Protocol Conformance for Logic-based Agents

Ulle Endriss¹, Nicolas Maudet², Fariba Sadri¹ and Francesca Toni¹

- Department of Computing, Imperial College London Email: {ue,fs,ft}@doc.ic.ac.uk
 - ² School of Informatics, City University, London Email: maudet@soi.city.ac.uk

Motivation

- Communication is a central issue in multiagent systems.
- A "conventional" *protocol* specifies the range of possible follow-ups available to each agent during a dialogue.
- By referring to a protocol (rather than the agents' mental states) we can give a "social" semantics to the interactions occurring in a multiagent system.
- In open agent societies, public protocols and agent's private strategies may not always match \Rightarrow conformance checking.
- We propose a *logic-based representation* for protocols which facilitates checking an agent's conformance to a given protocol a *priori*, on the basis of the agent's (logic-based) specification.

Talk Outline

- Protocols as finite state machines
- Protocols as sets of integrity constraints
- Levels of conformance to a protocol
- Logic-based agents
- Checking and enforcing conformance
- Conclusion and future work

Automata-based Protocol Representation

The continuous update protocol (Pitt & Mamdani, IJCAI-1999):

We call a dialogue move P legal wrt. a protocol \mathcal{P} and a given dialogue state Q iff there exists a state Q' such that the automaton's transition function maps the pair (Q, P) to Q'.

Logic-based Protocol Representation

The same protocol, expressed as two sets of integrity constraints (each corresponding to one of the two subprotocols):

$$\mathcal{P}_A: START(T) \Rightarrow inform(T+1)$$

$$acknowledge(T) \Rightarrow inform(T+1) \lor end(T+1)$$

$$end(T) \Rightarrow STOP(T+1)$$

$$\mathcal{P}_B: inform(T) \Rightarrow acknowledge(T+1) \lor end(T+1)$$

$$end(T) \Rightarrow STOP(T+1)$$

Shallow Protocols

• In general, our protocol rules have the following form:

$$P(T) \Rightarrow P'_1(T+1) \vee P'_2(T+1) \vee \cdots \vee P'_n(T+1)$$

We call the dialogue moves on the righthand side of a protocol constraint *correct answers* wrt. the *expected input* given on the lefthand side.

- We call protocols that can be represented by means of our integrity constraints, with a single "trigger" on the lefthand side, *shallow* protocols.
- Many automata-based protocols in the literature are either shallow or could be made shallow by renaming only a small number of transitions, i.e. our very simple representation formalism is appropriate.

Levels of Conformance

We may distinguish three levels of conformance to a given communication protocol \mathcal{P} :

- An agent is weakly conformant to \mathcal{P} iff it never utters any illegal dialogue moves (wrt. \mathcal{P}).
- An agent is exhaustively conformant to \mathcal{P} iff it is weakly conformant to \mathcal{P} and utters at least some dialogue move whenever required to do so by \mathcal{P} .
- An agent is robustly conformant to \mathcal{P} iff it is exhaustively conformant to \mathcal{P} and for any illegal dialogue move received from another agent it utters a special dialogue move indicating this violation (e.g. not-understood).

Logic-based Agents

Sadri et al. (ATAL-2001) have introduced a class of agents based on abductive logic programming.

In this framework, an agent's *communication strategy* is a set of integrity constraints of the following form:

$$P(T) \wedge C \Rightarrow P'(T+1)$$

On receiving dialogue move P at time T, an agent implementing this rule would utter P' at time T+1, provided condition C is entailed by its (private) knowledge base.

Checking Conformance

When *checking* conformance to a given protocol \mathcal{P} , we may distinguish two concepts:

- checking conformance of an actual dialogue at runtime (easy)
- checking conformance of an agent *a priori*, on the basis of the agent's specification (hard)

The latter may also involve problematic *privacy* issues.

Response Space

Abstracting from the private conditions C referred to in an agent's strategy S, we define its response space S^* as follows:

$$\{P(T) \Rightarrow \bigvee \{P'(T+1) \mid [P(T) \land C \Rightarrow P'(T+1)] \in \mathcal{S}\} \mid P \in \mathcal{L}\}$$
 with $\bigvee \{\} = \bot$

Here's a simple example:

$$\mathcal{S} = \{inform(T) \land happy \Rightarrow acknowledge(T+1), \\ inform(T) \land unhappy \Rightarrow end(T+1)\}$$

$$\mathcal{S}^* = \{inform(T) \Rightarrow acknowledge(T+1) \lor end(T+1)\}$$

Checking Conformance a priori

We obtain a useful criterion for weak conformance:

Theorem: An agent with response space S^* will be weakly conformant to a protocol P whenever $S^* \models P$.

Note that checking *exhaustive* conformance *a priori* is more difficult and requires reference to the agent's private knowledge . . . (see our forthcoming ESAW-2003 paper for details)

Enforcing Conformance

Checking conformance a priori may not always be possible:

- the precise protocol may not be known at design time
- checking conformance requires meta-level reasoning (theorem proving by the system designer, not by the agent itself)
- our theorem only specifies a sufficient (not a necessary) condition for conformance

Agents may simply "download" a protocol \mathcal{P} to guarantee their own conformance to it (and to avoid possible penalties):

Theorem: An agent generating its moves from a knowledge base of the form $K \cup P$ will be weakly conformant to P.

Note that enforcing *exhaustive* conformance in a meaningful manner would be impossible!

Conclusion

- Logic-based agents and protocols help bridging the gap between the *specification* and the *implementation* of multiagent systems.
- We have introduced a new *logic-based representation* formalism for communication protocols.
- Our *shallow* protocols are essentially as expressive as automata-based protocols, but checking conformance does not require access to the dialogue history.
- We have given a simple criterion for checking conformance a priori (generally a very difficult problem).
- We have shown how agents may *enforce* their own conformance at runtime (not a difficult problem) *without* requiring any additional reasoning machinery (that's the interesting bit).

Future Work

- Possible *extensions* to our protocol representation formalism:
 - more than two dialogue partners
 - concurrent communication
 - reference to past events
 - reference to the *content* of a dialogue move (rather than just the communicative act)
- To develop *concrete* interaction protocols.
 - we are particularly interested in negotiations over resources
- An agent that is known to be conformant to a given protocol is not necessarily a *competent* user of that protocol.
 - see our forthcoming ESAW-2003 paper for some initial ideas