Preference Aggregation with Restricted Ballot Languages: Sincerity and Strategy-Proofness

Ulle Endriss*, Maria Silvia Pini**, Francesca Rossi**, Brent Venable**

*Institute for Logic, Language and Computation
University of Amsterdam

**Department of Pure and Applied Mathematics
University of Padova

Problem

Two common assumptions in voting theory:

- Voters have preferences that are total orders over candidates.
- Voters vote by submitting a structure just like their preferences, truthfully or not (ballots and preferences have the same structure).

But this is sometimes inappropriate:

- For lack of information or processing resources, voters may be *unable to rank* all candidates (in their mind or on the ballot sheet).
- To reduce complexity of communication, we may want to design voting rules that work with ballots of *bounded size*.
- For approval voting, ballots cannot be encoded using total orders.

Talk Outline

- Our model: preferences and ballots can be different structures
- Sincerity:
 - Important notion of truthfulness can become meaningless
 - Replace it with sincerity: as truthful as possible
 - Three possible definitions compared
- Strategy-proofness:
 - Definition of strategy-proofness in terms of sincerity
 - Two positive results: some rules are strategy-proof
 - Computational considerations
- Conclusion

Our Model

Preferences \mathcal{P} could be any set of

- preorders (reflexive and transitive relations) over C, i.e., allowing for strict rankings, indifferences, and incomparabilities;
- including *partial* (no indifferences), *weak* (no incomparabilities) and *total orders* (only strict rankings).

The ballot language \mathcal{B} could also be any set of

 preorders — except that a ballot should not force a particular strict ranking on any given pair of candidates.

In the standard model, $\mathcal{P} = \mathcal{B} = \text{all total orders over } \mathcal{C}$.

A voting procedure is a function $f: \mathcal{B}^n \to 2^{\mathcal{C}}$.

Sincerity

<u>Problem:</u> Given a ballot language \mathcal{B} and a true preference relation p, voting *truthfully* may be *impossible* in this model (if $p \notin \mathcal{B}$).

Question: What are the *sincere* ballots $b \in \mathcal{B}$ wrt. p?

Three possible definitions:

- ▶ Ballot $b \in \mathcal{B}$ is minimally sincere wrt. p [$b \in \text{Sin}_{\mathcal{B}}^{\min}(p)$] if b and p do not strictly rank two candidates in opposite ways.
- ▶ Ballot $b \in \mathcal{B}$ is qualitatively sincere wrt. p [$b \in \text{Sin}_{\mathcal{B}}^{\text{qual}}(p)$] if agreement between b and p is maximal wrt. set-inclusion.
- ▶ Ballot $b \in \mathcal{B}$ is quantitatively sincere wrt. p [$b \in \text{Sin}_{\mathcal{B}}^{\text{quan}}(p)$] if agreement between b and p is maximal wrt. cardinality.

Example

Suppose your *true* preferences are A > B > C > D.

5 of the 15 syntactically valid approval ballots:

According to our definitions —

- Ballots (1)–(4) are minimally sincere.
 This corresponds to the standard notion of sincerity for AV.
- Ballots (1)–(3) are qualitatively sincere.
 As above, but now excluding the abstention ballot.
- Only ballot (2) is *quantitatively sincere* (most agreements).

Properties

► There is a natural ordering over our notions of sincerity, and it is always *possible* to be sincere:

Theorem 1 Let p be a preorder and let \mathcal{B} be a ballot language. Then $\operatorname{Sin}_{\mathcal{B}}^{\min}(p) \supseteq \operatorname{Sin}_{\mathcal{B}}^{\operatorname{qual}}(p) \supseteq \operatorname{Sin}_{\mathcal{B}}^{\operatorname{quan}}(p) \supset \emptyset$.

▶ If you *can* be truthful, then this is the *only* way to be sincere:

Theorem 2 If $\mathcal{B} \supseteq \mathcal{P}$, then $\operatorname{Sin}_{\mathcal{B}}^{\operatorname{qual}}(p) = \operatorname{Sin}_{\mathcal{B}}^{\operatorname{quan}}(p) = \{p\}$ for all $p \in \mathcal{P}$. (Does not apply to minimal sincerity though.)

▶ The three notions *coincide* for the standard form of balloting:

Theorem 3 If \mathcal{B} is the set of all total orders, then we have $\operatorname{Sin}_{\mathcal{B}}^{\min}(p) = \operatorname{Sin}_{\mathcal{B}}^{\operatorname{qual}}(p) = \operatorname{Sin}_{\mathcal{B}}^{\operatorname{quan}}(p)$ for all preorders p.

Lifting Preferences

<u>Goal</u>: we want to define a voting procedure as strategy-proof if it never gives voters an *incentive* to not cast a sincere ballot . . .

<u>But:</u> a voting procedure can have more than one winner. Hence, when voters strategise, they do so with respect to <u>sets of winners</u>. So we need to *lift their preferences* from candidates to sets of candidates.

Example: the Gärdenfors axioms define a partial order \triangleleft_p on $2^{\mathcal{C}} \setminus \{\emptyset\}$ (nonempty sets of candidates) given a preorder p on \mathcal{C} (candidates).

- $S \cup \{x\} \triangleleft_p S$ whenever $x \prec_p y$ for all $y \in S$
- $S \triangleleft_p S \cup \{y\}$ whenever $x \prec_p y$ for all $x \in S$

Generalised Strategy-Proofness

Fix possible preferences \mathcal{P} and ballot language \mathcal{B} .

Fix notion of sincerity $Sin_{\mathcal{B}}: \mathcal{P} \to 2^{\mathcal{B}}$ and lifting \triangleleft_p for all $p \in \mathcal{P}$.

▶ A voting procedure $f: \mathcal{B}^n \to 2^{\mathcal{C}}$ is *g-strategy-proof* if, for all voters i with *true preference* $p_i \in \mathcal{P}$ and for all ballot vectors $b \in \mathcal{B}^n$, there exists a sincere ballot $b_i' \in \operatorname{SIN}_{\mathcal{B}}(p_i)$ such that $f(b_{-i}, b_i') \not \lhd_{p_i} f(b)$.

Results

For all results, we assume that the Gärdenfors lifting \triangleleft_p is used.

Theorem 4 Approval voting is g-strategy-proof wrt. qualitative (and minimal, but not quantitative) sincerity (for total order preferences).

Theorem 5 For 2-level preferences, all of plurality, Borda, and approval voting are g-strategy-proof wrt. quantitative sincerity.

The latter generalises to a wide range of procedures ("longest-path voting with neutral ballot languages"), at least for minimal sincerity.

Computational Complexity

How hard is it to be sincere? Degrees of g-strategy-proofness:

- ullet Blind g-strategy-proofness: can play optimally and sincerely without requiring any information about other ballots O(1) Example: plurality with just two candidates
- Tractable g-strategy-proofness: need to know ballots (or similar), but can compute a sincere optimal ballot in polynomial time Example: Borda for 2-level preferences (theorem in paper)
- Intractable g-strategy-proofness: need to know ballots (or similar)
 and finding a sincere optimal ballot is computationally intractable
 (No known examples.)

Conclusion

- Dropping assumption that preferences are total orders and ballots are just reported preferences leads to an interesting model.
- Proposed generalised definition of strategy-proofness and showed that Gibbard-Satterthwaite-like theorems are less prevalent here.
- Also: some results on comparing different notions of sincerity + starting point for complexity-theoretic investigations of the model.