MEng Individual Project Report

A KE Based Theorem Proving Assistant

Author: Ulrich Endrifi

Supervisor: Jeremy Pitt

Imperial College, Department of Computing

June 20, 1996

Abstract

The project documented in this report mainly deals with the development of
a pedagogic tool for teaching logic and reasoning. This program uses the KE
Calculus, a relatively new method of automated deduction, which arguably
has advantages, from a didactic point of view, over both the tableau method
and natural deduction. There already existed a prototype program of the
desired type, MacKE, which allows its user to build up a graphic KE proof
tree, whose correctness can be checked automatically.

The first step undertaken in this project was an evaluation of MacKE. On
this evaluation a redesign was to be based. Unlike MacKE, which runs on
a Macintosh platform, the new program — WinKE — has been designed for
a PC running under Windows 95 because of the relative availability of that
platform.

This report presents the KE Calculus, comments on the evaluation of MacKE,
documents the design of WinKE, and makes some remarks on its implemen-
tation. Version 1.2 of WinKE described in this report exists as a working
stand-alone system.

Contents

1 Introduction 4
1.1 The Project 4
1.2 Overview o o 5
1.3 Guide to Literature oL oL 5

2 The KE Calculus 7
2.1 Introductionto KE 0oL 7
2.2 Propositional KE L0000 8

221 Formulas oo oo 8
222 Rules 9
2.2.3 Analytic PB and 8 Simplification 10
2.3 KE for First Order Logic 11
2.3.1 Formulas oo 11
232 Rules 12
2.3.3 Restricting Instantiation and Fairness 12
24 Modal KEo o o 14
2.4.1 Prefixed Formulas 14
2.4.2 Accessibility and Modal Rules 15
2.4.3 A Problem 0 o oL 16
2.5 Discussion e e e 16

CONTENTS

2.6 Summaryo o e e e e e e e

3 The Program MacKE

3.1 Description of MacKE o000
3.1.1 The Interface o L.
3.1.2 Using the Graphic Tools
3.1.3 Applying KE Rules to the Proof Tree

3.2 Evaluation o oo

3.3 Recommendations for the Redesign

3.4 Summaryo e e e e

4 Design 1: Requirements

4.1 Tasks . . . L e
4.2 Human Computer Interaction
4.2.1 Design of the Interface
4.2.2 Transparencyot e e e e e e
4.2.3 Control
4.2.4 Assistance Lo Lo o
4.3 Drawing the Proof Tree
4.3.1 Trees to Display KE Proofs
4.3.2 The Tree Drawing Algorithm of MacKE
4.3.3 Some Aesthetics for Drawing a Tree
4.3.4 An Aesthetic Tree Drawing Algorithm
4.4 The Undo Tool
4.5 Data Structureo Lo
4.6 File Handlingo
4.7 Rule Checking o
4.8 Architecture

4.9 Summary e e e e e

CONTENTS

5 Design 2: Interface and Functionality

5.1 Interface L
5.1.1 The Menu Window
5.1.2 The Tool Box
5.1.3 The Graphic Window
5.1.4 The Little Graphic Window

5.2 Functionality L o o
5.2.1 The File Menu,
5.2.2 The Problem Menu
5.2.3 The Graphic Windows
5.2.4 The Graphic Tools
5.2.5 The Analysis Menu
5.2.6 The Options Menu
5.2.7 Helpo o

5.3 Summaryo e e e

6 The Implementation of WinKE

6.1 WinProlog Lo
6.2 Modules and Global Values
6.3 WinKE Version 1.2
6.4 Demonstration L oo,

7 Conclusion
7.1 Results.o o e
7.2 Further Work L o
7.3 Acknowledgements oL oL

43
43
43
44
44
44
45
45
45
46
46
47
47
48
48

49
49
49
50
51

Chapter 1

Introduction

1.1 The Project

There exists a program called MacKE that is to be used as a pedagogic tool
to assist the teaching of logic and reasoning. It was intended to support
a textbook by Marcello D’Agostino and Marco Mondadori, which is to be
released in the near future. MacKE is implemented in Prolog for a Macin-
tosh platform and uses the KE Calculus. The actual version (v0.34, 1994
by Jeremy Pitt) enables the user to perform a theorem proof in first order
predicate logic by building up the respective proof tree via the graphical
interface of the program according to the rules of KE. Two different modes
are available, in the Pedagogue mode the user is forced to apply the rules
correctly, in Supervisor mode generally any input is accepted, i.e. the pro-
gram only serves as a blackboard to design the tree and the user him /herself
is responsible for its correctness. The routines to check such a proof done in
Supervisor mode are implemented, but haven’t already been made available
by the MacKE interface.

The projects aim is to create a new and improved version of such a KE
based theorem proving assistant, this time to run on a PC platform under
Windows 95. The port to PC is due to the relative availability of that
platform. The first milestone to achieve is an evaluation of MacKE to spot
advantages and disadvantages of the current version, regarding functionality
as well as usability. This evaluation should then lead to a complete redesign
of the system and finally to the implementation of WinKE.

CHAPTER 1. INTRODUCTION 5

In particular the new program should be equipped with a real Assistant
option, that means apart from its teaching facilities the system should also
offer the possibility to support users already experienced in Theorem Proving
for example by being able to perform parts of the proofs automatically or
allowing time efficient inputs via the mouse.

1.2 Overview

This report starts with an introduction to the KE Calculus in chapter 2. The
rule systems for propositional as well as for first order logic are given and
some aspects of the design of a KE calculus for modal logics are presented.
This chapter closes with a short comparison with other techniques in the
field of automated deduction and discusses some advantages of the system

KE.

The next chapter deals with the program MacKE. After a description of the
system from a user’s point of view in the evaluation part several problems
with the current design are addressed. As this evaluation is intended to
produce guidelines for the design of WinKE chapter 3 finally lists some
recommendations for the redesign.

In chapter 4 the design of WinKE is developed. First some general require-
ments are addressed. This is followed by a discussion of some important
design decisions. The final specification of the program is then presented in
the following chapter.

How the specification has been realised as a program is described in the
chapter on implementation. To make the working of WinKE more trans-
parent to the reader in that chapter also some screen dumps of the running
program are shown.

This report ends with a short evaluation of the results gained and possible
areas for further work in the field are pointed out.

1.3 Guide to Literature

At the end of this document a list of references is given, mainly covering
the theoretical aspects of the project, i.e. theoretical presentations and
discussions of the KE Calculus. Items [1] and [3] introduce the KE Calculus

CHAPTER 1. INTRODUCTION 6

and also discuss its differences and in particular its advantages to other more
classical methods of theorem proving like for example tableaux. In [7] besides
a short introduction to KE the design of leanKE, a theorem prover that uses
KE, is presented and its performance is evaluated. An introduction to modal
logic is given by [6] and [4] discusses KE in conjunction with multi-modal
logics.

The program MacKE is described in [9], a shorter description of its inter-
face can be found in [8]. Also references to some other approaches towards
building a teaching tool for theorem proving are given. Publications on the
programs Hyperproof [2], MacLogic [5], and Tableau II [10] are listed.

Chapter 2

The KE Calculus

2.1 Introduction to KE

In his PhD thesis [1] Marcello D’Agostino presents the KE Calculus, a rel-
atively new method for proving theorems automatically, a problem which
classically has been tackled by either resolution, natural deduction, or se-
mantic tableaux.

The typical problem the KE Calculus may be applied to is to show that
when a set of formulas, the so called premises are known to be true, another
formula also has to hold. The last formula is called the conclusion, because
one believes, that it might be concluded from the premises. A solution to the
given problem would be to prove that the complement of the conclusion is a
contradiction to the premises. This could be done by deducing further for-
mulas from the premises and the complement of the conclusion respectively
adding theorems until two formulas are found, that obviously contradict
each other (in the simplest case one of them would be the complement of
the other).

Because the KE Calculus uses this idea it is called a refutation system. The
first step to perform the proof of the conclusion is to write all the premises
and the negation of the conclusion together one underneath the other as
the trunk of a so called proof tree, which then has to be build up following
the rules of the KE Calculus. Those rules, which will be described below,
extend the proof tree by further formulas and may also branch the (at the
beginning linear) tree. When on a branch of the proof tree one can identify

CHAPTER 2. THE KE CALCULUS 8

two complement formulas, this branch is said to be closed and no further
rules will be applied to it. If it is possible to close all branches, the proof is
done, i.e. the conclusion is proven to hold. The reason why this is so lies in
the special nature of the KE rules. They only add new formulas to the tree,
that can either be deduced from the formulas given so far, or in one case
(the rule PB, see below) split a branch and add to one of the new branches
the complement of the formula that is added to the other one. As every
single branch has to be closed, this splitting is equivalent to the proving of
the refutation for the two possible cases that an arbitrary formula may be
true or false.

2.2 Propositional KE

2.2.1 Formulas

Before the KE rules are presented a system of classification for formulas of
propositional logic has to be introduced. A formula is called an « formula
or said to be of conjunctive type, if it matches with one of the following
patterns.

oy A oo —(a1 V a2) (a1 = ag)

These formulas are called conjunctive, because the main connector of their
canonical representation is A. In addition also formulas that are syntactically
the double negation of another formula are counted towards the o« formulas.
They can be symbolised as

Y

The second class consists of the § formulas, which are formulas of disjunctive
type. The possible patterns for them are

BV By (1 A (o) B1 — B

Formulas whose main connector is ¢+ form the class of 5 formulas, they may
occur as one of the following patterns.

m < 12 _‘(771 ~ 772)

CHAPTER 2. THE KE CALCULUS 9

2.2.2 Rules

For each of the presented types of formulas the KE Calculus has got a rule
that may be applied to a formulas of the respective type on the proof tree.
Such a rule describes what kind of formula(s) can be added to a branch of
the tree, if one or two certain other formulas are already there. For example
if a1 A g is already on the tree respectively in the set of formulas that are
assumed to be true (hoping that a contradiction to this assumption can be
found), one can add a; and a3 to the same branch, because it is possible to
deduce aq and oy from the given formula oy Aag. This is in fact the so called
« rule for the first one of the patterns above. Schematically such a rule can
be written as a line with the given formula(s) above and the deduced one(s)
below. If the complement! of a formula ¢ is denoted by ¢°, then the a rules
for the first three patterns are

a1 N\ Qo _|(041 vV 042) _|(041 — 042)
o o€ 23]
(85 042C 042C

The rule for the elimination of —— is stated as

Y

[a%

The /3 rules are slightly more complex as they take two given formulas and
add one new formula to the tree. One of the formulas, that are already on
the tree, is called the major formula — this could for example be 1 V 33 —,
the other one, which has in this case to be the complement of one of the
main subformulas of the major formula, is called the minor formula. If for
example it would be 3{° the new formula 5 could be deduced and added
to the respective branch, because if §; V [y is true and because of 3;° the
formula 31 has to be false, one knows that “at least” 35 needs to hold. So
the following 3 rules can be listed. Note that for the third pattern two
rules have to be listed, because it is not symmetric (i.e. a complement and
a non-complement subformula occur when the pattern is transformed into

'Here complement stands for that syntactic representation of the complement with the
minimal number of —’s, i.e. for a formula of the form —¢ the complement is given by ¢

(and not by ——¢).

CHAPTER 2. THE KE CALCULUS 10

the standard disjunctive form).

BV B (B A Ba) B1 — B B — B2
p1° b1 b1 B2°
B2 B2° B2 B1°

For the 5 formulas four rules can be derived. Their application is similar
to the application of a 3 rule. Also a major and a fitting minor formula
already have to be on the particular branch. As 5 formulas state equalities
respectively non-equalities between two subformulas, if one of those subfor-
mulas is on the tree together with the n formula, then also the other one can
be written on the same branch respectively for the case of non-equality the
complement of the minor formula can be added. If the minor formulas are
complements of the subformulas, the added formulas are also complements
of subformulas. The rules are given as follows.

TR M 4 72 =(m > n2) —(m > 1m2)
1 me 1 me
72 n2° n2° 72

The last rule to be described here is the so called PB rule, which is short for
Principle of Bivalence. 1t is the only branching rule of the KE Calculus and
takes no premises. It is always true that a given formula is either true or
false. Looking at a proof tree this means, that any of its existing branches
may be split into two new branches, if each of them is expanded by a new
formula and those two new formulas are complementary. So the PB rule
has the form

¢ | 9°

Together with the strategy described earlier in 2.1 these rules form the KE
Calculus for propositional logic.

2.2.3 Analytic PB and Simplification

The algorithm described so far doesn’t provide decidability despite the fact
that propositional logic is in fact decidable. The reason for this deficiency
is that the PB rule as presented above is not analytic. That means any
arbitrary formula could be used to split an open branch. Perceiving that
this isn’t a very useful strategy is very straightforward. As the aim of the

CHAPTER 2. THE KE CALCULUS 11

application of KE rules is to close a branch of the proof tree, and therefore to
unificate a formula with the complement of another, it wouldn’t make sense
to introduce new terms during the application of the PB rule. So promising
candidate formulas for the application of KE can only be those which already
occur as a subformula on the particular branch. Rule applications that
regard these considerations are said to satisfy the subformula property.

The application of PB becomes more efficient, if one doesn’t choose those
formulas to which an «, § or n rule already applies, as this doesn’t provide
any further information.

Another strategy to increase efliciency, which applies to methods of auto-
mated deduction in general, is not to use subsumed formulas during the
construction of the proof. For the KE calculus this means that an applica-
tion of the 3 rule might not always be useful. For example if the § formula
31V B and one of its subformulas, say 1, which subsumes the former one,
are on the same branch, then the two possible minor premises —3; and
3 either close the branch directly (in the first case) or simply add the
already present formula ; (in the second case). Such subsumed g formulas
do not need to be considered for rule application. This strategy is called 3
simplification.

2.3 KE for First Order Logic

The KE Calculus described so far can be extended so that also sets of formu-
las of first order predicate logic can be handled. Only two rules to cope with
quantified formulas have to be added, the refutation strategy as described
above remains the same.

2.3.1 Formulas

In addition to the classes defined in the respective section in the presen-
tation of propositional KE for first order logic classes for universally and
existentially quantified formulas need to be introduced. Formulas that are
universally quantified, like

Va:y —Jx:y

CHAPTER 2. THE KE CALCULUS 12

are the so called v formulas and those that are existentially quantified belong
to the § formulas, which can come up in one of the following forms.

Jz: 6 —Vz:é

2.3.2 Rules

Let y[z+t] denote the formula resulting from substituting every in v by
t. If there is a universally quantified formula Vz: v on the tree, that means,
if ~ is true for any z, then ~ also needs to hold for a specific value of z, for
example ¢, and the formula y[z+¢] can be added to the branch. The rule is
written as

Yo~ —dx:y

y[at] —y[aet]

The ¢ rule states, that for an existentially quantified formula on a certain
branch that formula with the quantified variable instantiated with a new
(i.e. not on the branch) Skolem constant can be added. This is so, because
if a formula ¢ is true for some z, one can define the mentioned new Skolem
constant as that specific and so also the formula yielded by the described
substitution has to hold.

dz:d —Vx:d
das—sk;] —6[a—sk;]

(sk; new Skolem constant)

2.3.3 Restricting Instantiation and Fairness

Similarly to the PB rule also the accuracy of the application of the ~ rule
can be improved. Again, the aim is to close a branch by finding two comple-
mentary formulas on the same branch. Therefore it wouldn’t make sense to
introduce new subformulas when applying ~. To achieve this the quantified
variable should not be instantiated with a new function symbol. In fact it
is sufficient only to consider those terms that already occur as arguments of
formulas on the same branch.

First order predicate logic is not decidable and therefore KE cannot provide
a deterministic algorithm to prove arbitrary theorems. However there ex-
ist some guidelines on when and how to apply what specific rule to make
KE more efficient. Firstly there are some preferences for the order of rule

CHAPTER 2. THE KE CALCULUS

13

« Rules (incl. ——-Elimination)

oy A oy —(a1 V ay) (o1 =) ——a
o Oélc 23]
C C «
(85 (85 (85
5 Rules
P1V By = (81 A B2) P1— B2 P — Be
1° B B 2°
B2 B2* B2 p1°
7 Rules
M 02 M =(m ¢ 72) =(m < 72)
m m° m m°
2 12" 12" 2
~ Rules
Va: vy —dx:y
—_— —_— (t a term already on the branch)
y[at] —y[aet]
4 Rules
Jx:é —Vax:d
STresh] v (sk; new Skolem constant)
PB Rule
o | o° (¢ satisfies subformula property)

Table 2.1: The Rules of the KE Calculus (Classical FOL)

CHAPTER 2. THE KE CALCULUS 14

applications. Whenever a branch can be closed this is definitely the first
thing to do. Next any of the non-branching rules for propositional logic
should be applied whenever possible, apart from the case of subsumption (3
simplification) discussed earlier on. If this is not possible, before one starts
splitting up branches, the quantifier rules should be tried.

It has to be emphasised, that the v rule is the only one that can be applied
to the same formula on the same branch several times, as each time a new
instantiation for the quantified variable may be chosen. The 7 application
should be fair, that means it should only be used up to a limited amount of
times on the same branch and formula before other steps are tried.

The application of PB should always be last choice (apart from repeated
instantiations of v formulas), and as stated above it should always be re-
stricted to subformulas already on the branch. When using KE fairly the
semi-decidable character of first order logic can be captured.

A summary of all KE rules for first order predicate logic (including those
treating propositional formulas) is provided by Table 2.1.

2.4 Modal KE

In the following we give a short introduction to prefixed modal KE (for the
propositional case of distinct normal modal logics) as it is presented in [4].

2.4.1 Prefixed Formulas

Formulas valid in certain worlds can be distinguished by labels or prefixes, a
(possibly empty) list of integers. Instead of giving the ground representation
also metavariables for either single integers or sequences of them can be part
of such a prefix. A non-ground prefix normally not only denotes one single
world, but a set of worlds, i.e. all those that can be obtained by instantiation
of the metavariables. [4] describes an algorithm for prefix unification that
determines whether two given prefixes can be unified and if so gives back
the unifier.

In addition to the types of formulas listed in the section on propositional
KE for the modal case we also have formulas of necessity and possibility.

CHAPTER 2. THE KE CALCULUS 15

The former ones are either of one of the forms
Oy Qv
and the latter have one of the following two patterns.

Or —-Ox

2.4.2 Accessibility and Modal Rules

Crucial about models of modal logics is the accessibility relation between
the worlds involved. We are only dealing with normal modal logics, i.e. the
axiom K and the rule of necessitation hold.

0(A — B) A

K5isas "¢ o

The general accessibility relation for prefixes can be defined as follows. For
every ¢ world ot is accessible from o, where ¢ is a metavariable ranging
over the domain of sequences of integers and ¢ is a metavariable over the
domain of integers. Further possible properties of the accessibility relation
(like symmetry, transitivity, etc.) can easily be defined for prefixes.

The « rule and PB for modal KE are equivalent to the classical case, simply
the conclusions have to get the same prefixes. As the 8 and the 7 rule
involve two premises things are slightly more complex. Such a rule is not
only applicable, if both premises have exactly the same label, but more
general, if their prefixes can be unified. The conclusion can be assigned
either of the two labels of the premises. To close a branch also the two
complementary formulas’ prefixes have to unify, but in addition their unifier
has to be, or has to be able to be, ground. This latter condition is necessary
to assure that the worlds used for the refutation actually do exist.

For formulas of necessity and possibility additional rules are introduced.
The rule for possibility is the same for any distinct normal modal logic. For
any ground ¢ provided o7 is a simple unrestricted extension of o (to assure
this make ¢ a new integer on the particular branch) the rule is stated as
follows.

c:0m o:-07

oV T oV T

CHAPTER 2. THE KE CALCULUS 16

For example if On holds in world ¢ this means that = holds in some world
accessible from o, but apart from that we cannot make any statement about
this world. o¢ is a newly introduced world, which is accessible from o.

The rule for formulas of necessity is different for each logic. As ¢ : Oy
means that v is true in every world accessible from ¢ a formulation of an
appropriate rule has to capture all worlds accessible from ¢, which involves
considerations about the underlying accessibility relation, which is different
for each logic. A unified presentation of the rules is the following one.

o Ov o: =0V

(1 accessible from o)
TV T oW

Here it depends on the axioms valid in the particular logic whether a world
T is accessible from & or not.

2.4.3 A Problem

The presented rule for formulas of necessitation as presented above is not
entirely correct for the two normal modal logics K4 and K45. This is
because the accessibility relations underlying those two logics are transitive
but not deontic. The transitivity schema (0A — OOA) allows to copy boxed
formulas to newly accessible worlds, which might not exist as seriality cannot
be guaranteed.

In [4] an a priori solution to this problem has been presented. Unfortu-
nately that solution doesn’t fit into the general framework of the rest of
the presentation, and therefore has been judged as unsatisfactory by the
authors.

2.5 Discussion

At this point the KE Calculus shall be compared with two other (classical)
methods in the field of automated deduction, natural deduction and the
tableau calculus. As argued for example in the articles [1], [3], and [7] KE
poses some advantages over both tableaux and natural deduction.

The KE Calculus is strongly related to classical tableaux. The most impor-
tant difference is, that it has only one branching rule (PB). This makes a

CHAPTER 2. THE KE CALCULUS 17

theorem prover implemented according to the KE rules more space efficient
than a similar one following the classical tableaux rules as less branches have
to be maintained. This particular point has been examined in [7], where
leanKE, a theorem prover using KE, is compared with a similar program
based on the tableau method. The possibility to keep proof trees rather
small might also help humans using the calculus to overview a proof. This
is particularly interesting for teaching purposes.

Also the rule application corresponds more closely to the semantics of clas-
sical logic than in the tableau calculus. For example the 8 rule for a formula
of the form f; — 32 and a minor premise 3y can directly be interpreted as
an application of modus ponens. The Principle of Bivalence of the notion
of truth underlying classical logic, i.e. any formula is either true or false, is
also immediately transparent through the KE Calculus in form of the PB
rule. This is not the case for tableaux.

In [3] several examples for natural deduction proofs are given. Those proofs
are much more complex than the rather simple nature of the proven theorems
would suggest. As pointed out in that article this is due to the mismatch
between the natural deduction rules and the classical meaning of the logical
operators, a drawback not shared by the KE Calculus.

2.6 Summary

In this chapter the KE Calculus for propositional and for first order logic has
been presented. Also some remarks on modal KE have been made. Strate-
gies to reduce the search space have been mentioned. Those are analytic
application of PB and the v rule, f simplification, fairness (with respect to
the number of applications of v rules), and preferences of rules. A compari-
son of KE with other methods showed, that it arguably has some advantages
over the classical approaches

Chapter 3

The Program MacKE

3.1 Description of MacKE

MacKE is a program to support the teaching of logic and reasoning. It is
based on the KE Calculus and enables the user (who might be an under-
graduate student in computer science) to perform the logic proof for a given
exercise step by step. Such an exercise consists of a set of formulas of first
order predicate logic, the so called premises, which are considered to be true,
and one more formula, the conclusion, which has to be proven using the KE
Calculus. In fact when loaded into the MacKE system the conclusions are
already negated as required for the application of KE.

3.1.1 The Interface

After having started the program the interface described in the following
paragraphs is presented to the user. As there hasn’t yet been implemented
a stand-alone version of MacKE, apart from the items belonging to MacKE
itself the standard Prolog menu is visible respectively the MacKE menu
is integrated in the main Prolog menu bar. MacKE has got the following
four pulldown menus (see also Figure 3.1): File, Analysis, Mode, and Special,
where File consists of the options New, Open, Next, Prev, Select, Save as,
Print, and Quit. Under the Analysis menu Apply Alpha, Apply Beta, Apply
Eta, ——-Elimination, Apply Delta, Apply Gamma, Apply PB, and finally Close
Branch are available. The subitems to Mode are Assistant, Pedagogue, and

18

CHAPTER 3. THE PROGRAM MACKE 19

Figure 3.1: The Menus of MacKE

Supervisor. Special pulls down Check proof and Help. Not all of the subitems
mentioned have been fully implemented so far, so that in fact some of them
are only pseudo features, i.e. they do not react when being clicked. Those
items are New, Select, Save as, Print, Quit, Assistant, Check proof, and Help.
Exactly speaking parts of some of those features have been integrated in the
program, but as they are not accessible via the userinterface of MacKE and
can only be used by entering queries to the Prolog system, they won’t be
discussed here.

After having started the program at first only the Open item of the File
menu can be activated. When clicked it confronts the user with a standard
dialogue window for opening files. A file containing a number of proof
problems has to be chosen (otherwise an error message will come up). Then
the system opens the graphical KE window, which might look like shown
in Figure 3.2. The KE window is divided into three parts. In the large
one on the right hand side the proof tree is displayed. The area shown
in that window is only a part of the space that is available for displaying
the tree, and so the lower left window, that displays the whole area in a
smaller scale, may be used to select (with the mouse) the part that should
be shown in the big window on the right. The third window is the upper
left one that contains three little icons (as shown in Figure 3.2). They
represent the tools select (that’s the arrow), undo (the rubber), and hinter
(the magnifying glass). Note that the select tool has nothing to do with the
(not implemented) menu option Select mentioned above. There’s always one
and only one of the tools active, they can be activated by a mouseclick on

CHAPTER 3. THE PROGRAM MACKE 20

Figure 3.2: The graphical KE window.

the corresponding icon. The icon of the active tool is highlighted, and which
of the tools is activated is also visible through the form of the mouse-pointer,
which takes the shape of the particular icon (respectively in the case of the
undo tool becomes a cross), whenever the mouse passes the part of the KE
window displaying the proof tree.

The representation of a tree mainly consists of its formulas, which are writ-
ten in the standard way. Edges are only drawn where a branch is split.
Below the last formula of every branch a so called branch marker, a little
circle, is displayed. Also the split branches are marked with such a circle,
which is placed between the two edges indicating the splitting. According
to the context in which they are used the branch markers have different
appearances. The open branch marker is a simple unfilled circle, whereas
the closed branch marker is a filled one. A marker denoting a split branch
is grey and if an open branch is selected (what that means will be described
below), its marker is a nearly filled circle.

With the features Next and Prev (obviously short for Previous) one of the

CHAPTER 3. THE PROGRAM MACKE 21

exercises of the opened file can be selected. Whenever a certain problem is
left, in other words whenever Next or Prev are used, the steps done so far
on the old proof are forgotten by the system and when returning one has to
start again from the beginning. The procedure of performing a proof is in
principle the same for any chosen problem, so the rest of this section deals
only with steps to be performed after a certain one has been opened.

3.1.2 Using the Graphic Tools

At the beginning the proof tree displayed in the KE window only consists
of the premises and the negation of the conclusion, that one wants to prove.
These formulas together form the trunk of the tree, which has to be extended
by the user in order to perform the proof by applying the KE rules. To alter
shape and contents of the tree the user first has to choose one of the graphic
tools described above by clicking the corresponding icon. At the beginning
the select tool is activated.

According to the chosen tool clicking on either formulas or branch markers
has different effects. If the select tool is in use in general clicking on any
item of the tree means selecting that item, whether this might be a marker,
a premise or a derived formula. Selecting a formula causes the system to
highlight it. A selected item can be deselected by clicking on it again with
the select tool. Closed and split branch markers cannot be selected.

When the undo tool is applied to a closed branch marker, the respec-
tive branch is reopened, i.e. its marker becomes an open branch marker.
Clicking on a formula or a split branch marker with the undo tool makes
MacKE delete everything on the proof tree underneath that point. Of course
premises cannot be deleted, so in the case that such a formula is selected
only every other formula apart from the premises and the negated conclu-
sion is deleted, in other words the proving process is restarted. In addition
to the deleting the undo tool also opens the respective branch, i.e. alters the
corresponding branch marker.

'If the formula has been derived using the a rule or PB, then do the same for its sibling.
If the formula is a premise or a negated conclusion, then restart the proof.

2While using the undo tool no formula can be a selected one.

*When the hinter tool has been used on a branch marker before, some formulas are
highlighted, which makes them look like selected formulas. For the same reason also
“selected” open branch markers may be clicked on with the hinter tool.

CHAPTER 3. THE PROGRAM MACKE

Click On select undo hinter
delete every- show open
formula select thing beneath? branches it may
& open branch be used on
h
selected 9 SHow opet
deselect n/a branches it may
formula 3
be used on
open show formulas
b select none not been used on
branch marker .
this branch
show formulas
selected open
deselect n/a not been used on
branch marker .
this branch
closed none open branch none
branch marker P
split d(‘elete every-
none thing beneath none
branch marker
& open branch

Table 3.1: Functionality of the Graphic Tools

Using the hinter tool can help the user to identify formulas that haven’t
vet been used for the proof. If a formula is clicked on with the hinter tool
all those open branches, which this formula may be used on, will be shown.
This is done by changing the corresponding branch markers to selected open
branch markers. Analogously clicking on a open branch marker causes all the
formulas that may be used on the respective branch to be highlighted. The
functionality of the graphic tools described is summarised in Table 3.1, where
for every tool and every tree object that might be chosen the corresponding
actions of the system are listed. Note that whenever the tool is changed by
the user, all objects are deselected.

CHAPTER 3. THE PROGRAM MACKE 23

3.1.3 Applying KE Rules to the Proof Tree

By pulling down the Mode menu (see Figure 3.1) the user can choose between
the two possible modes Pedagogue and Supervisor. The general difference
between the two is, that in Supervisor mode the user may type in whatever
s/he feels like when entering the derived formulas during an application of
one of the KE rules, whereas in Pedagogue mode only correct applications of
the rules are accepted by the system. First the behaviour of the system in
Pedagogue mode will be described, and then the differences to the Supervisor
mode will be stated.

To apply a KE rule to the proof tree the user has to select an open branch and
(depending on what rule is to be used) a specific number of formulas. Via
the Analysis menu (see Figure 3.1) one of the rules Apply Alpha, Apply Beta,
Apply Eta, —=—-Elimination, Apply Delta, Apply Gamma, Apply PB, or Close
Branch may be chosen. If a wrong number of formulas has been selected, an
error message comes up and — of course — the rule isn’t applied. Otherwise a
dialogue window (like the one shown in Figure 3.3) for the particular rule is
opened and the user has to enter the derived formulas. In Pedagogue mode
the system will reject wrong inputs like syntactically incorrect formulas or
formulas that do not satisfy the KE rules and bring up a window with the
respective error message. The selected formulas on which the chosen rule
is to be applied are shown in the dialogue window and the userinput is
supported by cut-and-paste facilities. If the dialogue hasn’t been cancelled
before, as soon as the input is correct, the rule is applied to the proof tree
and the new one is displayed in the graphical KE window. Then again the
user has the possibility to apply another rule respectively to use any other
of the menu items available.

To apply the « rule one has to click on Apply Alpha. Before that an open
branch and one conjunctive formula on this branch have to be selected. In
the dialogue window the two subformulas * of the selected formula have
to be entered. The selected branch will then be extended by those two
subformulas.

The § rule requires a selection of two formulas on the same selected open
branch, where one of these formulas has to be of a disjunctive type and

*When speaking of a subformula in this context we mean a derived formula of the
respective KE rule. This might not always be a subformula but the complement of a
subformula.

CHAPTER 3. THE PROGRAM MACKE 24

Figure 3.3: Sample Dialogue Window

the second one a matching minor premise. After having started the Apply
Beta dialogue the conclusion is expected as input and will be added to the
respective branch.

With Apply Eta the n rule can be used. Therefor similar to the 8 case two
formulas have to be selected and one new formula will be put to the tree.

To eliminate a double negation one has to select the particular formula as
well as an open branch marker. Then clicking on =—-Elimination will add the
simplified formula to the branch. In this case no further input is necessary.

Also for the § rule no dialogue is necessary as the system determines the
name of the Skolem constant to be introduced automatically. When an ex-
istentially quantified formula has been selected (as well as an open branch),
activating the Apply Delta item causes MacKE to extend that branch by the
new skolemized formula, after a message about the skolemization has been
given to the user.

Clicking on Apply Gamma invokes an application of the 4 rule on a selected
universally quantified formula on a selected open branch. In the dialogue
window an instance of the quantified variable has to be entered. The in-
stantiation is done automatically.

The PB rule can be applied by choosing Apply PB. Apart from the open
branch marker one formula has to be selected, and the new formulas entered
have to be subformulas of the selected one to guarantee the subformula

property.

CHAPTER 3. THE PROGRAM MACKE 25

Finally one can choose Close Branch. For a successful closure of the selected
branch two formulas, of which one is the complement of the other, on that
branch have to be selected. The branch marker then becomes a closed branch
marker.

The description of the application of the KE rules so far only refers to
Pedagogue mode. In Supervisor mode the input of formulas in the dialogue
windows is not checked respectively the user is not warned if s/he enters
something wrong and MacKE carries on building up the graphical proof tree,
even if wrong conclusions are made. As indicated by the not activateable
item Check proof under the Special menu a feature for checking — possibly
wrong — proves performed in Supervisor mode was planned and has also been
implemented in parts. To use this feature one has to enter the respective
queries directly to the Prolog system.

When all branches are closed, the proof is done and the user may switch to
the next problem. The system itself doesn’t care whether a proof is finished
or not, that means the user alone decides when s/he wants to stop working
on a certain exercise respectively starting a new one.

As the Quit item is inactive MacKE has to be exited by ending the Prolog
session via the respective option in the Prolog menu.

3.2 Evaluation

The program MacKE has been evaluated with the intention to acquire guide-
lines for the design of WinKE. Considering the number of omissions the pro-
totype character of the present implementation of MacKE is obvious from
its description. Still the main idea underlying its design has found to be
very useful and has therefore been adopted for the development of the new
system. With this main idea mentioned we mean the direct manipulation
of a proof tree by the user via a graphic interface. This procedure closely
corresponds to what normally is done on paper. Also the availability of
different teaching modes proved to be useful. In addition of the Supervisor
and the Pedagogue modes implemented in MacKE also the already planned
Assistant should be realised.

In the following we list a couple of problems encountered when using MacKE.
The first one clearly is, that MacKE isn’t a stand-alone system. To use it

CHAPTER 3. THE PROGRAM MACKE 26

first Prolog has to be started before it can be used. Once compiled it becomes
part of the Prolog interface, and the only way to quit it is to exit Prolog.

In MacKE it is not possible to enter new problems via the program itself.
Instead Prolog files have to be edited, which than can be loaded to the
system. This is particularly uncomfortable as the user has to know the

exact file format required and errors might lead to unpredictable behaviour
of MacKE.

Logically the PB rule doesn’t require any premises. Nevertheless in MacKE
the user has to select a formula before applying PB. The system then checks
whether one of the typed in formulas is a subformula of that premise. It
would correspond more directly to the KE Calculus, if that input of a premise
could be omitted.

MacKE has branch markers for open, closed, and split branches. A split
branch marker doesn’t serve any real purpose. It can be clicked on with
the undo tool, but the effect is the same as clicking on one of its direct son
formulas.

The design of the interface has found to be quite useful, but is still im-
proveable. In particular the part where the graphic tools are displayed is
unnecessarily large and therefor looks a bit unready. The fact that under the
File options like Open and Save that relate to files are listed together with
options like Next that relate to problems as parts of files is not satisfactory.

The usability of MacKE would increase if more help functions would be
available. Some minor errors for example in the texts of dialogues have
been found. When using the rule application dialogues putting in logical
symbols is very difficult, as one has to know which key combination belongs
to what symbol.

The algorithm that determines how a proof tree is drawn on the screen is
not ideal with respect to the space requirements of the displayed graphics.
We will discuss this problem in detail in the next chapter.

3.3 Recommendations for the Redesign

In general MacKE seems to be a good starting point for a redesign. Most of
its features will also appear in the new program. What follows is a couple
of recommendations for the redesign based on the above evaluation.

CHAPTER 3. THE PROGRAM MACKE 27

As mentioned before the File menu of MacKE combines options of two differ-
ent areas. This should be divided in two different main menus. One called
File as before to handle actions that really directly relate to files, another
one called Problem for the options treating single problems.

The problem with the interface of MacKE could be solved by dividing it into
several separate windows that can be treated independently. The usability
could be improved by adding buttons for shortcuts to certain menu items.
In particular for the rule applications this should prove to be useful. To
make the input of logical symbols easier they should be made available via
mouse click where necessary. The cut-and-paste facilities proved to be very

useful and will be used in WinKE as well.

As mentioned above split branch markers can be omitted, in particular as
there is no correspondence for them neither to the paper-and-pencil proce-
dure nor to the underlying logic.

Further to the hinter tool, which should follow over to the new system, more
ways to support the user in finding a proof should be added. For example
bookkeeping facilities could be included, and as already mentioned in an
Assistant mode to be set up the application of KE rules will be made more
comfortable for the user.

3.4 Summary

In this chapter we described the working of MacKE in detail. It proved to be
a promising approach to the task of building a pedagogic tool for teaching
logic and reasoning. Nevertheless the section on evaluation pointed out
some disadvantages of and omissions in the current version, which have to
be considered during the redesign.

Chapter 4

Design 1: Requirements

4.1 Tasks

In this section the main requirements that should be met by the program to
be designed are stated. The following sections will then deal with some of
the important design decisions. A detailed specification of the final product
from a user‘s point of view will be given in the next chapter.

The aim is to design a program that shall be used mainly by students that are
introduced to logic and automated deduction by means of the KIE Calculus.
What is classically done on paper should be simulated on the computer.
That means the user should be able to set up a problem (either by typing
it in by her/himself or by loading an appropriate file) and then construct
a corresponding proof tree by applying the different rules of the Calculus.
In addition the program should have some teaching facilities, it should be
possible to check whether a proof is correct, respectively wrong steps might
be prohibited in the first place. Besides the teaching options it would be
useful to be able to use the program as a proof assistant, for example parts
of a proof could be done automatically, hints could be given etc..

To make the system more practical options to take back steps and book-
keeping facilities to make the proofs more transparent to the user should be
added. Also the program should be equipped with the standard options for
loading and saving files, printing, editing commands and more.

A number of the specified tasks are met by MacKE, which makes it a prac-
tical starting point for the design.

28

CHAPTER 4. DESIGN 1: REQUIREMENTS 29

4.2 Human Computer Interaction

4.2.1 Design of the Interface

The interface of WinKE has to be designed in such a way that all functions
provided by the program are easily accessible to the user. Where possible the
user should be given the possibility to make inputs using the mouse rather
than the keyboard. As far as it is allowed by the special nature of WinKE
the system should share common standards with other software products for
Windows. This means for example that the File or the Help menus should be
designed in the familiar way. The appearance and the functionality of the
graphic tools can be similar to standard graphic programs. The windows
associated with WinKE should be movable individually. WinKE should not
interfere with other programs that might run at the same time.

For example in Tableau IT (see [10]) the user has to determine the appearance
of the proof tree by dragging the nodes to the desired position on the screen.
This takes more time than necessary and it is very difficult to build up
a regularly drawn tree. If a way of drawing proof trees in an ideal way
considering space requirements and aesthetics can be found, it is justified
to omit any user interference in the positioning of the nodes. An algorithm
producing such trees will be presented below.

4.2.2 Transparency

To make it more transparent to the user what is going on a couple of book-
keeping facilities will be introduced. Every formula is given a number so
that for any of them clear information how it was obtained can be provided.
The user him /herself decides how much information is given directly on the
proof tree, the whole range can always be displayed using a bookkeeping tool.

4.2.3 Control

The user should be given as much control over the his work as possible.
That means he should be able to change to other problems or files at any
time without losing information on what s/he is currently working on. It
has to be possible to take back steps individually. This will be provided by
the delete and the undo tools. The first one works like the corresponding

CHAPTER 4. DESIGN 1: REQUIREMENTS 30

one in MacKE (there called undo), the latter one in addition provides the
possibility to eliminate only the selected node and all those that depend on
it directly with respect to rule application (rather than to the tree structure

like for delete).

During the construction of a proof tree numbers for the bookkeeping are
automatically assigned to the nodes. As the order of rule application can
be arbitrary and as it is possible to take back steps, after a while it is
unlikely that the tree will still be numbered in preorder. Normally after a
manipulation of the tree it should not be renumbered automatically, as it
might confuse a user, when certain formulas suddenly change their numbers.
On the other hand the user should be given the opportunity to force a
renumbering whenever this is desired.

At any time the user should be able to change the problem without losing
those parts of the proof that are still valid. Control is also given by offering
the possibility to change the mode at any time.

For the checking of proofs done in Supervisor mode and for the checking
of rule application in Pedagogue mode the user can determine whether the
subformula property and analytic instantiation for the 7 rule should be
tested.

4.2.4 Assistance

For every dialogue and each of the graphic tools help has to be available to
assist the user during the usage of the program. Another kind of assistance
is how WinKE supports its users in finding proofs. Like in MacKE a hint
tool will be available to highlight formulas not been used on open branches
at a particular state. In Assistant mode it will no longer be necessary for
the user to type in the conclusions for standard rule applications (that’s
everything apart from PB and the v rule). For the application of the PB
rule all subformulas on the branch will be provided by the system and for
the v rule any possible value for the instantiation will be made available as
well.

CHAPTER 4. DESIGN 1: REQUIREMENTS 31

4.3 Drawing the Proof Tree

4.3.1 Trees to Display KE Proofs

The state of a proof using the KE Calculus is represented by a tree, which
has some certain properties. Every node (i.e. every formula) has either one
or two sons (the latter if PB has been applied). To save space the edge
between a node and its single son can be omitted. The splitting of a branch
is represented by two lines from the father node to the left and to the right
son. So on every level of a tree (level with respect to the y-coordinate) either
a formula or two lines indicating a split are displayed. This structure can be
handled best by the internal data structure, if for every split an additional
node is introduced, which is made the single son of the father node, and
the two original sons are connected to the newly introduced pseudo node.
To offer the user the possibility to choose a certain branch of the proof
tree, objects that represent the branches have to be added. This is done by
asserting to every branch a so called branch marker as a son of the last node
of the particular branch for example in form of a little circle.

A tree drawing algorithm specifies how the z- and the y-coordinates for
displaying each of the nodes are found. Calculating the y-coordinates is
straightforward. An initial value is associated with the root node and then
while traversing the tree in preorder every node is asserted the value obtained
by adding a fixed number (the height needed to display one level) to the y-
coordinate of the father node. Note that when doing so it doesn’t matter
whether the specific node represents a formula, a split branch or a branch
marker.

Crucial about the algorithm is how the xz-coordinates are calculated. In the
following first the method that has been used in MacKE is presented. As
will be shown that method bears certain disadvantages to be pointed out.
Next some requirements an ideally drawn tree should meet are stated and
finally an algorithm that produces trees according to these “aesthetics” is
given.

4.3.2 The Tree Drawing Algorithm of MacKE

First for every branch the formula requiring the most space is identified and
its leaf is asserted the space of this longest formula. The z-coordinate of

CHAPTER 4. DESIGN 1: REQUIREMENTS 32

each leaf is then given by the sum of the spaces asserted to all those leaves
preceding the particular leaf with respect to a preorder traverse of the tree
(that means “which are to its left”). Next the tree is traversed in postorder
and every node is centred above its son(s). That this can be done without
the risk of overlapping has been assured by asserting the maximal space
required by any formula on a branch to the leaves.

a) (1) (i)

Figure 4.1: Examples of Drawn Trees

Trees whose appearance has been determined by the described algorithm
have some certain disadvantages concerning space requirements as well as
aesthetic considerations. To illustrate this claim two examples are given in
figure 4.1. For two different logical trees (called a) and b)) in each case two
different graphic representations are given. The graphics are simplified, only
the size of the nodes is indicated, it doesn’t matter what they actually look
like. In both examples under (7) the tree that the algorithm used in MacKE
would produce is given and (i¢) displays the desired form, which takes less
space and also looks tidier.

CHAPTER 4. DESIGN 1: REQUIREMENTS 33

4.3.3 Some Aesthetics for Drawing a Tree

In [11] the authors define some requirements (or “aesthetics” as they call
it) to be met by a tidily drawn tree. That discussion is followed by the
presentation of an algorithm that can produce such trees. Unfortunately
that article only deals with trees whose node have a fixed (very small) size
and in addition nodes have only left and right nodes, also single sons are
either put to the left or the right of their father node. So the results obtained
in that work cannot be applied directly to the design of an appropriate
algorithm to calculate trees for displaying KE proofs. But still the following
listing of aesthetics for such trees partly follows the discussion in [11].

Note how KE trees have been defined above. Nodes are either formulas or
splits or branch markers. All leaves (and only they) are branch markers.
Splits are the only nodes that have two sons, which are formulas in any
case. Formulas always have exactly one son node.

The drawing of a tree should satisfy the following aesthetics.

Aesthetic 1: Nodes at the same level should lie along a straight line, and
the straight lines defining the levels should be parallel.

Aesthetic 2: A left son should be positioned to the left of its father and a
right son to the right.

Aesthetic 3: A father should be centred over its son respectively its sons.

Aesthetic 4: A tree and its mirror image should produce drawings that
are reflections of one another; moreover, a subtree should be drawn in
the same way regardless of where it occurs in the tree.

Aesthetic 5: Any two nodes on the same or neighbouring level(s) should
be placed next to another as close as possible in horizontal direction
but without violating a predefined minimal distance.

The algorithm used in MacKE, which is described above, doesn’t always
preserve aesthetics number 4 and 5. Although it guarantees that nodes do
not overlap, the distances in horizontal direction are not always minimal, as
both examples in figure 4.1 illustrate. Also the subtree consisting of the two
small sibling nodes is drawn differently in the two examples; this violates
aesthetic 4.

CHAPTER 4. DESIGN 1: REQUIREMENTS 34

4.3.4 An Aesthetic Tree Drawing Algorithm

In this section an algorithm working according to the aesthetics defined
earlier on is presented. It is the algorithm that will be used for WinKE.

The y-coordinates are calculated in the standard way as pointed out in 4.3.1.
Note that by doing so aesthetic 1 is guaranteed to hold.

Before the following algorithm can be applied the space requirements for
the graphical representation of all the nodes need to be known. At this
point values for markers and splits have to be defined. The value of a split
can be set to 0, as the displaying of the two lines definitely takes less space
in horizontal direction than the left and the right son below, and nodes
on neighbouring levels are not allowed to overlap with respect to their z-
coordinates (aesthetic 5).

The formulation of aesthetic 4 leads to the most important guideline when
designing an appropriate algorithm. As subtrees should be drawn in the
same way regardless where they appear, the algorithm has to start in the
lowest levels of the tree, i.e. the tree will be traversed in postorder when
agserting the z-coordinates. When doing so in the first traverse it won’t be
possible to obtain the final coordinates immediately. First only a relative
coordinate for every node with respect to the position of its father has to be
calculated.

For single sons this relative coordinate is clearly 0, as they are supposed to
be centred below their fathers. Note that with z-coordinate (whether they
might be relative or absolute) we mean the coordinate where the middle of
the node’s graphical representation should be placed.

For left and right sons things become more complicated. To be able to assert
the correct values for each node respectively the subtree it is associated
with (the subtree whose root it is) two lists representing its left and right
contour have to be created and maintained. With the contour of a subtree
we mean the information for each level how much space is required to the left
respectively to the right from the middle of the root node. If this information
is available for two sibling nodes it can be determined how far from each
other they have to be put by consulting the right contour of the left node
and the left contour of the right one. At this point aesthetic 5 is important.
For every level it has to be checked that the nodes in that level don’t come
too close to each other respectively to the nodes in the levels above and

CHAPTER 4. DESIGN 1: REQUIREMENTS 35

below. Next the father node (which is a split) can be centred above the left
and the right son.

The absolute z-coordinate of the root is set to the middle of the window
where the tree is to be displayed. After that the tree is again traversed,
this time in preorder. For every node the absolute value of its z-coordinate
is obtained by adding the one of its father and its own relative coordinate
calculated before.

Finally, before the tree can be drawn, for the nodes that are formulas the
upper left corner has to be computed from the z-coordinate (that indicates
where the middle should appear) and the half of length needed to display
the graphical object.

4.4 The Undo Tool

WinKE will be equipped with a delete tool, which works like the undo of
MacKE. Its implementation is rather straightforward as the proof tree is
simply cut at the selected node. Just formulas obtained during application
of either o or PB require additional care because of the sibling nodes, which
also have to be deleted.

For WinKE in addition a different undo tool is planned. Unlike delete, that
operates with respect to the tree structure, it is supposed to work on the
logical structure of a proof. That means only the selected formula and all
its logical offspring should be taken off the tree. For this tool as well in
the case of an «a or PB application also the siblings have to be eliminated.
Difficulties might occur when a formula obtained from an application of the
PB rule is chosen with the undo tool.

In that case for both the subtrees undo has to be applied on the two sibling
nodes respectively. Then the remaining subtrees and the father branch have
to be rearranged to form a single resulting branch. If both subtrees are
linear this can be done without further problems by just putting them one
underneath another. This is obviously not possible, if both of them are
branching. In that case one of them has to be attached to the last node of
the father branch and the second one to each of the open branches of the
first. To minimise the complexity of the resulting tree that subbranch with
fewer open branches should be the one placed above the other.

CHAPTER 4. DESIGN 1: REQUIREMENTS 36

When the second subbranch is attached to each of the open branches of
the first one, several copies of it have to be made. As they will be treated
independently from then on, their nodes have to have different numbers.
So new numbers have to be introduced. In fact the resulting tree after an
application of the undo tool could have more nodes than the original one.
To guarantee transparency in general during the manipulation of the trees
numbers of certain nodes shouldn’t be changed (unless of course they are
newly introduced). So after a couple of manipulations of the tree it is likely
not to be numbered in preorder, in the case of an undo application the range
of numbers might even have gaps (some nodes/numbers have been deleted
and other/greater ones have been newly introduced). This makes the option
to renumber a tree as mentioned earlier on particularly useful in conjunction
with the undo tool.

If one of the subbranches is completely closed the other one can be thrown
away, as its information is not needed anymore. The only disadvantage
is, that, if in Supervisor mode that subbranch has been closed incorrectly,
after proof checking the information of the subbranch thrown away might
be useful again.

4.5 Data Structure

In this section an appropriate data structure for problems respectively the
formulas as part of them shall be defined. The data associated with a certain
formula has to handle all information that is bound directly to it, like the
formula itself, details about its derivation and any other information that
should be available as part of the bookkeeping system.

In addition to the formula specific data, the problem as a whole, i.e. the
connections between the single formulas has to be dealt with. This is first
of all the structure of the proof tree, but it has also to be borne in mind,
that it has to be possible to store a problem sequentially (i.e. in a file). To
be able to use the tree printing algorithm presented in section 4.3 for every
node its son(s) has/have to be stored and it has to be transparent whether
the specific node has one or two sons. The latter is only the case, if the
node represents a split. The dynamic Prolog clauses shown in figure 4.2
can represent the tree structure of a KE proof. The arguments of these
clauses are integers representing the numbers of the respective nodes. For

CHAPTER 4. DESIGN 1: REQUIREMENTS 37

son(Node, Son)
left_son(Node, LeftSon)
right_son(Node, RightSon)

Figure 4.2: Prolog Clauses for Tree Structure

nodes that represent formulas we will use positive and for splits and branch
markers negative integers.

The data associated with a particular node is maintained through the dy-
namic clauses given in figure 4.3. Here Formula is a compound term whose

formula(Node, Formula)
derivation_rule(Node, DerivationRule)
parents(Node, Parents)

sibling(Node, Sibling)

used_on_all branches(Node)

Figure 4.3: Prolog Clauses for Node Representation

functors are logical operators that need having been defined beforehand. If
the particular node is not representing a formula, then the Variable Formula
takes one of the values split, open, or closed respectively. In those cases
also Rule doesn’t give the KE rule but is simply set to marker. Oth-
erwise Rule is asserted one of the atoms double neg, alpha, beta, eta,
delta, gamma, or pb. Parents is a list holding the numbers of the parent
nodes, those nodes that have been used for the derivation. In the case of a
derivation using PB Parents is the empty list. This is the same for splits
or open branch markers. For closed ones Parents gives the numbers of
those formulas that have been used to close the branch. sibling(Node,
Sibling) is only defined in the case of the a or the PB rule. Whenever
used_on_all branches(Node) exists for a certain Node this indicates that
the respective formula has already been used (as a major premise) on all
open branches it is on. For 7 formulas used_on_all branches/1 is never
set as the ~ rule can be applied more than once to the same branch and
formula.

The third group of clauses are those handling a problem respectively a proof
tree as a whole. They are listed in figure 4.4. Preorder is a list of all the
numbers of nodes on the tree in preorder and the list SelectedNodes holds
the numbers of those nodes that are selected (highlighted) at the current

CHAPTER 4. DESIGN 1: REQUIREMENTS 38

preorder(Preorder)
selected nodes(SelectedNodes)

Figure 4.4: Prolog Clauses for the Entire Problem

state. In addition two further clauses will have to be defined to handle the
corresponding graphic objects. These will be the clause graphic_objects(
GraphicObjects) to maintain all graphic objects to be displayed and the
clause selected_graphic objects(SelectedGraphicObjects) to main-
tain which of them are selected at a certain state.

With the data structure defined so far a problem and its associated proof
tree can be handled. But the problem dealt with at a certain state will
normally be just one out of a couple of problems stored in a file. The entire
information of a problem and possibly parts of its proof can be stored in a
single data object. For this purpose the information provided by formula/2,
derivation_rule/2, parents/2, and sibling/2 for each node is put to-
gether in a list of each four elements. Here the value of Sibling is stored
in a list which might be empty, if sibling/2 is not defined for the par-
ticular node. The information given by used_on_all branches/1 can be
reconstructed from the rest, so it is not necessary to keep it in the list as
well. Then all these lists each representing a node are put together in one
big list, the nodes’ order is given by Preorder.

As nodes for which DerivationRule is either open or closed have no sons,
those for which it is split have two and the remaining ones all have exactly
one son, the tree structure can be reconstructed from that preordered list.
Finally the head of that list is made an integer giving the index number of
that particular problem.

A couple of problems can now be stored as a list of single problems, each of
them maintained as just described. At a certain state during the running
of WinKE there are a number of problems loaded, which come either from
a file or have been edited by the user. One of those problems is the current
one, i.e. it is displayed on the screen. This information is maintained by the
Prolog clauses shown in figure 4.5. the variable Problems is a list of the

problems(Problems)
current problem nr(CurrentProblemlr)

Figure 4.5: Prolog Clauses for All Problems

CHAPTER 4. DESIGN 1: REQUIREMENTS 39

type just defined and CurrentProblemNr is an integer giving the number of
that problem that is currently being displayed.

Modal Logics [t is planned to extend WinKE for modal logics in the near
future. The data structure defined in this section is open towards such an
extension. In addition for every formula on a proof tree the prefix denoting
the world it is valid in needs to be stored. Such a prefix is a list of integers and
metavariables over either single integers or sequences of integers. Therefore
a way to distinguish those two types of metavariables (for example when
the are typed in by the user) has to be found. Also for every problem the
associated logic has to be stored.

4.6 File Handling

The problem of how to save a problem respectively a number of problems
to a file has already been solved by the definition of the data structure. The
list Problems (see 4.5) can simply be written or read from a file. Whenever
the user wishes to save the current state of the problems the chosen file
is updated with the value of Problems (after Problems has been updated
according to the actual state of the current problem).

4.7 Rule Checking

It makes sense to introduce different levels of rule respectively proof check-
ing. For the sake of efficiency as well as for pedagogic reasons usually we
want to assure that the subformula property holds for any application of the
PB rule. Similarly a v formula should only be instantiated in a promising
way, that means with an argument already present on the branch. On the
other hand logically speaking an application of PB that does not involve a
formula that already occurs on the branch is not incorrect, it’s just not very
efficient. Imagine for example a readily done proof built up in Supervisor
mode that uses such an unnecessary PB rule is checked by WinKE. If still
all branches have been closed correctly the proof should be accepted and no
error messages should come up.

For these reasons the user should be offered the possibility state whether
s/he wants the system to check for analytic rule application or not. This

CHAPTER 4. DESIGN 1: REQUIREMENTS 40

decision affects the behaviour of the rule checker in Pedagogue and Assistant
mode as well as the proof checking called after building up a proof tree in
Supervisor mode.

The implementation of non-analytic rule checking is quite simple. It just
has to be checked that a formula is of the correct type has been selected and
then the user input(s) are compared with the correct conclusion(s) that can
be extracted directly from the premise(s). To verify whether a particular
application of the PB rule satisfies the subformula property all subformulas
occuring on the selected branch have to be collected. To test an instantiated
~ formula all terms that are arguments of formulas on the branch have to be
reviewed. Checking a whole proof is done by traversing the tree in preorder
and applying the rule checking procedure to every node encountered.

Modal Logics When WinKE will be extended to handle modal logics,
the rule checking routines have to be changed appropriately. First of all a
prefix unification algorithm like in [4] has to be implemented. Then the rule
checking for the classical propositional formulas can easily be extended with
a check for the correctness of the prefixes involved. For the modal rules the
accessibility relation has to be considered as well.

4.8 Architecture

To define the architecture of the system it can be seen as divided in three
layers. The topmost is the interface layer which deals with user inputs
and routes them to the next layer, and which produces outputs for example
in form of messages, dialogues or displayed graphics. The modules in the
interface layer are the Graphic Window Manager, the Tool Manager, the
Dialogue Manager, and the Menu Manager. The actual computations take
place in the internal layer. It consists of the Internal Graphics Manager,
the Tree Manager, and the KE Manager. Finally the data layer has got two
modules, the Graphic Database and the Tree Database.

The diagram of figure 4.6 shows the architecture of WinKI schematically.
The Tree Database maintains the data specified earlier on in this chapter
(see 4.5). The corresponding graphic objects are stored in the Graphic
Database. All data in the latter one can be constructed by applying the tree
drawing algorithm to the information obtained from the Tree Database.

CHAPTER 4. DESIGN 1: REQUIREMENTS 41

user user
input output

Graphic .
interface Winzow Tool Dialogue Menu
layer Manager Manager Manager Manager
Internal
internal Graphics Tree KE
layer Manager Manager Manager
data Graphic Tree
layer Database Database

Figure 4.6: Schematic Architecture of WinKE

The Internal Graphics Manager takes the information from the Graphic
Database and passes it on to the Graphic Window Manager, which finally
displays it on the screen. User inputs that directly affect the graphics come
either through the Graphic Window Manager (e.g. mouse clicks) or the Tool
Manager to the Internal Graphics Manager. The Internal Graphics Man-
ager informs the Tree Manager about such events. The Tree Manager, which
works on the data provided by the Tree Database, is the most important
module. Here all manipulations on the proof tree take place. A motivation
for such a manipulation can come from either the Internal Graphics Man-
ager, the Dialogue Manager or the Menu Manager. If the desired change
is due to a rule application, then the Tree Manager has to consult the KE

CHAPTER 4. DESIGN 1: REQUIREMENTS 42

Manager to find out whether that particular manipulation is approved by
the rule checker provided by that module. The information the KE Man-
ager needs for such a decision is actually provided by the Tree Database and
the Dialogue Manager (which maintains the user input), but from a more
systematic point of view this information can also first be collected by the
Tree Manager and then be passed on to the KE Manager as a whole.

The performance of the KE Manager is determined by the Menu Manager as
the teaching mode is set via the menus and also analytic rule application can
be switched on and off through a menu. The Tree Manager passes messages
back to the Dialogue Manager, where they are put out for the user. Also
the Tree Database is updated by the Tree Manager.

4.9 Summary

In this chapter we pointed out the main requirements for the new system.
The first section gave a very general statement on the tasks of WinKE. Then
the main design decisions were discussed and two algorithmic problems, the
tree drawing and the realisation of the new undo tool, have been covered.

A systematic description of the program eventually designed is given in the
next chapter.

Chapter 5

Design 2: Interface and
Functionality

5.1 Interface

When WinKE is started four windows come up: the menu window, two
graphic windows, and the tool box. In one of the graphic windows the proof
tree will be displayed and it will be used to manipulate the tree. This window
shall simply be called the graphic window from now on. The other one we
will refer to as the little graphic window. It displays the entire area available
for the proof tree in a much smaller scale. It will be used to determine the
visible part of that area to be displayed in the (other) graphic window. All
four windows have minimise boxes. The graphic window is the only one that
also has got a maximise box and that is resizable. Only the menu window
is equipped with a system menu.

5.1.1 The Menu Window

The title of this window is “WinKE”. The menu window holds all the menus
of the program and a couple of buttons that provide shortcuts to some of
the menu items. There are five main menus, they are called File, Problem,
Analysis, Options, and Help.

The items available from the File menu are New, Open, Save, Save as, and
Exit. From the Problem menu the option Next, Previous, Select, New, Edit,

43

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 44

Reset, Renumber, Check, and Print can be chosen. Next comes the Analysis
menu, which provides the different rule applications. They are Double Nega-
tion, Apply Alpha, Apply Beta, Apply Eta, Apply Delta, Apply Gamma, Apply
PB, and Close Branch. The first entry under Options is Mode, which in turn
has a submenu consisting of the items Pedagogue, Supervisor, and Assistant.
The remaining items are Bookkeeping, Further Settings, and Save Settings.
Finally the Help menus consists of the options Contents, How to use WinKE
Help, and About WinKE.

The buttons beneath the menus offer direct access to some of the most fre-
quently needed functions available via the menus. Those items are New,
Open, Save, Previous, Next, all the subitems of the Analysis menu, and
Help/Contents.

5.1.2 The Tool Box

The tool box window holds six buttons. The first, called the select button,
shows an arrow. The second one displaying a cross is called delete. Next
comes a button named undo, which displays the standard undo icon. The
hint button shows a field-glass and the bookkeeping one an open book. But-
ton number six finally shows a question mark for help. The title of the tool
box window is “Tools”.

5.1.3 The Graphic Window

The graphic window’s title is “Problem” followed by the active file name and
the problem number. The window simply consists of one graphic control
together with a vertical and a horizontal scrollbar. It is resizable and can
be maximised.

5.1.4 The Little Graphic Window

The little graphic window also consists of just one graphic control. Its title
is “Visible Area”.

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 45

5.2 Functionality

In this section the intended functionality of WinKE is described. Actions
are either initiated by a menu selection, the choice of a graphic tool, or a
mouse click in one of the graphic windows. So we structure the following
documentation according to those different kinds of origins of actions.

5.2.1 The File Menu

The choice of Open brings up a standard dialogue for the opening of files.
Files storing KE problems should have the extension .ke, those kinds of
files in the active directory will be displayed for choice in a listbox. When
a certain file has been chosen the first problem is displayed in the graphic
window. The New option works as if an empty file has been opened. The
system then expects the input of a problem by the user. The Save and
the Save as items start up the standard dialogues for these options. The
state of all problems currently maintained by the problems/1 predicate is
written to the desired file. Exit closes all four windows and WinKE is quit.
Warnings or messages, for example to save a file before a new one is opened,
are included in the usual way.

5.2.2 The Problem Menu

The first three options, Next, Previous, and Select, work in the obvious way:
the next, previous, or a problem selected by its number is made the active
one unless a non-existing problem is addressed. For example if Previous is
selected from the first problem of a file an error message comes up.

New and Edit both lead to the same kind of dialogue, where a problem can
be defined by typing in its premises and its conclusion. If Edit is chosen
the premises already on the tree appear in a listbox and may or may not
be changed or deleted, as well as new formulas may be added. If a proof
has already been started, its correctness cannot be assumed anymore (as
premises might have been deleted). Therefore after that it should be checked
again. Within the New respectively the Edit dialogue the user is supported
with cut-and-paste facilities as well as with a “virtual keyboard” for the
logical operators, which are not directly available via the normal keyboard.

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 46

Reset deletes all formulas on the tree apart from the problems’ premises and
the negated conclusion. Renumber renumbers the proof tree in preorder.
Check traverses the tree in preorder and calls the rule checker for every node
encountered. Throughout the checking the user is guided by a dialogue
which allows direct pruning of false formulas, jumping on to the next error,
or cancelling. The Print option sends the active proof tree to the printer.

5.2.3 The Graphic Windows

The main graphic window is used to display the proof tree. Its scrollbars
work in the obvious way. The little graphic window can be used for orien-
tation during proofs requiring more space than the main graphic window
provides. In the little one the whole tree is displayed in a smaller scale
and a little rectangle indicates the area visible in the other graphic window.
By dragging that rectangle the display in the large graphic window can be
changed.

5.2.4 The Graphic Tools

A graphic tool can be chosen by clicking on the respective button of the
tool box. Whenever this is done all current selections of nodes are rejected.
If the select tool is chosen, mouse clicks on either formulas or open branch
markers selects them, i.e. they are highlighted.

If the delete tool is active, a click on a node causes the deletion of that node
and its entire subbranch. Only premises cannot be deleted, i.e. if one of
them is clicked, the deleting starts at the first derived node (which has the
same effect as a call of Reset). Using the undo tool only the clicked node
and its logical offspring are deleted from the proof tree (see also discussion
earlier on in chapter 4).

The hint tool highlights all open branches the formula being clicked has not
been used on so far. If a open branch marker is chosen, those formulas not
used on it are highlighted. Clicking on a node when the bookkeeping tool is
active causes a message listing all the bookkeeping values of that particular
node to come up. For formulas bookkeeping values are the node’s number,
the formula itself, the rule used for its derivation (unless it is a premise or
the negated conclusion), the parent formulas (where available) and possibly
a sibling formula. For closed branch markers the same is done. Here parent

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 47

formulas are those that were used to close the branch. For open branch
markers there are no bookkeeping values defined.

The last button in the graphic tool box can be used to enter the WinKE
help system at the page on the usage of the graphic tools.

5.2.5 The Analysis Menu

The Analysis menu’s entries are used for rule application. The chosen rule is
applied to the currently selected formula(s) and the selected branch marker.
Before a dialogue is entered it is checked whether a correct selection has
been made, i.e. whether exactly one open branch marker and the correct
number of formulas on it have been selected.

The actual rule dialogues ask the user for the input of the appropriate con-
clusion(s). Like for the New/Edit problem dialogue cut-and-paste and a
keyboard for logical symbols are provided. In Assistant mode for the «, 3,
n, and the § rule as well as for Close branch the dialogues are omitted, as
after a correct selection a user input is not necessary anymore to find the
right conclusion(s). For PB the user can use a Next button to get all the
possible subformulas displayed one after the other. Similarly for the v rule
possible arguments for instantiation can be brought up.

After the user input the rule checker is called and either the appropriate
changes are made to the tree or an error message comes up. The performance
of the rule checker depends on the teaching mode. In Supervisor mode
anything goes, in Pedagogue and Assistant mode only correct applications
are allowed. If rule application is chosen to be analytic in the cases of PB
and v only such analytic rule applications are approved.

5.2.6 The Options Menu

Under Mode the desired teaching mode can be chosen. Bookkeeping brings
up a dialogue where the features that should be visible on the proof tree
can be selected. The features provided are the number of a formula, its
derivation rule, its parents, and the information whether it has been used
on all open branches (not available for v formulas).

Further Settings enters another dialogue. There first of all analytic rule
application may be switched on or off. Secondly it can be chosen whether

CHAPTER 5. DESIGN 2: INTERFACE AND FUNCTIONALITY 48

warnings should be brought up when either of the delete or the undo tool is
used before nodes are eliminated from the tree. Finally using that dialogue it
can be determined by the user, if the tree should be renumbered in preorder
after any change of it immediately without an explicit call of Renumber.
Save Settings causes the current settings to be saved to a file, so that they
can be used at the next program start.

5.2.7 Help

The help system is intended to be a program separate from WinKE. It could
be set up using the standard Windows 95 Help environment. Most of the
non-trivial dialogues of WinKE have Help buttons, which enter the help
system at the appropriate page. The Contents item of the Help menu enters
it at the main page. The About option under Help brings up the WinKE
about message.

5.3 Summary

In this chapter we described the interface and the functionality of WinKE
as it has been designed. The evaluation of MacKE and the design process
reflected by chapter 4 lead to this particular design.

Next some remarks on the implementation of WinKE will be made.

Chapter 6

The Implementation of

WinKE

6.1 WinProlog

The implementation has been carried out in LPA Prolog for Windows, ver-
sion 3.0, a product of the Logic Programming Association, London. It
proved to be particularly useful for setting up windows, menus, and dia-
logues. Unfortunately the support for graphics is less practical than in the
corresponding version for Macintosh, in which for example MacKE has been
implemented.

6.2 Modules and Global Values

The most important values are the ones mentioned in the section on data
structure in chapter 4. In addition during the computation of the graphic
tree some temporary global values to represent the x- and the y-coordinates
of nodes and the contours of subtrees respectively are used.

The settings that can be manipulated via the Options menu are stored
using the prolog clauses listed in figure 6.1. Mode has one of the values
Pedagogue, Supervisor, or Assistant. The elements of the list kept by
bookkeeping settings/1 are either 1 or 0 depending on what informa-
tion should or should not appear on the graphic proof tree. N stands for

49

CHAPTER 6. THE IMPLEMENTATION OF WINKE 50

mode(Mode)

bookkeeping settings([N,R,P,U])
analytic/0

warnings/0

always_renumber/0

Figure 6.1: Prolog Clauses for Settings

numbers, R for derivation rule, P for parents, and U for the information
stating whether the particular formula has been used on all open branches.
According to the user inputs the predicates analytic/0, warnings/0, and
always_renumber/0 are either asserted or retracted. For their meaning con-
sult chapter 5.

The modules as described in 4.8 are made transparent in the implementation
through the division of the code in different files. Just the parts associated
with the Dialogue Manager have been spread throughout the whole program
for practical reasons.

6.3 WinKE Version 1.2

The present version WinKE v1.2 (June 1996) follows the specification given
in the preceding chapter apart from a few omissions due to a lack of time.
The only menu option that hasn’t been implemented at all is Print. Apart
from that the help facilities are not as detailed as they should. Also no little
graphic window has been included so far. But as the work with MacKE
showed, such a facility is only useful for rather large problems (which arise
quite seldom) anyway. As under Windows there seem to be no fonts available
that combine logic symbols with the standard alphanumeric ones so far
rather unaesthetic operators needed to be defined (like for example v for Vv,
<=> for <+, or @ instead of V).

Apart from those deficiencies it has been managed to set up a working
application under Windows 95 that can be used for the purposes lined out
in the introduction.

CHAPTER 6. THE IMPLEMENTATION OF WINKE 51

6.4 Demonstration

In chapter 5 the functionality of WinKE is described in detail. To further
illustrate its working, in particular of the actual implementation of version
v1.2, some screen dumps are shown on the following pages.

Figure 6.2: The Menu Window of WinKI

Figure 6.3: The Tool Box Window

CHAPTER 6. THE IMPLEMENTATION OF WINKE

Figure 6.4: The Graphic Window of WinKE

52

CHAPTER 6. THE IMPLEMENTATION OF WINKE

Figure 6.5: Using the Analysis Menu

53

CHAPTER 6. THE IMPLEMENTATION OF WINKE

Figure 6.6: Sample Rule Dialogue

Figure 6.7: Rule Dialogue in Assistant Mode

54

CHAPTER 6. THE IMPLEMENTATION OF WINKE

Figure 6.8: Using the Bookkeeping Tool

55

Chapter 7

Conclusion

7.1 Results

We believe that with the specification of WinKE as given in chapter 5 the
main aim of the project, the design of a practical teaching tool for auto-
mated theorem proving using KE has been achieved. To defend this claim
a reevaluation involving users of different backgrounds should take place. A
working implementation of WinKE has been set up.

7.2 Further Work

First of all the deficiencies of the present implementation as pointed out in
section 6.3 should be eliminated from the program. An evaluation like the
one applied to MacKE should follow to spot further possible problems.

At this stage the main idea of improvement is to extend the KE Manager
in such a way, that at any state the “ideal” rule to be applied next can
be found. For how this is done in theory (as far as it is possible at all)
consult the section on fairness in chapter 2. Then an option Suggestion
could be added to the Analysis menu, which (possibly only in Assistant
mode) suggests the next rule application when chosen. Also a new teaching
mode (it might be called the Trainer mode) could be added, which works
similarly to the Pedagogue mode, but only accepts a rule application, if it
is considered to be “ideal” at the particular state of the proof.

56

CHAPTER 7. CONCLUSION 57

The next task would be to integrate modal logics into WinKE. To be able
to do this in a satisfactory way for arbitrary distinct normal modal logics,
it would be very useful to find a general specification of Modal KE, without
exceptions as those that still have to be made for K4 and K45. In general
the present specification of WinKE is open towards expanding the data
structure to handle labels, i.e. the program is open towards an extension to
prefixed propositional modal logics.

7.3 Acknowledgements

First of all I wish to thank my project supervisor Jeremy Pitt for his invalu-
able help during the last eight months.

Also I'm grateful to my lecturers Krysia Broda, Jim Cunningham, and Peter
Schmitt for introducing me to the broad fields of Automated Deduction and
Modal Logic respectively. Krysia Broda also made WinProlog available to
me.

Without the Erasmus Programme and the people involved in it at Imperial
College and at the University of Karlsruhe I wouldn’t have had the chance
to work on this project nor to study at Imperial College.

Bibliography

[1]

Marcello D’Agostino. Investigations into the Complexity of some Propo-
sittonal Calculi. PhD thesis, Oxford University Computing Laboratory
Programming Research Group, Technical monograph PRG-88, 1990.

J. Barwise and J. Etchemendy. Hyperproof. CSLI Publications, 1994

Krysia Broda, Marcello D’Agostino and Marco Mondadori. A Solution
to a Problem of Popper. In The Epistemology of Karl Popper, Kluwer,
to appear

Jim Cunningham and Jeremy Pitt. Towards Model Building in Multi-
Modal Logics using KE and Constraint Satisfaction. Esprit Medlar
Project, 1995.

Roy Dyckhoff. MacLogic: A Proof Assistant for First Order Logic on
the Macintosh. Computational Science Division, University of St. An-
drews, 1989

Melvin Fitting. Basic Modal Logic. In D. Gabbay, C. Hogger, and
J. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, Vol. 1, OUP, 1993.

Jeremy Pitt and Jim Cunningham. Theorem Proving and Model Build-
ing with the Calculus KF. In the Bulletin of the IGPL, 1995.

Jeremy Pitt. User Interface Design for an Automated Pedagogic Tool.

Jeremy Pitt. MacKE: Yet Another Proof Assistant & Automated Ped-
agogic Tool. In P. Baumgartner, R. Hihnle, J. Possegga, editors, The-

orem Proving with Analytic Tableaux and Related Methods, Springer-
Verlag, 1995

58

BIBLIOGRAPHY 59

[10] M. Potter and D. Watt. Tableau II: A Logic Teaching Program. Oxford
University Computing Services, Learning and Resources Centre, 1988

[11] Edward Reingold and John Tilford. Tidier Drawings of Trees. in IEE
transactions on Software Engineering, Vol. SE-7, No. 2, March 1981

