � formulas, they mayoccur as one of the following patterns.�1 $ �2 :(�1 $ �2)

CHAPTER 2. THE KE CALCULUS 92.2.2 RulesFor each of the presented types of formulas the KE Calculus has got a rulethat may be applied to a formulas of the respective type on the proof tree.Such a rule describes what kind of formula(s) can be added to a branch ofthe tree, if one or two certain other formulas are already there. For exampleif �1 ^ �2 is already on the tree respectively in the set of formulas that areassumed to be true (hoping that a contradiction to this assumption can befound), one can add �1 and �2 to the same branch, because it is possible todeduce �1 and �2 from the given formula �1^�2. This is in fact the so called� rule for the �rst one of the patterns above. Schematically such a rule canbe written as a line with the given formula(s) above and the deduced one(s)below. If the complement1 of a formula � is denoted by �c, then the � rulesfor the �rst three patterns are�1 ^ �2�1�2 :(�1 _ �2)�1c�2c :(�1 ! �2)�1�2cThe rule for the elimination of :: is stated as::��The � rules are slightly more complex as they take two given formulas andadd one new formula to the tree. One of the formulas, that are already onthe tree, is called the major formula { this could for example be �1 _ �2 {,the other one, which has in this case to be the complement of one of themain subformulas of the major formula, is called the minor formula. If forexample it would be �1c the new formula �2 could be deduced and addedto the respective branch, because if �1 _ �2 is true and because of �1c theformula �1 has to be false, one knows that \at least" �2 needs to hold. Sothe following � rules can be listed. Note that for the third pattern tworules have to be listed, because it is not symmetric (i.e. a complement anda non-complement subformula occur when the pattern is transformed into1Here complement stands for that syntactic representation of the complement with theminimal number of :'s, i.e. for a formula of the form :� the complement is given by �(and not by ::�).

CHAPTER 2. THE KE CALCULUS 10the standard disjunctive form).�1 _ �2�1c�2 :(�1 ^ �2)�1�2c �1 ! �2�1�2 �1 ! �2�2c�1cFor the � formulas four rules can be derived. Their application is similarto the application of a � rule. Also a major and a �tting minor formulaalready have to be on the particular branch. As � formulas state equalitiesrespectively non-equalities between two subformulas, if one of those subfor-mulas is on the tree together with the � formula, then also the other one canbe written on the same branch respectively for the case of non-equality thecomplement of the minor formula can be added. If the minor formulas arecomplements of the subformulas, the added formulas are also complementsof subformulas. The rules are given as follows.�1 $ �2�1�2 �1 $ �2�1c�2c :(�1 $ �2)�1�2c :(�1 $ �2)�1c�2The last rule to be described here is the so called PB rule, which is short forPrinciple of Bivalence. It is the only branching rule of the KE Calculus andtakes no premises. It is always true that a given formula is either true orfalse. Looking at a proof tree this means, that any of its existing branchesmay be split into two new branches, if each of them is expanded by a newformula and those two new formulas are complementary. So the PB rulehas the form � �cTogether with the strategy described earlier in 2.1 these rules form the KECalculus for propositional logic.2.2.3 Analytic PB and � Simpli�cationThe algorithm described so far doesn't provide decidability despite the factthat propositional logic is in fact decidable. The reason for this de�ciencyis that the PB rule as presented above is not analytic. That means anyarbitrary formula could be used to split an open branch. Perceiving thatthis isn't a very useful strategy is very straightforward. As the aim of the

CHAPTER 2. THE KE CALCULUS 11application of KE rules is to close a branch of the proof tree, and therefore touni�cate a formula with the complement of another, it wouldn't make senseto introduce new terms during the application of the PB rule. So promisingcandidate formulas for the application of KE can only be those which alreadyoccur as a subformula on the particular branch. Rule applications thatregard these considerations are said to satisfy the subformula property.The application of PB becomes more e�cient, if one doesn't choose thoseformulas to which an �, � or � rule already applies, as this doesn't provideany further information.Another strategy to increase e�ciency, which applies to methods of auto-mated deduction in general, is not to use subsumed formulas during theconstruction of the proof. For the KE calculus this means that an applica-tion of the � rule might not always be useful. For example if the � formula�1 _ �2 and one of its subformulas, say �1, which subsumes the former one,are on the same branch, then the two possible minor premises :�1 and:�2 either close the branch directly (in the �rst case) or simply add thealready present formula �1 (in the second case). Such subsumed � formulasdo not need to be considered for rule application. This strategy is called �simpli�cation.2.3 KE for First Order LogicThe KE Calculus described so far can be extended so that also sets of formu-las of �rst order predicate logic can be handled. Only two rules to cope withquanti�ed formulas have to be added, the refutation strategy as describedabove remains the same.2.3.1 FormulasIn addition to the classes de�ned in the respective section in the presen-tation of propositional KE for �rst order logic classes for universally andexistentially quanti�ed formulas need to be introduced. Formulas that areuniversally quanti�ed, like 8x : :9x :

CHAPTER 2. THE KE CALCULUS 12are the so called formulas and those that are existentially quanti�ed belongto the � formulas, which can come up in one of the following forms.9x : � :8x : �2.3.2 RulesLet [x t] denote the formula resulting from substituting every x in byt. If there is a universally quanti�ed formula 8x : on the tree, that means,if is true for any x, then also needs to hold for a speci�c value of x, forexample t, and the formula [x t] can be added to the branch. The rule iswritten as 8x : [x t] :9x : :[x t]The � rule states, that for an existentially quanti�ed formula on a certainbranch that formula with the quanti�ed variable instantiated with a new(i.e. not on the branch) Skolem constant can be added. This is so, becauseif a formula � is true for some x, one can de�ne the mentioned new Skolemconstant as that speci�c x and so also the formula yielded by the describedsubstitution has to hold.9x : ��[x ski] :8x : �:�[x ski] (ski new Skolem constant)2.3.3 Restricting Instantiation and FairnessSimilarly to the PB rule also the accuracy of the application of the rulecan be improved. Again, the aim is to close a branch by �nding two comple-mentary formulas on the same branch. Therefore it wouldn't make sense tointroduce new subformulas when applying . To achieve this the quanti�edvariable should not be instantiated with a new function symbol. In fact itis su�cient only to consider those terms that already occur as arguments offormulas on the same branch.First order predicate logic is not decidable and therefore KE cannot providea deterministic algorithm to prove arbitrary theorems. However there ex-ist some guidelines on when and how to apply what speci�c rule to makeKE more e�cient. Firstly there are some preferences for the order of rule

CHAPTER 2. THE KE CALCULUS 13� Rules (incl. ::-Elimination)�1 ^ �2�1�2 :(�1 _ �2)�1c�2c :(�1 ! �2)�1�2c ::��� Rules�1 _ �2�1c�2 :(�1 ^ �2)�1�2c �1 ! �2�1�2 �1 ! �2�2c�1c� Rules�1 $ �2�1�2 �1 $ �2�1c�2c :(�1$ �2)�1�2c :(�1 $ �2)�1c�2 Rules8x : [x t] :9x : :[x t] (t a term already on the branch)� Rules9x : ��[x ski] :8x : �:�[x ski] (ski new Skolem constant)PB Rule� �c (� satis�es subformula property)Table 2.1: The Rules of the KE Calculus (Classical FOL)

CHAPTER 2. THE KE CALCULUS 14applications. Whenever a branch can be closed this is de�nitely the �rstthing to do. Next any of the non-branching rules for propositional logicshould be applied whenever possible, apart from the case of subsumption (�simpli�cation) discussed earlier on. If this is not possible, before one startssplitting up branches, the quanti�er rules should be tried.It has to be emphasised, that the rule is the only one that can be appliedto the same formula on the same branch several times, as each time a newinstantiation for the quanti�ed variable may be chosen. The applicationshould be fair, that means it should only be used up to a limited amount oftimes on the same branch and formula before other steps are tried.The application of PB should always be last choice (apart from repeatedinstantiations of formulas), and as stated above it should always be re-stricted to subformulas already on the branch. When using KE fairly thesemi-decidable character of �rst order logic can be captured.A summary of all KE rules for �rst order predicate logic (including thosetreating propositional formulas) is provided by Table 2.1.2.4 Modal KEIn the following we give a short introduction to pre�xed modal KE (for thepropositional case of distinct normal modal logics) as it is presented in [4].2.4.1 Pre�xed FormulasFormulas valid in certain worlds can be distinguished by labels or pre�xes, a(possibly empty) list of integers. Instead of giving the ground representationalso metavariables for either single integers or sequences of them can be partof such a pre�x. A non-ground pre�x normally not only denotes one singleworld, but a set of worlds, i.e. all those that can be obtained by instantiationof the metavariables. [4] describes an algorithm for pre�x uni�cation thatdetermines whether two given pre�xes can be uni�ed and if so gives backthe uni�er.In addition to the types of formulas listed in the section on propositionalKE for the modal case we also have formulas of necessity and possibility.

CHAPTER 2. THE KE CALCULUS 15The former ones are either of one of the forms2� :3�and the latter have one of the following two patterns.3� :2�2.4.2 Accessibility and Modal RulesCrucial about models of modal logics is the accessibility relation betweenthe worlds involved. We are only dealing with normal modal logics, i.e. theaxiom K and the rule of necessitation hold.K: 2(A! B)2A! 2B nec: A2AThe general accessibility relation for pre�xes can be de�ned as follows. Forevery i world �i is accessible from �, where � is a metavariable rangingover the domain of sequences of integers and i is a metavariable over thedomain of integers. Further possible properties of the accessibility relation(like symmetry, transitivity, etc.) can easily be de�ned for pre�xes.The � rule and PB for modal KE are equivalent to the classical case, simplythe conclusions have to get the same pre�xes. As the � and the � ruleinvolve two premises things are slightly more complex. Such a rule is notonly applicable, if both premises have exactly the same label, but moregeneral, if their pre�xes can be uni�ed. The conclusion can be assignedeither of the two labels of the premises. To close a branch also the twocomplementary formulas' pre�xes have to unify, but in addition their uni�erhas to be, or has to be able to be, ground. This latter condition is necessaryto assure that the worlds used for the refutation actually do exist.For formulas of necessity and possibility additional rules are introduced.The rule for possibility is the same for any distinct normal modal logic. Forany ground i provided �i is a simple unrestricted extension of � (to assurethis make i a new integer on the particular branch) the rule is stated asfollows. � : 3��i : � � : :2��i : :�

CHAPTER 2. THE KE CALCULUS 16For example if 3� holds in world � this means that � holds in some worldaccessible from �, but apart from that we cannot make any statement aboutthis world. �i is a newly introduced world, which is accessible from �.The rule for formulas of necessity is di�erent for each logic. As � : 2�means that � is true in every world accessible from � a formulation of anappropriate rule has to capture all worlds accessible from �, which involvesconsiderations about the underlying accessibility relation, which is di�erentfor each logic. A uni�ed presentation of the rules is the following one.� : 2�� : � � : :3�� : :� (� accessible from �)Here it depends on the axioms valid in the particular logic whether a world� is accessible from � or not.2.4.3 A ProblemThe presented rule for formulas of necessitation as presented above is notentirely correct for the two normal modal logics K4 and K45. This isbecause the accessibility relations underlying those two logics are transitivebut not deontic. The transitivity schema (2A! 22A) allows to copy boxedformulas to newly accessible worlds, which might not exist as seriality cannotbe guaranteed.In [4] an a priori solution to this problem has been presented. Unfortu-nately that solution doesn't �t into the general framework of the rest ofthe presentation, and therefore has been judged as unsatisfactory by theauthors.2.5 DiscussionAt this point the KE Calculus shall be compared with two other (classical)methods in the �eld of automated deduction, natural deduction and thetableau calculus. As argued for example in the articles [1], [3], and [7] KEposes some advantages over both tableaux and natural deduction.The KE Calculus is strongly related to classical tableaux. The most impor-tant di�erence is, that it has only one branching rule (PB). This makes a

CHAPTER 2. THE KE CALCULUS 17theorem prover implemented according to the KE rules more space e�cientthan a similar one following the classical tableaux rules as less branches haveto be maintained. This particular point has been examined in [7], whereleanKE, a theorem prover using KE, is compared with a similar programbased on the tableau method. The possibility to keep proof trees rathersmall might also help humans using the calculus to overview a proof. Thisis particularly interesting for teaching purposes.Also the rule application corresponds more closely to the semantics of clas-sical logic than in the tableau calculus. For example the � rule for a formulaof the form �1 ! �2 and a minor premise �1 can directly be interpreted asan application of modus ponens. The Principle of Bivalence of the notionof truth underlying classical logic, i.e. any formula is either true or false, isalso immediately transparent through the KE Calculus in form of the PBrule. This is not the case for tableaux.In [3] several examples for natural deduction proofs are given. Those proofsare much more complex than the rather simple nature of the proven theoremswould suggest. As pointed out in that article this is due to the mismatchbetween the natural deduction rules and the classical meaning of the logicaloperators, a drawback not shared by the KE Calculus.2.6 SummaryIn this chapter the KE Calculus for propositional and for �rst order logic hasbeen presented. Also some remarks on modal KE have been made. Strate-gies to reduce the search space have been mentioned. Those are analyticapplication of PB and the rule, � simpli�cation, fairness (with respect tothe number of applications of rules), and preferences of rules. A compari-son of KE with other methods showed, that it arguably has some advantagesover the classical approaches

Chapter 3The Program MacKE3.1 Description of MacKEMacKE is a program to support the teaching of logic and reasoning. It isbased on the KE Calculus and enables the user (who might be an under-graduate student in computer science) to perform the logic proof for a givenexercise step by step. Such an exercise consists of a set of formulas of �rstorder predicate logic, the so called premises, which are considered to be true,and one more formula, the conclusion, which has to be proven using the KECalculus. In fact when loaded into the MacKE system the conclusions arealready negated as required for the application of KE.3.1.1 The InterfaceAfter having started the program the interface described in the followingparagraphs is presented to the user. As there hasn't yet been implementeda stand-alone version of MacKE, apart from the items belonging to MacKEitself the standard Prolog menu is visible respectively the MacKE menuis integrated in the main Prolog menu bar. MacKE has got the followingfour pulldown menus (see also Figure 3.1): File, Analysis, Mode, and Special,where File consists of the options New, Open, Next, Prev, Select, Save as,Print, and Quit. Under the Analysis menu Apply Alpha, Apply Beta, ApplyEta, ::-Elimination, Apply Delta, Apply Gamma, Apply PB, and �nally CloseBranch are available. The subitems to Mode are Assistant, Pedagogue, and18

CHAPTER 3. THE PROGRAM MACKE 19
Figure 3.1: The Menus of MacKESupervisor. Special pulls down Check proof and Help. Not all of the subitemsmentioned have been fully implemented so far, so that in fact some of themare only pseudo features, i.e. they do not react when being clicked. Thoseitems are New, Select, Save as, Print, Quit, Assistant, Check proof, and Help.Exactly speaking parts of some of those features have been integrated in theprogram, but as they are not accessible via the userinterface of MacKE andcan only be used by entering queries to the Prolog system, they won't bediscussed here.After having started the program at �rst only the Open item of the Filemenu can be activated. When clicked it confronts the user with a standarddialogue window for opening �les. A �le containing a number of proofproblems has to be chosen (otherwise an error message will come up). Thenthe system opens the graphical KE window, which might look like shownin Figure 3.2. The KE window is divided into three parts. In the largeone on the right hand side the proof tree is displayed. The area shownin that window is only a part of the space that is available for displayingthe tree, and so the lower left window, that displays the whole area in asmaller scale, may be used to select (with the mouse) the part that shouldbe shown in the big window on the right. The third window is the upperleft one that contains three little icons (as shown in Figure 3.2). Theyrepresent the tools select (that's the arrow), undo (the rubber), and hinter(the magnifying glass). Note that the select tool has nothing to do with the(not implemented) menu option Select mentioned above. There's always oneand only one of the tools active, they can be activated by a mouseclick on

CHAPTER 3. THE PROGRAM MACKE 20

Figure 3.2: The graphical KE window.the corresponding icon. The icon of the active tool is highlighted, and whichof the tools is activated is also visible through the form of the mouse-pointer,which takes the shape of the particular icon (respectively in the case of theundo tool becomes a cross), whenever the mouse passes the part of the KEwindow displaying the proof tree.The representation of a tree mainly consists of its formulas, which are writ-ten in the standard way. Edges are only drawn where a branch is split.Below the last formula of every branch a so called branch marker, a littlecircle, is displayed. Also the split branches are marked with such a circle,which is placed between the two edges indicating the splitting. Accordingto the context in which they are used the branch markers have di�erentappearances. The open branch marker is a simple un�lled circle, whereasthe closed branch marker is a �lled one. A marker denoting a split branchis grey and if an open branch is selected (what that means will be describedbelow), its marker is a nearly �lled circle.With the features Next and Prev (obviously short for Previous) one of the

CHAPTER 3. THE PROGRAM MACKE 21exercises of the opened �le can be selected. Whenever a certain problem isleft, in other words whenever Next or Prev are used, the steps done so faron the old proof are forgotten by the system and when returning one has tostart again from the beginning. The procedure of performing a proof is inprinciple the same for any chosen problem, so the rest of this section dealsonly with steps to be performed after a certain one has been opened.3.1.2 Using the Graphic ToolsAt the beginning the proof tree displayed in the KE window only consistsof the premises and the negation of the conclusion, that one wants to prove.These formulas together form the trunk of the tree, which has to be extendedby the user in order to perform the proof by applying the KE rules. To altershape and contents of the tree the user �rst has to choose one of the graphictools described above by clicking the corresponding icon. At the beginningthe select tool is activated.According to the chosen tool clicking on either formulas or branch markershas di�erent e�ects. If the select tool is in use in general clicking on anyitem of the tree means selecting that item, whether this might be a marker,a premise or a derived formula. Selecting a formula causes the system tohighlight it. A selected item can be deselected by clicking on it again withthe select tool. Closed and split branch markers cannot be selected.When the undo tool is applied to a closed branch marker, the respec-tive branch is reopened, i.e. its marker becomes an open branch marker.Clicking on a formula or a split branch marker with the undo tool makesMacKE delete everything on the proof tree underneath that point. Of coursepremises cannot be deleted, so in the case that such a formula is selectedonly every other formula apart from the premises and the negated conclu-sion is deleted, in other words the proving process is restarted. In additionto the deleting the undo tool also opens the respective branch, i.e. alters thecorresponding branch marker.1If the formula has been derived using the � rule or PB, then do the same for its sibling.If the formula is a premise or a negated conclusion, then restart the proof.2While using the undo tool no formula can be a selected one.3When the hinter tool has been used on a branch marker before, some formulas arehighlighted, which makes them look like selected formulas. For the same reason also\selected" open branch markers may be clicked on with the hinter tool.

CHAPTER 3. THE PROGRAM MACKE 22Click On select undo hinterformula select delete every-thing beneath1& open branch show openbranches it maybe used onselectedformula deselect n/a2 show openbranches it maybe used on3openbranch marker select none show formulasnot been used onthis branchselected openbranch marker deselect n/a show formulasnot been used onthis branchclosedbranch marker none open branch nonesplitbranch marker none delete every-thing beneath& open branch noneTable 3.1: Functionality of the Graphic ToolsUsing the hinter tool can help the user to identify formulas that haven'tyet been used for the proof. If a formula is clicked on with the hinter toolall those open branches, which this formula may be used on, will be shown.This is done by changing the corresponding branch markers to selected openbranch markers. Analogously clicking on a open branch marker causes all theformulas that may be used on the respective branch to be highlighted. Thefunctionality of the graphic tools described is summarised in Table 3.1, wherefor every tool and every tree object that might be chosen the correspondingactions of the system are listed. Note that whenever the tool is changed bythe user, all objects are deselected.

CHAPTER 3. THE PROGRAM MACKE 233.1.3 Applying KE Rules to the Proof TreeBy pulling down theModemenu (see Figure 3.1) the user can choose betweenthe two possible modes Pedagogue and Supervisor. The general di�erencebetween the two is, that in Supervisor mode the user may type in whatevers/he feels like when entering the derived formulas during an application ofone of the KE rules, whereas in Pedagogue mode only correct applications ofthe rules are accepted by the system. First the behaviour of the system inPedagogue mode will be described, and then the di�erences to the Supervisormode will be stated.To apply a KE rule to the proof tree the user has to select an open branch and(depending on what rule is to be used) a speci�c number of formulas. Viathe Analysis menu (see Figure 3.1) one of the rules Apply Alpha, Apply Beta,Apply Eta, ::-Elimination, Apply Delta, Apply Gamma, Apply PB, or CloseBranch may be chosen. If a wrong number of formulas has been selected, anerror message comes up and { of course { the rule isn't applied. Otherwise adialogue window (like the one shown in Figure 3.3) for the particular rule isopened and the user has to enter the derived formulas. In Pedagogue modethe system will reject wrong inputs like syntactically incorrect formulas orformulas that do not satisfy the KE rules and bring up a window with therespective error message. The selected formulas on which the chosen ruleis to be applied are shown in the dialogue window and the userinput issupported by cut-and-paste facilities. If the dialogue hasn't been cancelledbefore, as soon as the input is correct, the rule is applied to the proof treeand the new one is displayed in the graphical KE window. Then again theuser has the possibility to apply another rule respectively to use any otherof the menu items available.To apply the � rule one has to click on Apply Alpha. Before that an openbranch and one conjunctive formula on this branch have to be selected. Inthe dialogue window the two subformulas 4 of the selected formula haveto be entered. The selected branch will then be extended by those twosubformulas.The � rule requires a selection of two formulas on the same selected openbranch, where one of these formulas has to be of a disjunctive type and4When speaking of a subformula in this context we mean a derived formula of therespective KE rule. This might not always be a subformula but the complement of asubformula.

CHAPTER 3. THE PROGRAM MACKE 24
Figure 3.3: Sample Dialogue Windowthe second one a matching minor premise. After having started the ApplyBeta dialogue the conclusion is expected as input and will be added to therespective branch.With Apply Eta the � rule can be used. Therefor similar to the � case twoformulas have to be selected and one new formula will be put to the tree.To eliminate a double negation one has to select the particular formula aswell as an open branch marker. Then clicking on ::-Elimination will add thesimpli�ed formula to the branch. In this case no further input is necessary.Also for the � rule no dialogue is necessary as the system determines thename of the Skolem constant to be introduced automatically. When an ex-istentially quanti�ed formula has been selected (as well as an open branch),activating the Apply Delta item causes MacKE to extend that branch by thenew skolemized formula, after a message about the skolemization has beengiven to the user.Clicking on Apply Gamma invokes an application of the rule on a selecteduniversally quanti�ed formula on a selected open branch. In the dialoguewindow an instance of the quanti�ed variable has to be entered. The in-stantiation is done automatically.The PB rule can be applied by choosing Apply PB. Apart from the openbranch marker one formula has to be selected, and the new formulas enteredhave to be subformulas of the selected one to guarantee the subformulaproperty.

CHAPTER 3. THE PROGRAM MACKE 25Finally one can choose Close Branch. For a successful closure of the selectedbranch two formulas, of which one is the complement of the other, on thatbranch have to be selected. The branch marker then becomes a closed branchmarker.The description of the application of the KE rules so far only refers toPedagogue mode. In Supervisor mode the input of formulas in the dialoguewindows is not checked respectively the user is not warned if s/he enterssomething wrong and MacKE carries on building up the graphical proof tree,even if wrong conclusions are made. As indicated by the not activateableitem Check proof under the Special menu a feature for checking { possiblywrong { proves performed in Supervisor mode was planned and has also beenimplemented in parts. To use this feature one has to enter the respectivequeries directly to the Prolog system.When all branches are closed, the proof is done and the user may switch tothe next problem. The system itself doesn't care whether a proof is �nishedor not, that means the user alone decides when s/he wants to stop workingon a certain exercise respectively starting a new one.As the Quit item is inactive MacKE has to be exited by ending the Prologsession via the respective option in the Prolog menu.3.2 EvaluationThe programMacKE has been evaluated with the intention to acquire guide-lines for the design of WinKE. Considering the number of omissions the pro-totype character of the present implementation of MacKE is obvious fromits description. Still the main idea underlying its design has found to bevery useful and has therefore been adopted for the development of the newsystem. With this main idea mentioned we mean the direct manipulationof a proof tree by the user via a graphic interface. This procedure closelycorresponds to what normally is done on paper. Also the availability ofdi�erent teaching modes proved to be useful. In addition of the Supervisorand the Pedagogue modes implemented in MacKE also the already plannedAssistant should be realised.In the following we list a couple of problems encountered when using MacKE.The �rst one clearly is, that MacKE isn't a stand-alone system. To use it

CHAPTER 3. THE PROGRAM MACKE 26�rst Prolog has to be started before it can be used. Once compiled it becomespart of the Prolog interface, and the only way to quit it is to exit Prolog.In MacKE it is not possible to enter new problems via the program itself.Instead Prolog �les have to be edited, which than can be loaded to thesystem. This is particularly uncomfortable as the user has to know theexact �le format required and errors might lead to unpredictable behaviourof MacKE.Logically the PB rule doesn't require any premises. Nevertheless in MacKEthe user has to select a formula before applying PB. The system then checkswhether one of the typed in formulas is a subformula of that premise. Itwould correspond more directly to the KE Calculus, if that input of a premisecould be omitted.MacKE has branch markers for open, closed, and split branches. A splitbranch marker doesn't serve any real purpose. It can be clicked on withthe undo tool, but the e�ect is the same as clicking on one of its direct sonformulas.The design of the interface has found to be quite useful, but is still im-proveable. In particular the part where the graphic tools are displayed isunnecessarily large and therefor looks a bit unready. The fact that under theFile options like Open and Save that relate to �les are listed together withoptions like Next that relate to problems as parts of �les is not satisfactory.The usability of MacKE would increase if more help functions would beavailable. Some minor errors for example in the texts of dialogues havebeen found. When using the rule application dialogues putting in logicalsymbols is very di�cult, as one has to know which key combination belongsto what symbol.The algorithm that determines how a proof tree is drawn on the screen isnot ideal with respect to the space requirements of the displayed graphics.We will discuss this problem in detail in the next chapter.3.3 Recommendations for the RedesignIn general MacKE seems to be a good starting point for a redesign. Most ofits features will also appear in the new program. What follows is a coupleof recommendations for the redesign based on the above evaluation.

CHAPTER 3. THE PROGRAM MACKE 27As mentioned before the Filemenu of MacKE combines options of two di�er-ent areas. This should be divided in two di�erent main menus. One calledFile as before to handle actions that really directly relate to �les, anotherone called Problem for the options treating single problems.The problem with the interface of MacKE could be solved by dividing it intoseveral separate windows that can be treated independently. The usabilitycould be improved by adding buttons for shortcuts to certain menu items.In particular for the rule applications this should prove to be useful. Tomake the input of logical symbols easier they should be made available viamouse click where necessary. The cut-and-paste facilities proved to be veryuseful and will be used in WinKE as well.As mentioned above split branch markers can be omitted, in particular asthere is no correspondence for them neither to the paper-and-pencil proce-dure nor to the underlying logic.Further to the hinter tool, which should follow over to the new system, moreways to support the user in �nding a proof should be added. For examplebookkeeping facilities could be included, and as already mentioned in anAssistant mode to be set up the application of KE rules will be made morecomfortable for the user.3.4 SummaryIn this chapter we described the working of MacKE in detail. It proved to bea promising approach to the task of building a pedagogic tool for teachinglogic and reasoning. Nevertheless the section on evaluation pointed outsome disadvantages of and omissions in the current version, which have tobe considered during the redesign.

Chapter 4Design 1: Requirements4.1 TasksIn this section the main requirements that should be met by the program tobe designed are stated. The following sections will then deal with some ofthe important design decisions. A detailed speci�cation of the �nal productfrom a user`s point of view will be given in the next chapter.The aim is to design a program that shall be used mainly by students that areintroduced to logic and automated deduction by means of the KE Calculus.What is classically done on paper should be simulated on the computer.That means the user should be able to set up a problem (either by typingit in by her/himself or by loading an appropriate �le) and then constructa corresponding proof tree by applying the di�erent rules of the Calculus.In addition the program should have some teaching facilities, it should bepossible to check whether a proof is correct, respectively wrong steps mightbe prohibited in the �rst place. Besides the teaching options it would beuseful to be able to use the program as a proof assistant, for example partsof a proof could be done automatically, hints could be given etc..To make the system more practical options to take back steps and book-keeping facilities to make the proofs more transparent to the user should beadded. Also the program should be equipped with the standard options forloading and saving �les, printing, editing commands and more.A number of the speci�ed tasks are met by MacKE, which makes it a prac-tical starting point for the design. 28

CHAPTER 4. DESIGN 1: REQUIREMENTS 294.2 Human Computer Interaction4.2.1 Design of the InterfaceThe interface of WinKE has to be designed in such a way that all functionsprovided by the program are easily accessible to the user. Where possible theuser should be given the possibility to make inputs using the mouse ratherthan the keyboard. As far as it is allowed by the special nature of WinKEthe system should share common standards with other software products forWindows. This means for example that the File or the Help menus should bedesigned in the familiar way. The appearance and the functionality of thegraphic tools can be similar to standard graphic programs. The windowsassociated with WinKE should be movable individually. WinKE should notinterfere with other programs that might run at the same time.For example in Tableau II (see [10]) the user has to determine the appearanceof the proof tree by dragging the nodes to the desired position on the screen.This takes more time than necessary and it is very di�cult to build upa regularly drawn tree. If a way of drawing proof trees in an ideal wayconsidering space requirements and aesthetics can be found, it is justi�edto omit any user interference in the positioning of the nodes. An algorithmproducing such trees will be presented below.4.2.2 TransparencyTo make it more transparent to the user what is going on a couple of book-keeping facilities will be introduced. Every formula is given a number sothat for any of them clear information how it was obtained can be provided.The user him/herself decides how much information is given directly on theproof tree, the whole range can always be displayed using a bookkeeping tool.4.2.3 ControlThe user should be given as much control over the his work as possible.That means he should be able to change to other problems or �les at anytime without losing information on what s/he is currently working on. Ithas to be possible to take back steps individually. This will be provided bythe delete and the undo tools. The �rst one works like the corresponding

CHAPTER 4. DESIGN 1: REQUIREMENTS 30one in MacKE (there called undo), the latter one in addition provides thepossibility to eliminate only the selected node and all those that depend onit directly with respect to rule application (rather than to the tree structurelike for delete).During the construction of a proof tree numbers for the bookkeeping areautomatically assigned to the nodes. As the order of rule application canbe arbitrary and as it is possible to take back steps, after a while it isunlikely that the tree will still be numbered in preorder. Normally after amanipulation of the tree it should not be renumbered automatically, as itmight confuse a user, when certain formulas suddenly change their numbers.On the other hand the user should be given the opportunity to force arenumbering whenever this is desired.At any time the user should be able to change the problem without losingthose parts of the proof that are still valid. Control is also given by o�eringthe possibility to change the mode at any time.For the checking of proofs done in Supervisor mode and for the checkingof rule application in Pedagogue mode the user can determine whether thesubformula property and analytic instantiation for the rule should betested.4.2.4 AssistanceFor every dialogue and each of the graphic tools help has to be available toassist the user during the usage of the program. Another kind of assistanceis how WinKE supports its users in �nding proofs. Like in MacKE a hinttool will be available to highlight formulas not been used on open branchesat a particular state. In Assistant mode it will no longer be necessary forthe user to type in the conclusions for standard rule applications (that'severything apart from PB and the rule). For the application of the PBrule all subformulas on the branch will be provided by the system and forthe rule any possible value for the instantiation will be made available aswell.

CHAPTER 4. DESIGN 1: REQUIREMENTS 314.3 Drawing the Proof Tree4.3.1 Trees to Display KE ProofsThe state of a proof using the KE Calculus is represented by a tree, whichhas some certain properties. Every node (i.e. every formula) has either oneor two sons (the latter if PB has been applied). To save space the edgebetween a node and its single son can be omitted. The splitting of a branchis represented by two lines from the father node to the left and to the rightson. So on every level of a tree (level with respect to the y-coordinate) eithera formula or two lines indicating a split are displayed. This structure can behandled best by the internal data structure, if for every split an additionalnode is introduced, which is made the single son of the father node, andthe two original sons are connected to the newly introduced pseudo node.To o�er the user the possibility to choose a certain branch of the prooftree, objects that represent the branches have to be added. This is done byasserting to every branch a so called branch marker as a son of the last nodeof the particular branch for example in form of a little circle.A tree drawing algorithm speci�es how the x- and the y-coordinates fordisplaying each of the nodes are found. Calculating the y-coordinates isstraightforward. An initial value is associated with the root node and thenwhile traversing the tree in preorder every node is asserted the value obtainedby adding a �xed number (the height needed to display one level) to the y-coordinate of the father node. Note that when doing so it doesn't matterwhether the speci�c node represents a formula, a split branch or a branchmarker.Crucial about the algorithm is how the x-coordinates are calculated. In thefollowing �rst the method that has been used in MacKE is presented. Aswill be shown that method bears certain disadvantages to be pointed out.Next some requirements an ideally drawn tree should meet are stated and�nally an algorithm that produces trees according to these \aesthetics" isgiven.4.3.2 The Tree Drawing Algorithm of MacKEFirst for every branch the formula requiring the most space is identi�ed andits leaf is asserted the space of this longest formula. The x-coordinate of

CHAPTER 4. DESIGN 1: REQUIREMENTS 32each leaf is then given by the sum of the spaces asserted to all those leavespreceding the particular leaf with respect to a preorder traverse of the tree(that means \which are to its left"). Next the tree is traversed in postorderand every node is centred above its son(s). That this can be done withoutthe risk of overlapping has been assured by asserting the maximal spacerequired by any formula on a branch to the leaves.a) (i) (ii)������ PPPPPP �� @@b) (i) (ii)�� @@��� QQQ �� @@�� @@Figure 4.1: Examples of Drawn TreesTrees whose appearance has been determined by the described algorithmhave some certain disadvantages concerning space requirements as well asaesthetic considerations. To illustrate this claim two examples are given in�gure 4.1. For two di�erent logical trees (called a) and b)) in each case twodi�erent graphic representations are given. The graphics are simpli�ed, onlythe size of the nodes is indicated, it doesn't matter what they actually looklike. In both examples under (i) the tree that the algorithm used in MacKEwould produce is given and (ii) displays the desired form, which takes lessspace and also looks tidier.

CHAPTER 4. DESIGN 1: REQUIREMENTS 334.3.3 Some Aesthetics for Drawing a TreeIn [11] the authors de�ne some requirements (or \aesthetics" as they callit) to be met by a tidily drawn tree. That discussion is followed by thepresentation of an algorithm that can produce such trees. Unfortunatelythat article only deals with trees whose node have a �xed (very small) sizeand in addition nodes have only left and right nodes, also single sons areeither put to the left or the right of their father node. So the results obtainedin that work cannot be applied directly to the design of an appropriatealgorithm to calculate trees for displaying KE proofs. But still the followinglisting of aesthetics for such trees partly follows the discussion in [11].Note how KE trees have been de�ned above. Nodes are either formulas orsplits or branch markers. All leaves (and only they) are branch markers.Splits are the only nodes that have two sons, which are formulas in anycase. Formulas always have exactly one son node.The drawing of a tree should satisfy the following aesthetics.Aesthetic 1: Nodes at the same level should lie along a straight line, andthe straight lines de�ning the levels should be parallel.Aesthetic 2: A left son should be positioned to the left of its father and aright son to the right.Aesthetic 3: A father should be centred over its son respectively its sons.Aesthetic 4: A tree and its mirror image should produce drawings thatare reections of one another; moreover, a subtree should be drawn inthe same way regardless of where it occurs in the tree.Aesthetic 5: Any two nodes on the same or neighbouring level(s) shouldbe placed next to another as close as possible in horizontal directionbut without violating a prede�ned minimal distance.The algorithm used in MacKE, which is described above, doesn't alwayspreserve aesthetics number 4 and 5. Although it guarantees that nodes donot overlap, the distances in horizontal direction are not always minimal, asboth examples in �gure 4.1 illustrate. Also the subtree consisting of the twosmall sibling nodes is drawn di�erently in the two examples; this violatesaesthetic 4.

CHAPTER 4. DESIGN 1: REQUIREMENTS 344.3.4 An Aesthetic Tree Drawing AlgorithmIn this section an algorithm working according to the aesthetics de�nedearlier on is presented. It is the algorithm that will be used for WinKE.The y-coordinates are calculated in the standard way as pointed out in 4.3.1.Note that by doing so aesthetic 1 is guaranteed to hold.Before the following algorithm can be applied the space requirements forthe graphical representation of all the nodes need to be known. At thispoint values for markers and splits have to be de�ned. The value of a splitcan be set to 0, as the displaying of the two lines de�nitely takes less spacein horizontal direction than the left and the right son below, and nodeson neighbouring levels are not allowed to overlap with respect to their x-coordinates (aesthetic 5).The formulation of aesthetic 4 leads to the most important guideline whendesigning an appropriate algorithm. As subtrees should be drawn in thesame way regardless where they appear, the algorithm has to start in thelowest levels of the tree, i.e. the tree will be traversed in postorder whenasserting the x-coordinates. When doing so in the �rst traverse it won't bepossible to obtain the �nal coordinates immediately. First only a relativecoordinate for every node with respect to the position of its father has to becalculated.For single sons this relative coordinate is clearly 0, as they are supposed tobe centred below their fathers. Note that with x-coordinate (whether theymight be relative or absolute) we mean the coordinate where the middle ofthe node's graphical representation should be placed.For left and right sons things become more complicated. To be able to assertthe correct values for each node respectively the subtree it is associatedwith (the subtree whose root it is) two lists representing its left and rightcontour have to be created and maintained. With the contour of a subtreewe mean the information for each level how much space is required to the leftrespectively to the right from the middle of the root node. If this informationis available for two sibling nodes it can be determined how far from eachother they have to be put by consulting the right contour of the left nodeand the left contour of the right one. At this point aesthetic 5 is important.For every level it has to be checked that the nodes in that level don't cometoo close to each other respectively to the nodes in the levels above and

CHAPTER 4. DESIGN 1: REQUIREMENTS 35below. Next the father node (which is a split) can be centred above the leftand the right son.The absolute x-coordinate of the root is set to the middle of the windowwhere the tree is to be displayed. After that the tree is again traversed,this time in preorder. For every node the absolute value of its x-coordinateis obtained by adding the one of its father and its own relative coordinatecalculated before.Finally, before the tree can be drawn, for the nodes that are formulas theupper left corner has to be computed from the x-coordinate (that indicateswhere the middle should appear) and the half of length needed to displaythe graphical object.4.4 The Undo ToolWinKE will be equipped with a delete tool, which works like the undo ofMacKE. Its implementation is rather straightforward as the proof tree issimply cut at the selected node. Just formulas obtained during applicationof either � or PB require additional care because of the sibling nodes, whichalso have to be deleted.For WinKE in addition a di�erent undo tool is planned. Unlike delete, thatoperates with respect to the tree structure, it is supposed to work on thelogical structure of a proof. That means only the selected formula and allits logical o�spring should be taken o� the tree. For this tool as well inthe case of an � or PB application also the siblings have to be eliminated.Di�culties might occur when a formula obtained from an application of thePB rule is chosen with the undo tool.In that case for both the subtrees undo has to be applied on the two siblingnodes respectively. Then the remaining subtrees and the father branch haveto be rearranged to form a single resulting branch. If both subtrees arelinear this can be done without further problems by just putting them oneunderneath another. This is obviously not possible, if both of them arebranching. In that case one of them has to be attached to the last node ofthe father branch and the second one to each of the open branches of the�rst. To minimise the complexity of the resulting tree that subbranch withfewer open branches should be the one placed above the other.

CHAPTER 4. DESIGN 1: REQUIREMENTS 36When the second subbranch is attached to each of the open branches ofthe �rst one, several copies of it have to be made. As they will be treatedindependently from then on, their nodes have to have di�erent numbers.So new numbers have to be introduced. In fact the resulting tree after anapplication of the undo tool could have more nodes than the original one.To guarantee transparency in general during the manipulation of the treesnumbers of certain nodes shouldn't be changed (unless of course they arenewly introduced). So after a couple of manipulations of the tree it is likelynot to be numbered in preorder, in the case of an undo application the rangeof numbers might even have gaps (some nodes/numbers have been deletedand other/greater ones have been newly introduced). This makes the optionto renumber a tree as mentioned earlier on particularly useful in conjunctionwith the undo tool.If one of the subbranches is completely closed the other one can be thrownaway, as its information is not needed anymore. The only disadvantageis, that, if in Supervisor mode that subbranch has been closed incorrectly,after proof checking the information of the subbranch thrown away mightbe useful again.4.5 Data StructureIn this section an appropriate data structure for problems respectively theformulas as part of them shall be de�ned. The data associated with a certainformula has to handle all information that is bound directly to it, like theformula itself, details about its derivation and any other information thatshould be available as part of the bookkeeping system.In addition to the formula speci�c data, the problem as a whole, i.e. theconnections between the single formulas has to be dealt with. This is �rstof all the structure of the proof tree, but it has also to be borne in mind,that it has to be possible to store a problem sequentially (i.e. in a �le). Tobe able to use the tree printing algorithm presented in section 4.3 for everynode its son(s) has/have to be stored and it has to be transparent whetherthe speci�c node has one or two sons. The latter is only the case, if thenode represents a split. The dynamic Prolog clauses shown in �gure 4.2can represent the tree structure of a KE proof. The arguments of theseclauses are integers representing the numbers of the respective nodes. For

CHAPTER 4. DESIGN 1: REQUIREMENTS 37son(Node, Son)left son(Node, LeftSon)right son(Node, RightSon)Figure 4.2: Prolog Clauses for Tree Structurenodes that represent formulas we will use positive and for splits and branchmarkers negative integers.The data associated with a particular node is maintained through the dy-namic clauses given in �gure 4.3. Here Formula is a compound term whoseformula(Node, Formula)derivation rule(Node, DerivationRule)parents(Node, Parents)sibling(Node, Sibling)used on all branches(Node)Figure 4.3: Prolog Clauses for Node Representationfunctors are logical operators that need having been de�ned beforehand. Ifthe particular node is not representing a formula, then the Variable Formulatakes one of the values split, open, or closed respectively. In those casesalso Rule doesn't give the KE rule but is simply set to marker. Oth-erwise Rule is asserted one of the atoms double neg, alpha, beta, eta,delta, gamma, or pb. Parents is a list holding the numbers of the parentnodes, those nodes that have been used for the derivation. In the case of aderivation using PB Parents is the empty list. This is the same for splitsor open branch markers. For closed ones Parents gives the numbers ofthose formulas that have been used to close the branch. sibling(Node,Sibling) is only de�ned in the case of the � or the PB rule. Wheneverused on all branches(Node) exists for a certain Node this indicates thatthe respective formula has already been used (as a major premise) on allopen branches it is on. For formulas used on all branches/1 is neverset as the rule can be applied more than once to the same branch andformula.The third group of clauses are those handling a problem respectively a prooftree as a whole. They are listed in �gure 4.4. Preorder is a list of all thenumbers of nodes on the tree in preorder and the list SelectedNodes holdsthe numbers of those nodes that are selected (highlighted) at the current

CHAPTER 4. DESIGN 1: REQUIREMENTS 38preorder(Preorder)selected nodes(SelectedNodes)Figure 4.4: Prolog Clauses for the Entire Problemstate. In addition two further clauses will have to be de�ned to handle thecorresponding graphic objects. These will be the clause graphic objects(GraphicObjects) to maintain all graphic objects to be displayed and theclause selected graphic objects(SelectedGraphicObjects) to main-tain which of them are selected at a certain state.With the data structure de�ned so far a problem and its associated prooftree can be handled. But the problem dealt with at a certain state willnormally be just one out of a couple of problems stored in a �le. The entireinformation of a problem and possibly parts of its proof can be stored in asingle data object. For this purpose the information provided by formula/2,derivation rule/2, parents/2, and sibling/2 for each node is put to-gether in a list of each four elements. Here the value of Sibling is storedin a list which might be empty, if sibling/2 is not de�ned for the par-ticular node. The information given by used on all branches/1 can bereconstructed from the rest, so it is not necessary to keep it in the list aswell. Then all these lists each representing a node are put together in onebig list, the nodes' order is given by Preorder.As nodes for which DerivationRule is either open or closed have no sons,those for which it is split have two and the remaining ones all have exactlyone son, the tree structure can be reconstructed from that preordered list.Finally the head of that list is made an integer giving the index number ofthat particular problem.A couple of problems can now be stored as a list of single problems, each ofthem maintained as just described. At a certain state during the runningof WinKE there are a number of problems loaded, which come either froma �le or have been edited by the user. One of those problems is the currentone, i.e. it is displayed on the screen. This information is maintained by theProlog clauses shown in �gure 4.5. the variable Problems is a list of theproblems(Problems)current problem nr(CurrentProblemNr)Figure 4.5: Prolog Clauses for All Problems

CHAPTER 4. DESIGN 1: REQUIREMENTS 39type just de�ned and CurrentProblemNr is an integer giving the number ofthat problem that is currently being displayed.Modal Logics It is planned to extend WinKE for modal logics in the nearfuture. The data structure de�ned in this section is open towards such anextension. In addition for every formula on a proof tree the pre�x denotingthe world it is valid in needs to be stored. Such a pre�x is a list of integers andmetavariables over either single integers or sequences of integers. Thereforea way to distinguish those two types of metavariables (for example whenthe are typed in by the user) has to be found. Also for every problem theassociated logic has to be stored.4.6 File HandlingThe problem of how to save a problem respectively a number of problemsto a �le has already been solved by the de�nition of the data structure. Thelist Problems (see 4.5) can simply be written or read from a �le. Wheneverthe user wishes to save the current state of the problems the chosen �leis updated with the value of Problems (after Problems has been updatedaccording to the actual state of the current problem).4.7 Rule CheckingIt makes sense to introduce di�erent levels of rule respectively proof check-ing. For the sake of e�ciency as well as for pedagogic reasons usually wewant to assure that the subformula property holds for any application of thePB rule. Similarly a formula should only be instantiated in a promisingway, that means with an argument already present on the branch. On theother hand logically speaking an application of PB that does not involve aformula that already occurs on the branch is not incorrect, it's just not verye�cient. Imagine for example a readily done proof built up in Supervisormode that uses such an unnecessary PB rule is checked by WinKE. If stillall branches have been closed correctly the proof should be accepted and noerror messages should come up.For these reasons the user should be o�ered the possibility state whethers/he wants the system to check for analytic rule application or not. This

CHAPTER 4. DESIGN 1: REQUIREMENTS 40decision a�ects the behaviour of the rule checker in Pedagogue and Assistantmode as well as the proof checking called after building up a proof tree inSupervisor mode.The implementation of non-analytic rule checking is quite simple. It justhas to be checked that a formula is of the correct type has been selected andthen the user input(s) are compared with the correct conclusion(s) that canbe extracted directly from the premise(s). To verify whether a particularapplication of the PB rule satis�es the subformula property all subformulasoccuring on the selected branch have to be collected. To test an instantiated formula all terms that are arguments of formulas on the branch have to bereviewed. Checking a whole proof is done by traversing the tree in preorderand applying the rule checking procedure to every node encountered.Modal Logics When WinKE will be extended to handle modal logics,the rule checking routines have to be changed appropriately. First of all apre�x uni�cation algorithm like in [4] has to be implemented. Then the rulechecking for the classical propositional formulas can easily be extended witha check for the correctness of the pre�xes involved. For the modal rules theaccessibility relation has to be considered as well.4.8 ArchitectureTo de�ne the architecture of the system it can be seen as divided in threelayers. The topmost is the interface layer which deals with user inputsand routes them to the next layer, and which produces outputs for examplein form of messages, dialogues or displayed graphics. The modules in theinterface layer are the Graphic Window Manager, the Tool Manager, theDialogue Manager, and the Menu Manager. The actual computations takeplace in the internal layer. It consists of the Internal Graphics Manager,the Tree Manager, and the KE Manager. Finally the data layer has got twomodules, the Graphic Database and the Tree Database.The diagram of �gure 4.6 shows the architecture of WinKE schematically.The Tree Database maintains the data speci�ed earlier on in this chapter(see 4.5). The corresponding graphic objects are stored in the GraphicDatabase. All data in the latter one can be constructed by applying the treedrawing algorithm to the information obtained from the Tree Database.

CHAPTER 4. DESIGN 1: REQUIREMENTS 41
interfacelayerinternallayerdatalayer

userinput useroutput
GraphicDatabase TreeDatabase
InternalGraphicsManager TreeManager KEManager
GraphicWindowManager ToolManager DialogueManager MenuManager6 � - -�6?

6? ��������=

�

� ������������� ?�-? ? ? ?
Figure 4.6: Schematic Architecture of WinKEThe Internal Graphics Manager takes the information from the GraphicDatabase and passes it on to the Graphic Window Manager, which �nallydisplays it on the screen. User inputs that directly a�ect the graphics comeeither through the Graphic Window Manager (e.g. mouse clicks) or the ToolManager to the Internal Graphics Manager. The Internal Graphics Man-ager informs the Tree Manager about such events. The Tree Manager, whichworks on the data provided by the Tree Database, is the most importantmodule. Here all manipulations on the proof tree take place. A motivationfor such a manipulation can come from either the Internal Graphics Man-ager, the Dialogue Manager or the Menu Manager. If the desired changeis due to a rule application, then the Tree Manager has to consult the KE

CHAPTER 4. DESIGN 1: REQUIREMENTS 42Manager to �nd out whether that particular manipulation is approved bythe rule checker provided by that module. The information the KE Man-ager needs for such a decision is actually provided by the Tree Database andthe Dialogue Manager (which maintains the user input), but from a moresystematic point of view this information can also �rst be collected by theTree Manager and then be passed on to the KE Manager as a whole.The performance of the KE Manager is determined by the Menu Manager asthe teaching mode is set via the menus and also analytic rule application canbe switched on and o� through a menu. The Tree Manager passes messagesback to the Dialogue Manager, where they are put out for the user. Alsothe Tree Database is updated by the Tree Manager.4.9 SummaryIn this chapter we pointed out the main requirements for the new system.The �rst section gave a very general statement on the tasks of WinKE. Thenthe main design decisions were discussed and two algorithmic problems, thetree drawing and the realisation of the new undo tool, have been covered.A systematic description of the program eventually designed is given in thenext chapter.

Chapter 5Design 2: Interface andFunctionality5.1 InterfaceWhen WinKE is started four windows come up: the menu window, twographic windows, and the tool box. In one of the graphic windows the prooftree will be displayed and it will be used to manipulate the tree. This windowshall simply be called the graphic window from now on. The other one wewill refer to as the little graphic window. It displays the entire area availablefor the proof tree in a much smaller scale. It will be used to determine thevisible part of that area to be displayed in the (other) graphic window. Allfour windows have minimise boxes. The graphic window is the only one thatalso has got a maximise box and that is resizable. Only the menu windowis equipped with a system menu.5.1.1 The Menu WindowThe title of this window is \WinKE". The menu window holds all the menusof the program and a couple of buttons that provide shortcuts to some ofthe menu items. There are �ve main menus, they are called File, Problem,Analysis, Options, and Help.The items available from the File menu are New, Open, Save, Save as, andExit. From the Problem menu the option Next, Previous, Select, New, Edit,43

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 44Reset, Renumber, Check, and Print can be chosen. Next comes the Analysismenu, which provides the di�erent rule applications. They are Double Nega-tion, Apply Alpha, Apply Beta, Apply Eta, Apply Delta, Apply Gamma, ApplyPB, and Close Branch. The �rst entry under Options is Mode, which in turnhas a submenu consisting of the items Pedagogue, Supervisor, and Assistant.The remaining items are Bookkeeping, Further Settings, and Save Settings.Finally the Help menus consists of the options Contents, How to use WinKEHelp, and About WinKE.The buttons beneath the menus o�er direct access to some of the most fre-quently needed functions available via the menus. Those items are New,Open, Save, Previous, Next, all the subitems of the Analysis menu, andHelp/Contents.5.1.2 The Tool BoxThe tool box window holds six buttons. The �rst, called the select button,shows an arrow. The second one displaying a cross is called delete. Nextcomes a button named undo, which displays the standard undo icon. Thehint button shows a �eld-glass and the bookkeeping one an open book. But-ton number six �nally shows a question mark for help. The title of the toolbox window is \Tools".5.1.3 The Graphic WindowThe graphic window's title is \Problem" followed by the active �le name andthe problem number. The window simply consists of one graphic controltogether with a vertical and a horizontal scrollbar. It is resizable and canbe maximised.5.1.4 The Little Graphic WindowThe little graphic window also consists of just one graphic control. Its titleis \Visible Area".

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 455.2 FunctionalityIn this section the intended functionality of WinKE is described. Actionsare either initiated by a menu selection, the choice of a graphic tool, or amouse click in one of the graphic windows. So we structure the followingdocumentation according to those di�erent kinds of origins of actions.5.2.1 The File MenuThe choice of Open brings up a standard dialogue for the opening of �les.Files storing KE problems should have the extension .ke, those kinds of�les in the active directory will be displayed for choice in a listbox. Whena certain �le has been chosen the �rst problem is displayed in the graphicwindow. The New option works as if an empty �le has been opened. Thesystem then expects the input of a problem by the user. The Save andthe Save as items start up the standard dialogues for these options. Thestate of all problems currently maintained by the problems/1 predicate iswritten to the desired �le. Exit closes all four windows and WinKE is quit.Warnings or messages, for example to save a �le before a new one is opened,are included in the usual way.5.2.2 The Problem MenuThe �rst three options, Next, Previous, and Select, work in the obvious way:the next, previous, or a problem selected by its number is made the activeone unless a non-existing problem is addressed. For example if Previous isselected from the �rst problem of a �le an error message comes up.New and Edit both lead to the same kind of dialogue, where a problem canbe de�ned by typing in its premises and its conclusion. If Edit is chosenthe premises already on the tree appear in a listbox and may or may notbe changed or deleted, as well as new formulas may be added. If a proofhas already been started, its correctness cannot be assumed anymore (aspremises might have been deleted). Therefore after that it should be checkedagain. Within the New respectively the Edit dialogue the user is supportedwith cut-and-paste facilities as well as with a \virtual keyboard" for thelogical operators, which are not directly available via the normal keyboard.

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 46Reset deletes all formulas on the tree apart from the problems' premises andthe negated conclusion. Renumber renumbers the proof tree in preorder.Check traverses the tree in preorder and calls the rule checker for every nodeencountered. Throughout the checking the user is guided by a dialoguewhich allows direct pruning of false formulas, jumping on to the next error,or cancelling. The Print option sends the active proof tree to the printer.5.2.3 The Graphic WindowsThe main graphic window is used to display the proof tree. Its scrollbarswork in the obvious way. The little graphic window can be used for orien-tation during proofs requiring more space than the main graphic windowprovides. In the little one the whole tree is displayed in a smaller scaleand a little rectangle indicates the area visible in the other graphic window.By dragging that rectangle the display in the large graphic window can bechanged.5.2.4 The Graphic ToolsA graphic tool can be chosen by clicking on the respective button of thetool box. Whenever this is done all current selections of nodes are rejected.If the select tool is chosen, mouse clicks on either formulas or open branchmarkers selects them, i.e. they are highlighted.If the delete tool is active, a click on a node causes the deletion of that nodeand its entire subbranch. Only premises cannot be deleted, i.e. if one ofthem is clicked, the deleting starts at the �rst derived node (which has thesame e�ect as a call of Reset). Using the undo tool only the clicked nodeand its logical o�spring are deleted from the proof tree (see also discussionearlier on in chapter 4).The hint tool highlights all open branches the formula being clicked has notbeen used on so far. If a open branch marker is chosen, those formulas notused on it are highlighted. Clicking on a node when the bookkeeping tool isactive causes a message listing all the bookkeeping values of that particularnode to come up. For formulas bookkeeping values are the node's number,the formula itself, the rule used for its derivation (unless it is a premise orthe negated conclusion), the parent formulas (where available) and possiblya sibling formula. For closed branch markers the same is done. Here parent

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 47formulas are those that were used to close the branch. For open branchmarkers there are no bookkeeping values de�ned.The last button in the graphic tool box can be used to enter the WinKEhelp system at the page on the usage of the graphic tools.5.2.5 The Analysis MenuThe Analysis menu's entries are used for rule application. The chosen rule isapplied to the currently selected formula(s) and the selected branch marker.Before a dialogue is entered it is checked whether a correct selection hasbeen made, i.e. whether exactly one open branch marker and the correctnumber of formulas on it have been selected.The actual rule dialogues ask the user for the input of the appropriate con-clusion(s). Like for the New/Edit problem dialogue cut-and-paste and akeyboard for logical symbols are provided. In Assistant mode for the �, �,�, and the � rule as well as for Close branch the dialogues are omitted, asafter a correct selection a user input is not necessary anymore to �nd theright conclusion(s). For PB the user can use a Next button to get all thepossible subformulas displayed one after the other. Similarly for the rulepossible arguments for instantiation can be brought up.After the user input the rule checker is called and either the appropriatechanges are made to the tree or an error message comes up. The performanceof the rule checker depends on the teaching mode. In Supervisor modeanything goes, in Pedagogue and Assistant mode only correct applicationsare allowed. If rule application is chosen to be analytic in the cases of PBand only such analytic rule applications are approved.5.2.6 The Options MenuUnder Mode the desired teaching mode can be chosen. Bookkeeping bringsup a dialogue where the features that should be visible on the proof treecan be selected. The features provided are the number of a formula, itsderivation rule, its parents, and the information whether it has been usedon all open branches (not available for formulas).Further Settings enters another dialogue. There �rst of all analytic ruleapplication may be switched on or o�. Secondly it can be chosen whether

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 48warnings should be brought up when either of the delete or the undo tool isused before nodes are eliminated from the tree. Finally using that dialogue itcan be determined by the user, if the tree should be renumbered in preorderafter any change of it immediately without an explicit call of Renumber.Save Settings causes the current settings to be saved to a �le, so that theycan be used at the next program start.5.2.7 HelpThe help system is intended to be a program separate fromWinKE. It couldbe set up using the standard Windows 95 Help environment. Most of thenon-trivial dialogues of WinKE have Help buttons, which enter the helpsystem at the appropriate page. The Contents item of the Help menu entersit at the main page. The About option under Help brings up the WinKEabout message.5.3 SummaryIn this chapter we described the interface and the functionality of WinKEas it has been designed. The evaluation of MacKE and the design processreected by chapter 4 lead to this particular design.Next some remarks on the implementation of WinKE will be made.

Chapter 6The Implementation ofWinKE6.1 WinPrologThe implementation has been carried out in LPA Prolog for Windows, ver-sion 3.0, a product of the Logic Programming Association, London. Itproved to be particularly useful for setting up windows, menus, and dia-logues. Unfortunately the support for graphics is less practical than in thecorresponding version for Macintosh, in which for example MacKE has beenimplemented.6.2 Modules and Global ValuesThe most important values are the ones mentioned in the section on datastructure in chapter 4. In addition during the computation of the graphictree some temporary global values to represent the x- and the y-coordinatesof nodes and the contours of subtrees respectively are used.The settings that can be manipulated via the Options menu are storedusing the prolog clauses listed in �gure 6.1. Mode has one of the valuesPedagogue, Supervisor, or Assistant. The elements of the list kept bybookkeeping settings/1 are either 1 or 0 depending on what informa-tion should or should not appear on the graphic proof tree. N stands for49

CHAPTER 6. THE IMPLEMENTATION OF WINKE 50mode(Mode)bookkeeping settings([N,R,P,U])analytic/0warnings/0always renumber/0Figure 6.1: Prolog Clauses for Settingsnumbers, R for derivation rule, P for parents, and U for the informationstating whether the particular formula has been used on all open branches.According to the user inputs the predicates analytic/0, warnings/0, andalways renumber/0 are either asserted or retracted. For their meaning con-sult chapter 5.The modules as described in 4.8 are made transparent in the implementationthrough the division of the code in di�erent �les. Just the parts associatedwith the Dialogue Manager have been spread throughout the whole programfor practical reasons.6.3 WinKE Version 1.2The present version WinKE v1.2 (June 1996) follows the speci�cation givenin the preceding chapter apart from a few omissions due to a lack of time.The only menu option that hasn't been implemented at all is Print. Apartfrom that the help facilities are not as detailed as they should. Also no littlegraphic window has been included so far. But as the work with MacKEshowed, such a facility is only useful for rather large problems (which arisequite seldom) anyway. As under Windows there seem to be no fonts availablethat combine logic symbols with the standard alphanumeric ones so farrather unaesthetic operators needed to be de�ned (like for example v for _,<=> for $, or @ instead of 8).Apart from those de�ciencies it has been managed to set up a workingapplication under Windows 95 that can be used for the purposes lined outin the introduction.

CHAPTER 6. THE IMPLEMENTATION OF WINKE 516.4 DemonstrationIn chapter 5 the functionality of WinKE is described in detail. To furtherillustrate its working, in particular of the actual implementation of versionv1.2, some screen dumps are shown on the following pages.
Figure 6.2: The Menu Window of WinKE

Figure 6.3: The Tool Box Window

CHAPTER 6. THE IMPLEMENTATION OF WINKE 52

Figure 6.4: The Graphic Window of WinKE

CHAPTER 6. THE IMPLEMENTATION OF WINKE 53

Figure 6.5: Using the Analysis Menu

CHAPTER 6. THE IMPLEMENTATION OF WINKE 54
Figure 6.6: Sample Rule Dialogue

Figure 6.7: Rule Dialogue in Assistant Mode

CHAPTER 6. THE IMPLEMENTATION OF WINKE 55

Figure 6.8: Using the Bookkeeping Tool

Chapter 7Conclusion7.1 ResultsWe believe that with the speci�cation of WinKE as given in chapter 5 themain aim of the project, the design of a practical teaching tool for auto-mated theorem proving using KE has been achieved. To defend this claima reevaluation involving users of di�erent backgrounds should take place. Aworking implementation of WinKE has been set up.7.2 Further WorkFirst of all the de�ciencies of the present implementation as pointed out insection 6.3 should be eliminated from the program. An evaluation like theone applied to MacKE should follow to spot further possible problems.At this stage the main idea of improvement is to extend the KE Managerin such a way, that at any state the \ideal" rule to be applied next canbe found. For how this is done in theory (as far as it is possible at all)consult the section on fairness in chapter 2. Then an option Suggestioncould be added to the Analysis menu, which (possibly only in Assistantmode) suggests the next rule application when chosen. Also a new teachingmode (it might be called the Trainer mode) could be added, which workssimilarly to the Pedagogue mode, but only accepts a rule application, if itis considered to be \ideal" at the particular state of the proof.56

CHAPTER 7. CONCLUSION 57The next task would be to integrate modal logics into WinKE. To be ableto do this in a satisfactory way for arbitrary distinct normal modal logics,it would be very useful to �nd a general speci�cation of Modal KE, withoutexceptions as those that still have to be made for K4 and K45. In generalthe present speci�cation of WinKE is open towards expanding the datastructure to handle labels, i.e. the program is open towards an extension topre�xed propositional modal logics.7.3 AcknowledgementsFirst of all I wish to thank my project supervisor Jeremy Pitt for his invalu-able help during the last eight months.Also I'm grateful to my lecturers Krysia Broda, Jim Cunningham, and PeterSchmitt for introducing me to the broad �elds of Automated Deduction andModal Logic respectively. Krysia Broda also made WinProlog available tome.Without the Erasmus Programme and the people involved in it at ImperialCollege and at the University of Karlsruhe I wouldn't have had the chanceto work on this project nor to study at Imperial College.

Bibliography[1] Marcello D'Agostino. Investigations into the Complexity of some Propo-sitional Calculi. PhD thesis, Oxford University Computing LaboratoryProgramming Research Group, Technical monograph PRG-88, 1990.[2] J. Barwise and J. Etchemendy. Hyperproof. CSLI Publications, 1994[3] Krysia Broda, Marcello D'Agostino and Marco Mondadori. A Solutionto a Problem of Popper. In The Epistemology of Karl Popper, Kluwer,to appear[4] Jim Cunningham and Jeremy Pitt. Towards Model Building in Multi-Modal Logics using KE and Constraint Satisfaction. Esprit MedlarProject, 1995.[5] Roy Dyckho�. MacLogic: A Proof Assistant for First Order Logic onthe Macintosh. Computational Science Division, University of St. An-drews, 1989[6] Melvin Fitting. Basic Modal Logic. In D. Gabbay, C. Hogger, andJ. Robinson, editors, Handbook of Logic in Arti�cial Intelligence andLogic Programming, Vol. 1, OUP, 1993.[7] Jeremy Pitt and Jim Cunningham. Theorem Proving and Model Build-ing with the Calculus KE. In the Bulletin of the IGPL, 1995.[8] Jeremy Pitt. User Interface Design for an Automated Pedagogic Tool.[9] Jeremy Pitt. MacKE: Yet Another Proof Assistant & Automated Ped-agogic Tool. In P. Baumg�artner, R. H�ahnle, J. Possegga, editors, The-orem Proving with Analytic Tableaux and Related Methods, Springer-Verlag, 1995 58

BIBLIOGRAPHY 59[10] M. Potter and D. Watt. Tableau II: A Logic Teaching Program. OxfordUniversity Computing Services, Learning and Resources Centre, 1988[11] Edward Reingold and John Tilford. Tidier Drawings of Trees. in IEEtransactions on Software Engineering, Vol. SE-7, No. 2, March 1981

