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Talk Outline

I will try to demonstrate how the AI technique of SAT solving can be

used for the axiomatic analysis of matching mechanisms.

• Model: one-to-one matching

• Preservation Theorem for axioms expressed in a formal language

• Approach to proving impossibility theorems via SAT solving

• Application: two impossibility theorems for matching

U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Im-

possibilities for Universal Axioms. Proc. 34th AAAI Conference on AI, 2020.
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The Model: One-to-One Matching

Two groups of agents: Ln = {`1, . . . , `n} and Rn = {r1, . . . , rn}.
Each agent ranks all the agents on the opposite side of the market.

Need mechanism to return one-to-one matching given such a profile.

Examples: job markets, marriage markets, . . .

Would like a mechanism with good normative properties (axioms):

• Stability : no `i and rj prefer one another over assigned partners

• Strategyproofness: best strategy is to truthfully report preferences

• Fairness: (for example) no advantage for one side of the market

Gale-Shapley (1962): stable (3); strategyproof for left side (3) but

not right side (7) of the market; unfair advantage for left side (7).

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage. Amer-

ican Mathematical Monthly, 69:9–15, 1962.
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Formal Language for Axioms

Would like to have formal language with clear semantics (i.e., a logic)

to express axioms, to be able to get results for entire families of axioms.

First-order logic with sorts, one for profiles and one for agent indices,

with these basic ingredients:

• p . (i, j) — in profile p, agents `i and rj will get matched

• j �l
p,i j

′ — in profile p, agent `i prefers rj to rj′ (also for r)

• topl
p,i = j — in profile p, agent `i most prefers rj (also for r)

• p ∼l
i p
′ — profiles p and p′ are `i-variants (also for r)

• p� p′ — swapping sides in profile p yields profile p′

• ∀p / ∃p and ∀n / ∃n — quantifiers for variables of two sorts
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Example

∀pp.∀pp′.∀ni.∀nj.∀nj′ .
[
(j �l

p,i j
′ ∧ p ∼l

i p
′)→ ¬(p . (i, j′) ∧ p′ . (i, j))

]
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The Preservation Theorem

Call a mechanism top-stable if it always matches all mutual favourites.

Call an axiom universal if it can be written in the form ∀~x.ϕ(~x).

Theorem 1 Let µ+ be a top-stable mechanism of dimension n that

satisfies a given set Φ of universal axioms. If n > 1, then there also

exists a top-stable mechanism µ of dimension n− 1 that satisfies Φ.

Proof idea: Construct larger profile in which extra agents most prefer

each other and are least liked by everybody else.

Corollary: enough to prove impossibility theorems for smallest n!

Ulle Endriss 6



Analysis of Matching Mechanisms via SAT Solving CMID-2020

Counterexample

Preservation Theorem might look trivial. Doesn’t this always hold?

No: some axioms we can satisfy for large but not for small domains.

Suppose we want to design a mechanism under which at least one

agent in each group gets assigned to their most preferred partner:

∀pp.∃ni.∀nj.[ (topl
p,i = j) → (p . (i, j)) ] ∧

∀pp.∃nj.∀ni.[ (topr
p,j = i) → (p . (i, j)) ]

This is not universal! Mechanism exists for n = 3 but not for n = 2.
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Proving Impossibility Theorems

Suppose we want to prove an impossibility theorem of this form:

“for n ≥ k, no matching mechanism satisfies all the axioms in Φ”

Our Preservation Theorem permits us to proceed as follows:

• Check all axioms in Φ indeed are universal axioms.

• Check Φ includes (or implies) top-stability.

• Express all axioms for special case of n = k in propositional CNF .

• Using a SAT solver , confirm that this CNF is unsatisfiable.

• Using an MUS extractor , find a short proof of unsatisfiability.

For example, stability for n = 3 can be expressed in CNF like this:∧
p∈R3!3×L3!3

∧
i∈{1,2,3}

∧
j∈{1,2,3}

∧
i′ s.t. p has
`i�rj

`
i′

∧
j′ s.t. p has
rj�`i

r
j′

(
¬xp.(i,j′) ∨ ¬xp.(i′,j)

)
Remark: This is a conjunction of 419,904 clauses (big, yet manageable).
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Application: A Variant of Roth’s Theorem

Recall this classic result:

Theorem 2 (Roth, 1982) For n ≥ 2, no matching mechanism for

incomplete preferences is both stable and two-way strategyproof.

Remark: In our model (with complete preferences) true only for n ≥ 3.

We can use our approach to prove this stronger variant:

Theorem 3 For n ≥ 3, no matching mechanism is both top-stable

and two-way strategyproof (even in our model).

By the Preservation Theorem, we are done if the claim holds for n = 3.

SAT solver says it does, and MUS provides human-readable proof (↪→).

A.E. Roth. The Economics of Matching: Stability and Incentives. Mathematics

of Operations Research, 7:617–628, 1982.
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Proof of Base Case
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Application: Stability vs. Gender-Indifference

Call a mechanism gender-indifferent if swapping the two sides of the

market (“genders”) yields the corresponding swap in the outcome:

∀pp.∀pp′.∀ni.∀nj . [ (p� p′) → ( p . (i, j) → p′ . (j, i) ) ]

Bad news:

Theorem 4 For n ≥ 3, there exists no matching mechanism that is

both stable and gender-indifferent.

Here the MUS extractor finds a particularly simple proof: it identifies a

“swap-symmetric” profile for which there exists no admissible outcome

(two matchings are ruled out by G-I and the other four by stability).

F. Masarani and S.S. Gokturk. On the Existence of Fair Matching Algorithms.

Theory and Decision, 26(3):305–322, 1989.
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Last Slide

By the Preservation Theorem, for top-stable mechanisms and universal

axioms, proving impossibilities can be automated. Specific results:

• Impossible to get top-stability and two-way strategyproofness.

• Impossible to get stability and gender-indifference.

Future potential of SAT for economic theory beyond impossibilities:

axiom independence, designing mechanisms, outcome justification, . . .

[
tinyurl.com/satmatching

]
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