Welfare Engineering in Multiagent Systems

Ulle Endriss¹ and Nicolas Maudet²

- ¹ Department of Computing, Imperial College London Email: ue@doc.ic.ac.uk
 - ² LAMSADE, Université Paris-Dauphine Email: maudet@lamsade.dauphine.fr

Talk Overview

- Resource allocation by negotiation in multiagent systems definition of our basic negotiation framework
- Behaviour profiles of individual agents how do agents decide whether or not to accept a deal?
- Measuring social welfare

 what are optimal outcomes from the viewpoint of society?
- Welfare engineering

 how can we make agents negotiate socially optimal outcomes?
- Results for and discussion of concrete notions of social welfare utilitarianism, egalitarianism, Lorenz optimality, ...
- Conclusion

Resource Allocation by Negotiation

- Finite set of agents A and finite set of resources R.
- An allocation A is a partitioning of \mathcal{R} amongst the agents in \mathcal{A} . Example: $A(i) = \{r_3, r_7\}$ — agent i owns resources r_3 and r_7
- Every agent $i \in \mathcal{A}$ has a utility function $u_i : 2^{\mathcal{R}} \to \mathbb{R}$. Example: $u_i(A) = u_i(A(i)) = 577.8$ — agent i is pretty happy
- Agents may engage in negotiation to exchange resources in order to benefit either themselves or society as a whole.
- A deal $\delta = (A, A')$ is a pair of allocations (before/after). An agent may or may not find a particular deal acceptable.

Possible Agent Behaviour Profiles

An agent i may or may not accept a particular deal $\delta = (A, A')$. Here are some examples for possible acceptability criteria:

rational (selfish) agent	$u_i(A) < u_i(A')$
rational but cooperative agent	$u_i(A) \le u_i(A')$
rational and demanding agent	$u_i(A) + 10 < u_i(A')$
masochist	$u_i(A) > u_i(A')$

disciple of agent guru	$u_{guru}(A) < u_{guru}(A')$
team worker (for team T)	

Example for a Protocol Restriction

no more than two agents to	$ \mathcal{A}^{\delta} \leq 2 \text{ where}$
be involved in any one deal	$\mathcal{A}^{\delta} = \{ i \in \mathcal{A} \mid A(i) \neq A'(i) \}$

Social Welfare

A social welfare ordering formalises the notion of a society's "preferences" given the preferences of its members (the agents).

▶ The *utilitarian* social welfare $sw_u(A)$ of an allocation of resources A is defined as follows:

$$sw_u(A) = \sum_{i \in \mathcal{A}} u_i(A)$$

That is, anything that increases average (and thereby overall) utility is taken to be socially beneficial.

▶ Under the *egalitarian* point of view, on the other hand, social welfare is tied to the welfare of a society's weakest member:

$$sw_e(A) = min\{u_i(A) \mid i \in A\}$$

Utilitarianism versus Egalitarianism

- In the multiagent systems literature the utilitarian viewpoint (i.e. social welfare = sum of individual utilities) is usually taken for granted.
- In philosophy/sociology/economics not.
- John Rawls' "veil of ignorance" (A Theory of Justice, 1971):

 | Without knowing what your position in society (class, race, sex, . . .)
 | will be, what kind of society would you choose to live in?
- Reformulating the veil of ignorance for multiagent systems:

 If you were to send a software agent into an artificial society to negotiate on your behalf, what would you consider acceptable principles for that society to operate by?
- Conclusion: worthwhile to investigate egalitarian (and other) social principles also in the context of multiagent systems.

Welfare Engineering

- Different applications induce different measures of social welfare for artificial societies:
 - "pure" e-commerce \longrightarrow utilitarian
 - sharing of jointly owned resources → egalitarian
 - **—** ...
- Given some social welfare ordering, we want to "engineer" appropriate (local) behaviour profiles for individual agents to ensure convergence towards a (globally) optimal state.

Utilitarian and Egalitarian Systems

Previous results (Sandholm 1998, E. et al. 2003):

- Cooperative rationality (no agent accepts a loss; one agent requires a profit) is an appropriate behaviour profile in societies where Pareto optimal allocations are desirable.
- Individual rationality (every agents requires a profit—after compensatory payments) is an appropriate behaviour profile in societies where maximising utilitarian social welfare is desired.
- Equitability (local improvement of minimal utility) is an appropriate behaviour profile in egalitarian agent societies.

Our "sufficiency theorems" typically have the following form:

 \underline{Any} sequence of deals conforming to behaviour profile X will eventually result in an allocation of resources that is optimal according to the social welfare ordering Y.

Necessity of Complex Deals

In general, very complex deals (involving any number of resources or agents) may be *necessary* to guarantee optimal outcomes (given the agent behaviour profiles from before).

Improved Results for Restricted Domains

For example (E. $et\ al.\ 2003$):

• Cooperatively rational one-resource-at-a-time deals suffice to guarantee maximal utilitarian welfare in 0-1 scenarios (single resources have utility 0 or 1 and utility functions are additive).

Note that we have no such results for egalitarian agent societies.

Lorenz Optimality

We are now going to look at a compromise between the utilitarian and the egalitarian definitions of social welfare . . .

Technical Preliminaries

Every allocation A gives rise to an ordered utility vector $\vec{u}(A)$: compute $u_i(A)$ for all $i \in A$ and present results in increasing order.

Example: $\vec{u}(A) = \langle 0, 5, 20 \rangle$ means that the weakest agent enjoys utility 0, the strongest utility 20, and the middle one utility 5.

Lorenz Optimal Allocations of Resources

Let A and A' be allocations of resources for a society with n agents. Then A is Lorenz dominated by A' iff we have

$$\sum_{i=1}^k \vec{u}_i(A) \leq \sum_{i=1}^k \vec{u}_i(A')$$

for all $k \in \{1..n\}$ and that inequality is strict in at least one case.

Discussion:

- Note that for k = 1 that sum is equivalent to the *egalitarian* and for k = n to the *utilitarian* social welfare.
- What kind of local behaviour profile would guarantee Lorenz optimal negotiation outcomes?

Negotiating Lorenz Optimal Allocations

We can prove a new sufficiency theorem:

• In 0-1 scenarios, any sequence of simple Pareto-Pigou-Dalton deals will eventually result in a Lorenz optimal outcome.

The class of "simple Pareto-Pigou-Dalton deals" has the following features (see paper for details):

- Any deal involves only two agents and one resource.
- Any deal is either inequality-reducing but mean-preserving (so-called *Pigou-Dalton transfer*) or *cooperatively rational*.

Note that seemingly more general results from the economics literature do not apply to our discrete negotiation spaces.

Elitist Agent Societies

We may define the *elitist* social welfare $sw_{el}(A)$ of an allocation of resources A as follows:

$$sw_{el}(A) = max\{u_i(A) \mid i \in A\}$$

Discussion:

- Appropriate if it is in the system designer's interest that at least one agent succeeds (whatever happens to the rest).
- Technically similar to the egalitarian case.

Reducing Envy

An allocation of resources A is called *envy-free* iff the following holds for all pairs of agents $i, j \in A$:

$$u_i(A(i)) \geq u_i(A(j))$$

Discussion:

- Envy-freeness would be desirable where self-interested agents are expected to collaborate over longer periods of time.
- Note that envy-free allocations do not always exist.
- Still, we could rate social welfare in terms of the number of agents without envy (or the overall "degree" of envy).
- However, it is not possible to define a *local* acceptability criterion that ensures envy reduction, because a deal could always affect the envy of agents not involved in it.

Conclusion

- We have argued that a whole range of social welfare orderings are relevant to multiagent systems (not just utilitarian/Pareto).
- We have put forward welfare engineering as the process of finding agent behaviour profiles that ensure socially optimal negotiation outcomes for a given social welfare ordering.
- We have put previous results for utilitarian and egalitarian agent societies into the context of this general perspective.
- We have proved a new result for artificial societies where Lorenz optimal outcomes are desirable.
- We have also discussed *elitist agent societies* and the idea of reducing envy in an agent society.