On the Communication Complexity of Multilateral Trading

Ulle Endriss

Imperial College London ue@doc.ic.ac.uk

Nicolas Maudet

Université Paris Dauphine maudet@lamsade.dauphine.fr

What is this?

- We are interested in negotiation over resources in multiagent systems where agents may use very simple rationality criteria to decide on the acceptability of a proposed deal, but interaction patterns may be complex. In particular, *multilateral* deals (involving more than two agents) are possible.
- We are interested in the theoretical properties of such systems. This paper addresses the *communication complexity* of negotiating allocations of resources that are "socially optimal". That is, we focus on the length of negotiation processes and the amount of information exchanged, rather than on computational aspects.

Talk Overview

- Our negotiation framework
 rational but myopic agents trading discrete resources
- Aspects of complexity
 computational versus communication complexity
- Some technical results for our negotiation framework
 how many deals are required to reach an optimal allocation?
- Conclusions

Resource Allocation by Negotiation

- Finite set of agents A and finite set of discrete resources R.
- An allocation A is a partitioning of \mathcal{R} amongst the agents in \mathcal{A} . Example: $A(i) = \{r_3, r_7\}$ — agent i owns resources r_3 and r_7
- Every agent $i \in \mathcal{A}$ has got a *utility function* $u_i : 2^{\mathcal{R}} \to \mathbb{R}$. Example: $u_i(A) = u_i(A(i)) = 577.8$ — agent i is pretty happy
- Agents may engage in negotiation to exchange resources in order to benefit either themselves or society as a whole.
- A *deal* $\delta = (A, A')$ is a pair of allocations (before/after).
- A deal may be accompanied by a payment to compensate some of the agents for a loss in utility. A *payment function* is a function $p: \mathcal{A} \to \mathbb{R}$ with $\sum_{i \in \mathcal{A}} p(i) = 0$.

 Example: p(i) = 5 and p(j) = -5 means that agent i pays \$5, while agent j receives \$5.

The Local Perspective

A rational agent (who does not plan ahead) will only accept deals that improve its individual welfare:

Definition 1 A deal $\delta = (A, A')$ is called rational iff there exists a payment function p such that $u_i(A') - u_i(A) > p(i)$ for all $i \in \mathcal{A}$, except possibly p(i) = 0 for agents i with A(i) = A'(i).

The Global Perspective

A social welfare ordering is a mapping from the preferences of the members of a society to a preference profile for society itself.

Definition 2 The (utilitarian) social welfare sw(A) of an allocation of resources A is defined as follows:

$$sw(A) = \sum_{i \in \mathcal{A}} u_i(A)$$

Linking the Local and the Global Perspective

From our AAMAS-2003 paper:

Lemma 1 A deal $\delta = (A, A')$ is rational iff sw(A) < sw(A').

Together with the finiteness of the allocation space this entails the following result on the feasibility of reaching an optimal allocation (due to Sandholm 1996/98; originally for distributed task allocation):

Theorem 1 Any sequence of rational deals will eventually result in an allocation of resources with maximal social welfare.

▶ Question: How *complex* is the problem of finding such a socially optimal allocation of resources?

Aspects of Complexity

- (1) How many *deals* are required to reach an optimal allocation?
 - communication complexity as number of individual deals
 - technical results to follow
- (2) How many dialogue moves are required to agree on one such deal?
 - affects communication complexity as number of dialogue moves
- (3) How expressive a *communication language* do we require?
 - Minimum requirements: performatives propose, accept, reject
 + content language to specify multilateral deals
 - affects communication complexity as number of bits exchanged
- (4) How complex is the *reasoning* task faced by an agent when deciding on its next dialogue move?
 - computational complexity (local rather than global view)

Number of Deals

We have two results on *upper bounds* pertaining to the variant of our negotiation framework presented here (with side payments, general utility functions, and aiming at maximising utilitarian social welfare):

Theorem 2 (Shortest path) A single rational deal is sufficient to reach an allocation with maximal social welfare.

Proof. Use Lemma 1 $[\delta = (A, A') \text{ rational iff } sw(A) < sw(A')].$

Theorem 3 (Longest path) A sequence of rational deals can consist of up to $|A|^{|R|} - 1$ deals, but not more.

Proof. No allocation can be visited twice (same lemma) and there are $|\mathcal{A}|^{|\mathcal{R}|}$ distinct allocations \Rightarrow upper bound follows \checkmark

To show that the upper bound is *tight*, we need to show that it is possible that all allocations have distinct social welfare (see paper).

More technical results are in the paper ...

- Number of rational deals without side payments required to reach a Pareto optimal allocation of resources:
 - Shortest path: ≤ 1
 - Longest path: $< |\mathcal{A}| \cdot (2^{|\mathcal{R}|} 1)$
- Number of rational one-resource deals with side payments to reach an allocation with maximal social welfare in additive domains:
 - Shortest path: $\leq |\mathcal{R}|$
 - Longest path: $\leq |\mathcal{R}| \cdot (|\mathcal{A}| 1)$
- Number of rational one-resource deals without side payments to reach an allocation with maximal social welfare in 0-1 domains:
 - Shortest and longest path: $\leq |\mathcal{R}|$

For all of the above, the *feasibility* of reaching the optimal allocation has been proved in our AAMAS-2003 paper.

Conclusions

- We have proposed a distinction of different *aspects of complexity* of negotiating socially optimal allocations of resources:
 - communication complexity of reaching a socially optimal allocation (in terms of individual deals);
 - communication complexity of negotiating a single deal;
 - expressiveness of the agent communication language;
 - computational complexity of the next-move problem.
- We have given upper bounds on the *shortest* and the *longest path* to a socially optimal allocation for four variants of our framework.
- <u>Future work:</u> address the other three aspects of complexity; devise concrete negotiation protocols; analyse the complexity of multilateral trading for different notions of social optimality and different local acceptability criteria ("welfare engineering"); ...