Weighted Propositional Formulas for Cardinal Preference Modelling

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam

joint work with Jérôme Lang (IRIT, Toulouse) and Yann Chevaleyre (LAMSADE, Paris-Dauphine)

Main Question

What are appropriate languages for representing *preferences* in *combinatorial* domains? Can *logic* help?

Talk Overview

- Problem: Utility Functions in Combinatorial Domains
- Languages for Representing Utility Functions:
 - "Classical" Utility Functions
 - Weighted Propositional Formulas
- Expressive Power and Correspondence Results
- Comparative Succinctness
- Complexity Issues
- Conclusion and Future Work

Utility Functions in Combinatorial Domains

Let X be a finite set. A *utility function* over the domain X is a mapping from X to the reals:

$$u:X\to\mathbb{R}$$

Simply listing the utilities for every element of X is only feasible if X is reasonably small.

This is *not* the case if X has a combinatorial structure, as in resource allocation, multi-criteria decision making, elections of committees, . . .

- Resource allocation: set \mathcal{R} of resources \Rightarrow set $2^{\mathcal{R}}$ of bundles
- ullet General: set PS of propositional symbols \Rightarrow set 2^{PS} of models

Fortunately, actual utility functions often exhibit some sort of *structure*, and a suitable preference representation language might be able to capture that structure in a *concise* manner.

Classes of Utility Functions

A utility function is a mapping $u: 2^{PS} \to \mathbb{R}$.

- u is normalised iff $u(\{\}) = 0$.
- u is non-negative iff $u(X) \ge 0$.
- u is monotonic iff $u(X) \leq u(Y)$ whenever $X \subseteq Y$.
- u is modular iff $u(X \cup Y) = u(X) + u(Y) u(X \cap Y)$.
- u is concave iff $u(X \cup Y) u(Y) \le u(X \cup Z) u(Z)$ for $Y \supseteq Z$.
- Let $PS(k) = \{S \subseteq PS \mid \#S \leq k\}$. u is k-additive iff there exists another mapping $u': PS(k) \to \mathbb{R}$ such that (for all X):

$$u(X) = \sum \{u'(Y) \mid Y \subseteq X \text{ and } Y \in PS(k)\}$$

Also of interest: subadditive, superadditive, convex, ...

Why *k*-additive Functions?

The idea comes from fuzzy measure theory (Grabisch and others). Now also used in negotiation and combinatorial auctions.

Again, u is k-additive iff there exists a $u': PS(k) \to \mathbb{R}$ such that:

$$u(X) = \sum \{u'(Y) \mid Y \subseteq X \text{ and } Y \in PS(k)\}$$

In the context of resource allocation, the value u'(Y) can be seen as the additional benefit incurred from owning the items in Y together, i.e. beyond the benefit of owning all proper subsets.

Example: u=4.p+7.q-2.p.q+2.q.r is a 2-additive function

The k-additive form allows for a parametrisation of synergetic effects:

- 1-additive = modular (no synergies)
- |PS|-additive = general (any kind of synergies)
- ... and everything in between

Weighted Propositional Formulas

An alternative approach to preference representation is based on weighted propositional formulas . . .

A goal base is a set $G = \{(\varphi_i, \alpha_i)\}_i$ of pairs, each consisting of a consistent propositional formula $\varphi_i \in \mathcal{L}_{PS}$ and a real number α_i . The utility function u_G generated by G is defined by

$$u_G(M) = \sum \{\alpha_i \mid (\varphi_i, \alpha_i) \in G \text{ and } M \models \varphi_i\}$$

for all $M \in 2^{PS}$. G is called the *generator* of u_G .

We shall be interested in the following question:

• Are there simple restrictions on goal bases such that the utility functions they generate enjoy simple structural properties?

Restrictions

Let $H \subseteq \mathcal{L}_{PS}$ be a restriction on the set of propositional formulas and let $H' \subseteq \mathbb{R}$ be a restriction on the set of weights allowed.

Regarding formulas, we consider the following restrictions:

- A *positive* formula is a formula with no occurrence of \neg ; a *strictly positive* formula is a positive formula that is not a tautology.
- A *clause* is a (possibly empty) disjunction of literals; a k-clause is a clause of length $\leq k$.
- A *cube* is a (possibly empty) conjunction of literals; a k-cube is a cube of length $\leq k$.
- ullet A k-formula is a formula φ with at most k propositional symbols.

Regarding weights, we consider only the restriction to positive reals.

Given two restrictions H and H', let $\mathcal{U}(H,H')$ be the class of utility functions that can be generated from goal bases conforming to the restrictions H and H'.

Basic Results

Proposition 1 $\mathcal{U}(positive \ k\text{-}cubes, all)$ is equal to the class of $k\text{-}additive \ utility \ functions.$

Proposition 2 The following are also all equal to the class of k-additive utility functions: U(k-cubes, all), U(k-clauses, all), U(positive k-formulas, all) and U(k-formulas, all).

Proposition 3 U(positive k-clauses, all) is equal to the class of normalised k-additive utility functions.

Monotonic Utility

Proposition 4 $\mathcal{U}(strictly\ positive, positive)$ is equal to the class of normalised monotonic utility functions.

Example: Take the normalised monotonic function u with $u(\{p_1\}) = 2$, $u(\{p_2\}) = 5$ and $u(\{p_1, p_2\}) = 6$. We obtain the following goal base:

$$G = \{(p_1 \vee p_2, 2), (p_2, 3), (p_1 \wedge p_2, 1)\}$$

Overview of Correspondence Results

Formulas	Weights		Utility Functions
cubes/clauses/all	general	=	all
positive cubes/formulas	general	=	all
positive clauses	general	=	normalised
strictly positive formulas	general	=	normalised
k-cubes/clauses/formulas	general	=	k-additive
positive k -cubes/formulas	general	=	k-additive
positive k -clauses	general	=	normalised k -additive
literals	general	=	modular
atoms	general	=	normalised modular
cubes/formulas	positive	=	non-negative
clauses	positive	\subset	non-negative
strictly positive formulas	positive	=	normalised monotonic
positive clauses	positive	\subseteq	normalised concave monotonic

Comparative Succinctness

If two languages can express the same class of utility functions, which should we use? An important criterion is *succinctness*.

Let L and L' be two sets of goal bases. We say that L' is at least as succinct as L, denoted by $L \leq L'$, iff there exist a mapping $f: L \to L'$ and a *polynomial* function p such that:

- $G \equiv f(G)$ for all $G \in L$ (they generate the same functions); and
- $size(f(G)) \leq p(size(G))$ for all $G \in L$ (polysize reduction).

Write $L \prec L'$ (strictly less succinct) iff $L \preceq L'$ but not $L' \preceq L$.

Two languages can also be *incomparable* with respect to succinctness.

An Incomparability Result

Let $n\text{-}cubes \subseteq \mathcal{L}_{PS}$ be the restriction to cubes of length n = |PS|, containing either p or $\neg p$ for every $p \in PS$.

<u>Fact:</u> $\mathcal{U}(n\text{-}cubes, all)$ is equal to the class of all utility functions (and corresponds to the "explicit form" of writing utility functions).

Proposition 5 $\mathcal{U}(n\text{-}cubes, all)$ and $\mathcal{U}(positive\ cubes, all)$ are incomparable (in view of their succinctness).

<u>Proof:</u> The following two functions can be used to prove the mutual lack of a polysize reduction:

- $u_1(M) = |M|$ can be generated by a goal base of just n positive cubes of length 1, but we require $2^n 1$ n-cubes to generate u_1 .
- The function u_2 , with $u_2(M) = 1$ for |M| = 1 and $u_2(M) = 0$ otherwise, can be generated by a goal base of n n-cubes, but we require $2^n 1$ positive cubes to generate u_2 .

The Efficiency of Negation

Recall that both $\mathcal{U}(positive\ cubes,\ all)$ and $\mathcal{U}(cubes,\ all)$ are equal to the class of all utility functions. So which should we use?

Proposition 6 $\mathcal{U}(positive\ cubes,\ all) \prec \mathcal{U}(cubes,\ all)$. ["less succinct"]

<u>Proof:</u> Clearly, $\mathcal{U}(positive\ cubes,\ all) \preceq \mathcal{U}(cubes,\ all)$, because any positive cube is also a cube.

Now consider u with $u(\{\}) = 1$ and u(M) = 0 for all $M \neq \{\}$:

- $G = \{(\neg p_1 \land \cdots \land \neg p_n, 1)\} \in \mathcal{U}(cubes, all)$ has *linear* size and generates u.
- $G' = \{(\bigwedge X, (-1)^{|X|}) \mid X \subseteq PS\} \in \mathcal{U}(positive\ cubes,\ all)$ has exponential size and also generates u.

On the other hand, the generator of u must be *unique* if only positive cubes are allowed (start with $(\top, 1) \in G_u \dots$).

Complexity

Other interesting questions concern the complexity of reasoning about preferences. Consider the following decision problem:

Max-Utility(H, H')

Given: Goal base $G \in \mathcal{U}(H, H')$ and $K \in \mathbb{Z}$

Question: Is there an $M \in 2^{PS}$ such that $u_G(M) \geq K$?

Some basic results are straightforward:

- MAX-UTILITY(H, H') is in NP for any choice of H and H', because we can always check $u_G(M) \geq K$ in polynomial time.
- MAX-UTILITY (all, all) is NP-complete (reduction from SAT).

More interesting questions would be whether there are either (1) "large" sublanguages for which MAX-UTILITY is still polynomial, or (2) "small" sublanguages for which it is already NP-hard.

Three Complexity Results

Proposition 7 MAX-UTILITY (k-clauses, positive) is NP-complete, even for k=2.

<u>Proof:</u> Reduction from MAX2SAT (NP-complete): "Given a set of 2-clauses, is there a satisfiable subset with cardinality $\geq K$?".

Proposition 8 Max-Utility(literals, all) is in P.

<u>Proof:</u> Assuming that G contains every literal exactly once (possibly with weight 0), making p true iff the weight of p is greater than the weight of p results in a model with maximal utility. \square

Proposition 9 Max-Utility(positive, positive) is in P.

<u>Proof:</u> Making *all* propositional symbols true yields maximal utility. \Box

Conclusion and Future Work

- Comparison of two ways of modelling utility functions, used in different communities (expressive power/correspondence results).
- If two languages are equally expressive, we need to use other criteria do decide which to use (simplicity versus *succinctness*).
- This is ongoing work; we want to collect more results of this type to get a clearer picture of the general situation.
- The *complexity results* are still preliminary, but may lead somewhere interesting.
- Investigate other *aggregation functions* (than sum-taking) for weighted propositional formulas (such as *max*).
- Investigate connections to *bidding languages* for combinatorial auctions (e.g. XOR-language = max of positive cubes).