Reduction of Economic Inequality in Combinatorial Domains

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

Talk Outline

Economic inequality . . .

- is a relevant criterion for multiagent resource allocation.
- gives rise to interesting research questions.
- can be handled using integer programming.

In this talk I will show you . . .

- some of the basic definitions for economic inequality.
- a curious complexity result.

The Model

Finite sets of agents $\mathcal{N} = \{1, \dots, n\}$ and of indivisible goods \mathcal{G} .

Each good needs to be allocated to exactly one agent.

Any given allocation A induces a utility of $u_i(A)$ for agent $i \in \mathcal{N}$.

So any allocation A induces a *utility vector* $(u_1(A), \ldots, u_n(A))$.

We want a *fair* allocation, i.e., one that minimises *inequality* . . .

How do you define inequality?

For instance: which is more equal, (1, 2, 7, 7, 8) or (1, 3, 5, 6, 10)?

The Pigou-Dalton Principle

For two agents, it is perfectly clear what "more equal" means.

We can use this insight + a weak efficiency requirement . . .

A move from allocation A to A' is called a $Pigou-Dalton\ transfer$ if there are two agents $i, j \in \mathcal{N}$ such that:

- Only the bundles held by i and j change.
- Inequality reduces: $|u_i(A) u_j(A)| > |u_i(A') u_j(A')|$
- Total utility does not reduce: $u_i(A) + u_j(A) \leq u_i(A') + u_j(A')$

The *Pigou-Dalton Principle* postulates that any measure of fairness should value a Pigou-Dalton transfer as a (weak) improvement.

 $\underline{\text{But:}}$ not yet enough to rank (1,2,7,7,8) and (1,3,5,6,10) . . .

A.C. Pigou. Wealth and Welfare. Macmillan, London, 1912.

H. Dalton. The Measurement of the Inequality of Incomes. Econ. Journal, 1920.

The Lorenz Curve

Ideally, every single agent enjoys exactly the same utility.

The Lorenz curve is a way to visualise how far we are from this ideal.

Let $u^*(A)$ be the *ordered utility vector* of allocation A. So this is the total utility of the k poorest agents:

$$L_k(A) = \sum_{i=1}^k u_i^*(A).$$

The vector $(L_1(A), \ldots, L_n(A))$ is called the *Lorenz curve* of A.

But: the Lorenz curves for (1, 2, 7, 7, 8) and (1, 3, 5, 6, 10) cross ...

M.O. Lorenz. Methods of Measuring the Concentration of Wealth. *Publications of the American Statistical Association*, 9(70):209–219, 1905.

Inequality Indices

An *inequality index* is a function mapping allocations to [0,1], with 0 representing perfect equality and 1 representing complete inequality.

Two popular indices:

- Gini index = area between line of perfect equality and Lorenz curve (divided by a suitable normalisation factor)
- Robin Hood index = maximal distance between line of perfect equality and Lorenz curve (also normalised)

Now we can discern (1, 2, 7, 7, 8) and (1, 3, 5, 6, 10): the former is better according to Gini, the latter according to Robin Hood.

The Pigou-Dalton Problem

We are interested in the algorithmic challenges raised by these notions of inequality. Note that hardness will depend on the *language* \mathcal{L} used to encode the utility functions.

PIGOU-DALTON IMPROVEMENT (PIGDAL)

Instance: Utility functions in \mathcal{L} , allocation A, partial allocation P.

Question: Is there an $A' \supseteq P$ s.t. (A, A') is a Pigou-Dalton transfer?

Easy results from the paper:

- PIGDAL is (at least) NP-hard for the OR-language
 But: OR is a pathological language making everything intractable
- PIGDAL is polynomial for the XOR-language
 But: XOR is representationally highly wasteful

What about weighted goal languages (compact and not pathological)? Next: the simplest case (additive utility functions) . . .

Pigou-Dalton for Additive Utilities

A compact way of representing an *additive* utility function is to list the *weight* of each good. How hard is PIGDAL for this language?

Take the special case of two agents with identical utility functions.

Then finding a Pigou-Dalton transfer with resulting inequality < K is equivalent to the well-known NP-complete Partition problem:

PARTITION

Instance: $(w_1, \ldots, w_m) \in \mathbb{N}^m$, $K \in \mathbb{N}$.

Question: Is there a set $S \subseteq \{1, \ldots, m\}$ s.t. $|\sum_{i \in S} w_i - \sum_{i \notin S} w_i| < K$?

But here we are given a partition and need to find a *better partition*. Sounds just as hard, but is it?

- If the initial partition is very bad, finding a better one is easy.
- If the initial partition is pretty good, maybe this helps?

Best Known Result

Proposition 1 PIGDAL \notin P for additive utilities, unless NP = coNP.

Proof: Recall that PIGDAL = BETTER PARTITION. Use the latter.

Fact: No Perfect Partition (with $\Delta = 0$) is coNP-hard.

For contradiction: assume *poly-time* ALG solves BETTER PARTITION.

Show that No Perfect Partition \in NP:

- Certificate = best possible (but not perfect) partition
- Verification: use ALG to check no improvement possible ✓

Hence, there exists a coNP-hard problem in NP.

Thus: $coNP \subseteq NP$, which means coNP = NP. \checkmark

Last Slide

- Main message: Economic inequality measures are relevant fairness criteria for work in multiagent systems. *Use them!*
- Contributions of the paper:
 - Adaptation of standard definitions form economics to the model of indivisible goods favoured in our domain
 - Complexity results for some relevant questions for certain preference representation languages
 - Modular approach to Lorentz improvements and inequality index optimisation for various representation languages in IP
- Research opportunities:
 - Complexity: several open questions
 - Algorithms: should get implemented and tested