Rationalisation of Profiles of Abstract Argumentation Frameworks

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

joint work with Stéphane Airiau, Elise Bonzon,
Nicolas Maudet, and Julien Rossit

Motivation

Central question in MAS research is how to aggregate diverse "views" of several agents. Also relevant: what diversity is actually possible?

We consider this second, less commonly asked question:

- we model "views" as abstract argumentation frameworks
- individual view is mix of "facts" and "preferences"
- can we *rationalise* diverse observations by disentangling them?

Talk Outline

- Background: value-based variant of abstract argumentation
- Concept: formal definition of the *rationalisability problem*
- Results: single-agent case and multiagent case

Value-Based Argumentation

An argumentation framework $AF = \langle Arg, \rightarrow \rangle$ consists of a finite set of arguments Arg and a binary attack-relation \rightarrow .

An audience-specific value-based AF $\langle Arg, \rightarrow, Val, val, \geqslant \rangle$ consists of an AF $\langle Arg, \rightarrow \rangle$, a labelling $val: Arg \rightarrow Val$ of arguments with values, and a (reflexive and transitive) preference order \geqslant on Val.

Argument A defeats B $(A \Rightarrow B)$ if $A \rightarrow B$ but $val(B) \not> val(A)$. Note that $\langle Arg, \Rightarrow \rangle$ is itself just another AF.

P.M. Dung. On the Acceptability of Arguments and its Fundamental Role in NMR, LP and n-Person Games. *Artificial Intelligence*, 77(2):321–358, 1995.

T.J.M. Bench-Capon. Persuasion in Practical Argument Using Value-Based Argumentation Frameworks. *Journal of Logic and Computation*, 13(3):429–448, 2003.

The Rationalisability Problem

Given n agents and a profile of AF's $(\langle Arg_1, \rightleftharpoons_1 \rangle, \ldots, \langle Arg_n, \rightleftharpoons_n \rangle)$ the rationalisability problem asks whether there exist:

- ullet a master attack-relation ullet on $Arg = Arg_1 \cup \cdots \cup Arg_n$
- ullet a set of values Val and a value-labelling val: Arg o Val
- a profile of preference orders $(\geqslant_1,\ldots,\geqslant_n)$

such that $A \Longrightarrow_i B \text{ iff } A \rightharpoonup B \text{ but } val(B) \not >_i val(A) \text{ [for all } i, A, B].$

We may also wish to impose certain constraints on allowed solutions.

Example: Single-Agent Case

Let $Arg = \{A, B, C\}$. Suppose the master attack-relation \rightarrow is fixed.

observed defeat-relation ⇒ fixed master attack-relation →

Can you rationalise \Rightarrow in terms of \rightarrow using . . .

- up to *two* values?
- up to *three* values?
- up to *three* values and a *complete* preference order?

Results

Single-Agent Case

- alway rationalisable if *no constraints*
- easy-to-check characterisation if master *attack*-relation → given
- polynomial algorithm if $|Val| \le k$ and $complete \ge required$ [but complexity is open problem for possibly $incomplete \ge l$]

Multiagent Case

- identified certain conditions for decomposability (⇒ polynomial)
- rationalisability is *NP-complete* if $|Val| \le k$ required [for $k \ge 3$]
 - restriction to *complete* \geq_i 's makes no difference
 - open problem in case we require $Arg_1 = \cdots = Arg_n$
 - polynomial for $k \leq 2$ [not in paper] and |Arg| k constant

Last Slide

We have introduced the *rationalisability problem* for a given profile of argumentation frameworks, one for each agent in a multiagent system:

- identified various cases that admit *polynomial algorithms*
- but multiagent case with bound on values is *NP-complete*
- several open problems regarding complexity

Definition of the rationalisability problem in terms of Bench-Capon's value-based argumentation frameworks, but basic idea is general.

Possible application scenarios:

- to determine relevant profiles for research on aggregating AF's
- if rationalisable, we can use preference aggregation instead
- to spot inconsistencies on online debating platforms