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Main Question

What are appropriate languages for representing preferences in

combinatorial domains? Can logic help?

Talk Overview

• Problem: Utility Functions in Combinatorial Domains

• Languages for Representing Utility Functions:

– “Classical” Utility Functions

– Weighted Propositional Formulas

• Expressive Power and Correspondence Results

• Comparative Succinctness

• Complexity Issues

• Conclusion and Future Work
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Utility Functions in Combinatorial Domains

Let X be a finite set. A utility function over the domain X is a

mapping from X to the reals:

u : X → R

Simply listing the utilities for every element of X is only feasible if X

is reasonably small.

This is not the case if X has a combinatorial structure, as in resource

allocation, multi-criteria decision making, elections of committees, . . .

• Resource allocation: set R of resources ⇒ set 2R of bundles

• General: set PS of propositional symbols ⇒ set 2PS of models

Fortunately, actual utility functions often exhibit some sort of

structure, and a suitable preference representation language might be

able to capture that structure in a concise manner.
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Classes of Utility Functions

A utility function is a mapping u : 2PS → R.

• u is normalised iff u({ }) = 0.

• u is non-negative iff u(X) ≥ 0.

• u is monotonic iff u(X) ≤ u(Y ) whenever X ⊆ Y .

• u is modular iff u(X ∪ Y ) = u(X) + u(Y )− u(X ∩ Y ).

• u is concave iff u(X ∪ Y )− u(Y ) ≤ u(X ∪ Z)− u(Z) for Y ⊇ Z.

• Let PS (k) = {S ⊆ PS |#S ≤ k}. u is k-additive iff there exists

another mapping u′ : PS (k) → R such that (for all X):

u(X) =
∑

{u′(Y ) | Y ⊆ X and Y ∈ PS (k)}

Also of interest: subadditive, superadditive, convex, . . .
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Why k-additive Functions?

The idea comes from fuzzy measure theory (Grabisch and others).

Now also used in negotiation and combinatorial auctions.

Again, u is k-additive iff there exists a u′ : PS (k) → R such that:

u(X) =
∑

{u′(Y ) | Y ⊆ X and Y ∈ PS (k)}

In the context of resource allocation, the value u′(Y ) can be seen as

the additional benefit incurred from owning the items in Y together ,

i.e. beyond the benefit of owning all proper subsets.

Example: u = 4.p + 7.q − 2.p.q + 2.q.r is a 2-additive function

The k-additive form allows for a parametrisation of synergetic effects:

• 1-additive = modular (no synergies)

• |PS |-additive = general (any kind of synergies)

• . . . and everything in between
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Weighted Propositional Formulas

An alternative approach to preference representation is based on

weighted propositional formulas . . .

A goal base is a set G = {(ϕi, αi)}i of pairs, each consisting of a

consistent propositional formula ϕi ∈ LPS and a real number αi.

The utility function uG generated by G is defined by

uG(M) =
∑

{αi | (ϕi, αi) ∈ G and M |= ϕi}

for all M ∈ 2PS . G is called the generator of uG.

We shall be interested in the following question:

• Are there simple restrictions on goal bases such that the utility

functions they generate enjoy simple structural properties?
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Restrictions

Let H ⊆ LPS be a restriction on the set of propositional formulas and

let H ′ ⊆ R be a restriction on the set of weights allowed.

Regarding formulas, we consider the following restrictions:

• A positive formula is a formula with no occurrence of ¬; a strictly

positive formula is a positive formula that is not a tautology.

• A clause is a (possibly empty) disjunction of literals; a k-clause is

a clause of length ≤ k.

• A cube is a (possibly empty) conjunction of literals; a k-cube is a

cube of length ≤ k.

• A k-formula is a formula ϕ with at most k propositional symbols.

Regarding weights, we consider only the restriction to positive reals.

Given two restrictions H and H ′, let U(H,H’) be the class of utility

functions that can be generated from goal bases conforming to the

restrictions H and H ′.
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Basic Results

Proposition 1 U(positive k-cubes, all) is equal to the class of

k-additive utility functions.

Proposition 2 The following are also all equal to the class of

k-additive utility functions: U(k-cubes, all), U(k-clauses, all),
U(positive k-formulas, all) and U(k-formulas, all).

Proposition 3 U(positive k-clauses, all) is equal to the class of

normalised k-additive utility functions.
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Monotonic Utility

Proposition 4 U(strictly positive, positive) is equal to the class of

normalised monotonic utility functions.

Example: Take the normalised monotonic function u with u({p1}) = 2,

u({p2}) = 5 and u({p1, p2}) = 6. We obtain the following goal base:

G = {(p1 ∨ p2, 2), (p2, 3), (p1 ∧ p2, 1)}
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Overview of Correspondence Results

Formulas Weights Utility Functions

cubes/clauses/all general = all

positive cubes/formulas general = all

positive clauses general = normalised

strictly positive formulas general = normalised

k-cubes/clauses/formulas general = k-additive

positive k-cubes/formulas general = k-additive

positive k-clauses general = normalised k-additive

literals general = modular

atoms general = normalised modular

cubes/formulas positive = non-negative

clauses positive ⊂ non-negative

strictly positive formulas positive = normalised monotonic

positive clauses positive ⊆ normalised concave monotonic
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Comparative Succinctness

If two languages can express the same class of utility functions, which

should we use? An important criterion is succinctness.

Let L and L′ be two sets of goal bases. We say that L′ is at least as

succinct as L, denoted by L � L′, iff there exist a mapping

f : L → L′ and a polynomial function p such that:

• G ≡ f(G) for all G ∈ L (they generate the same functions); and

• size(f(G)) ≤ p(size(G)) for all G ∈ L (polysize reduction).

Write L ≺ L′ (strictly less succinct) iff L � L′ but not L′ � L.

Two languages can also be incomparable with respect to succinctness.
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An Incomparability Result

Let n-cubes ⊆ LPS be the restriction to cubes of length n = |PS |,
containing either p or ¬p for every p ∈ PS .

Fact: U(n-cubes, all) is equal to the class of all utility functions (and

corresponds to the “explicit form” of writing utility functions).

Proposition 5 U(n-cubes, all) and U(positive cubes, all) are

incomparable (in view of their succinctness).

Proof: The following two functions can be used to prove the mutual

lack of a polysize reduction:

• u1(M) = |M | can be generated by a goal base of just n positive

cubes of length 1, but we require 2n−1 n-cubes to generate u1.

• The function u2, with u2(M) = 1 for |M | = 1 and u2(M) = 0
otherwise, can be generated by a goal base of n n-cubes, but we

require 2n−1 positive cubes to generate u2. 2
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The Efficiency of Negation

Recall that both U(positive cubes, all) and U(cubes, all) are equal to

the class of all utility functions. So which should we use?

Proposition 6 U(positive cubes, all) ≺ U(cubes, all). [“less succinct”]

Proof: Clearly, U(positive cubes, all) � U(cubes, all), because any

positive cube is also a cube.

Now consider u with u({ }) = 1 and u(M) = 0 for all M 6= { }:

• G = {(¬p1 ∧ · · · ∧ ¬pn, 1)} ∈ U(cubes, all) has linear size and

generates u.

• G′ = {(
∧

X, (−1)|X|) | X ⊆ PS} ∈ U(positive cubes, all) has

exponential size and also generates u.

On the other hand, the generator of u must be unique if only

positive cubes are allowed (start with (>, 1) ∈ Gu . . . ). 2
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Complexity

Other interesting questions concern the complexity of reasoning about

preferences. Consider the following decision problem:

Max-Utility(H,H’)
Given: Goal base G ∈ U(H,H’) and K ∈ Z
Question: Is there an M ∈ 2PS such that uG(M) ≥ K?

Some basic results are straightforward:

• Max-Utility(H,H’) is in NP for any choice of H and H ′,

because we can always check uG(M) ≥ K in polynomial time.

• Max-Utility(all, all) is NP-complete (reduction from Sat).

More interesting questions would be whether there are either

(1) “large” sublanguages for which Max-Utility is still polynomial,

or (2) “small” sublanguages for which it is already NP-hard.
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Three Complexity Results

Proposition 7 Max-Utility(k-clauses, positive) is NP-complete,

even for k = 2.

Proof: Reduction from Max2Sat (NP-complete): “Given a set of

2-clauses, is there a satisfiable subset with cardinality ≥ K?”. 2

Proposition 8 Max-Utility(literals, all) is in P.

Proof: Assuming that G contains every literal exactly once (possibly

with weight 0), making p true iff the weight of p is greater than the

weight of ¬p results in a model with maximal utility. 2

Proposition 9 Max-Utility(positive, positive) is in P.

Proof: Making all propositional symbols true yields maximal utility. 2
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Conclusion and Future Work

• Comparison of two ways of modelling utility functions, used in

different communities (expressive power/correspondence results).

• If two languages are equally expressive, we need to use other

criteria do decide which to use (simplicity versus succinctness).

• This is ongoing work; we want to collect more results of this type

to get a clearer picture of the general situation.

• The complexity results are still preliminary, but may lead

somewhere interesting.

• Investigate other aggregation functions (than sum-taking) for

weighted propositional formulas (such as max).

• Investigate connections to bidding languages for combinatorial

auctions (e.g. XOR-language = max of positive cubes).
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