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Plan for Today

The broad aim for today is to show how we can characterise voting

rules in terms of their properties. We review three approaches:

• Axiomatic method: to characterise a (family of) voting rule(s) as

the only one satisfying certain axioms

• Maximum likelihood estimation: to characterise a voting rule as

computing the most likely “correct” winner, given n distorted

copies of an objectively “correct” ranking (the ballots)

• Distance-based rationalisation: to characterise a voting rule in

terms of a notion of consensus (profiles where outcomes are clear)

and a notion of distance (from such a consensus profile)

Under the first approach we think of voting a a compromise-seeking

activity (so we need to be fair, etc.). Under the second approach we

think of voting as a truth-finding activity (e.g., amongst experts).
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Reminder: Formal Framework

Need to choose from a finite set X = {x1, . . . , xm} of alternatives.

Let L(X) denote the set of all strict linear orders on X. We use

elements of L(X) to model (true) preferences and (declared) ballots.

Each member of a finite set N = {1, . . . , n} of voters supplies us with

a ballot, giving rise to a profile R = (R1, . . . , Rn) ∈ L(X)n.

A voting rule (or social choice function) for N and X selects one or

more winners for every such profile:

F : L(X)n → 2X \{∅}

If |F (R)| = 1 for all profiles R ∈ L(X)n, then F is called resolute.

If F is resolute, we usually write F (R) = x? instead of F (R) = {x?}.

Notation: Write NR
x�y = {i ∈ N | (x, y) ∈ Ri} for the set of voters

who rank alternative x above alternative y in profile R.
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Axioms: Anonymity and Neutrality

Two basic fairness requirements for a voting rule F :

• F is anonymous if F (R1, . . . , Rn) = F (Rπ(1), . . . , Rπ(n)) for any

profile (R1, . . . , Rn) and any permutation π : N → N .

• F is neutral if F (π(R)) = π(F (R)) for any profile R and any

permutation π : X → X (with π extended to profiles and sets of

alternatives in the natural manner).

Thus: A is symmetry w.r.t. voters. N is symmetry w.r.t. alternatives.
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Axiom: Positive Responsiveness

A (not necessarily resolute) voting rule satisfies positive responsiveness

if, whenever some voter raises a (possibly tied) winner x? in her ballot,

then x? will become the unique winner. Formally:

I F is positively responsive if x? ∈ F (R) implies {x?} = F (R′)

for any alternative x? and any two distinct profiles R and R′

with NR
x?�y ⊆ NR′

x?�y and NR
y�z = NR′

y�z for all y, z ∈ X \{x?}.

Thus, this is a monotonicity requirement (we’ll see others later on).
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May’s Theorem

When there are only two alternatives, then all the voting rules we have

seen coincide with the simple majority rule. Good news:

Theorem 1 (May, 1952) A voting rule for two alternatives satisfies

anonymity, neutrality, and positive responsiveness if and only if that

rule is the simple majority rule.

This provides a good justification for using this rule (arguing in favour

of “majority” directly is harder than arguing for anonymity etc.).

K.O. May. A Set of Independent Necessary and Sufficient Conditions for Simple

Majority Decisions. Econometrica, 20(4):680–684, 1952.
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Proof Sketch

Clearly, the simple majority rule satisfies all three properties. X

Now for the other direction:

Assume the number of voters is odd (other case: similar) ; no ties.

There are two possible ballots: x � y and y � x.

Anonymity ; only number of ballots of each type matters.

Consider all possible profiles R. Distinguish two cases:

• Whenever |NR
x�y| = |NR

y�x|+ 1, then only x wins.

By PR, x wins whenever |NR
x�y| > |NR

y�x|. By neutrality , y wins

otherwise. But this is just what the simple majority rule does. X

• There exist a profile R with |NR
x�y| = |NR

y�x|+ 1, yet y wins.

Suppose one x-voter switches to y, yielding R′. By PR, now only

y wins. But now |NR′

y�x| = |NR′

x�y|+ 1, which is symmetric to the

earlier situation, so by neutrality x should win. Contradiction. X
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Young’s Theorem

Another seminal result (which we won’t discuss in detail here) is known

as Young’s Theorem. It provides a characterisation of the PSR’s.

The core axiom is reinforcement (a.k.a. consistency):

I F satisfies reinforcement if, whenever we split the electorate into

two groups and some alternative were to win for both groups, then

it will also win for the full electorate. More precisely:

F (R) ∩ F (R′) 6= ∅ ⇒ F (R⊕R′) = F (R) ∩ F (R′)

Young showed that F is a (generalised) positional scoring rule iff

it satisfies anonymity , neutrality , reinforcement, and a technical

condition known as continuity .

Here, “generalised” means that the scoring vector need not be decreasing.

H.P. Young. Social Choice Scoring Functions. SIAM Journal on Applied Mathe-

matics, 28(4):824–838, 1975.
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Voting as Truth-Tracking

An alternative interpretation of “voting”:

• There exists an objectively “correct” ranking of the alternatives.

• The voters want to identify the correct ranking (or winner), but

cannot tell with certainty which ranking is correct. Their ballots

reflect what they believe to be true.

• We want to estimate the most likely ranking (or winner), given

the ballots we observe. Can we use a voting rule to do this?
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Example
Consider the following scenario:

• two alternatives: x and y

• either x � y or y � x (we don’t know which and have no priors)

• 20 voters/experts with probability 75% each of getting it right

Now suppose we observe that 12/20 voters say x � y.

What can we infer, given this observation (let’s call it E)?

• Probability for E to happen in case x � y is correct:

P (E | x � y) =
(
20
12

)
· 0.7512 · 0.258

• Probability for E to happen in case y � x is correct:

P (E | y � x) =
(
20
8

)
· 0.758 · 0.2512

Thus: P (E | x � y)/P (E | y � x) = 0.754/0.254 = 81.

From Bayes and assuming uniform priors [P (x � y) = P (y � x)]:
Given E, x being better is 81 times as likely as y being better.
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The Condorcet Jury Theorem

For the case of two alternatives, the simple majority rule is the best choice

also under the truth-tracking perspective:

Theorem 2 (Condorcet, 1785) Suppose a jury of n voters need to select

the better of two alternatives and each voter independently makes the

correct decision with the same probability p > 1
2

. Then the probability that

the simple majority rule returns the correct decision increases monotonically

in n and approaches 1 as n goes to infinity.

Proof sketch: By the law of large numbers, the number of voters making

the correct choice approaches p · n > 1
2
· n. X

For modern expositions see Nitzan (2010) and Young (1995).

Writings of the Marquis de Condorcet. In I. McLean and A. Urken (eds.), Classics

of Social Choice, University of Michigan Press, 1995.

S. Nitzan. Collective Preference and Choice. Cambridge University Press, 2010.

H.P. Young. Optimal Voting Rules. J. Economic Perspectives, 9(1):51–64, 1995.
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Characterising Voting Rules via Noise Models

For n alternatives, Young (1995) shows that, if the probability of a

voter to rank a given pair correctly is p > 1
2 , then the voting rule

selecting the most likely winner coincides with the Kemeny rule.

Conitzer and Sandholm (2005) ask a general question:

I For a given voting rule F , can we design a “noise model” such

that F is a maximum likelihood estimator for the winner?

H.P. Young. Optimal Voting Rules. J. Economic Perspectives, 9(1):51–64, 1995.

V. Conitzer and T. Sandholm. Common Voting Rules as Maximum Likelihood

Estimators. Proc. UAI-2005.

E. Elkind and A. Slinko. Rationalizations of Voting Rules. In F. Brandt et al.

(eds.), Handbook of Computational Social Choice. CUP, 2016.
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The Borda Rule as a Maximum Likelihood Estimator

It is possible for the Borda rule:

Proposition 3 (Conitzer and Sandholm, 2005) If each voter

independently ranks the true winner at position k with probability
2m−k

2m−1 , then the maximum likelihood estimator is the Borda rule.

Proof: Let ri(x) be the position at which voter i ranks alternative x.

Probability to observe the actual ballot profile if x is the true winner:∏
i∈N 2m−ri(x)

(2m − 1)n
=

2
∑

i∈N m−ri(x)

(2m − 1)n
=

2BordaScore(x)

(2m − 1)n

Hence, x has maximal likelihood of being the true winner iff x has a

maximal Borda score. X

V. Conitzer and T. Sandholm. Common Voting Rules as Maximum Likelihood

Estimators. Proc. UAI-2005.

Ulle Endriss 13



Characterisation Results COMSOC 2017

Characterisation via Consensus and Distance

Recall: Rules such as The Dodgson and Young compute the “closest”

profile with a Condorcet winner and then elect that Condorcet winner.

This suggests a general method for defining a voting rule:

• Fix a class of consensus profiles: profiles in which there is a clear

(set of) winner(s). (And specify who wins.)

• Fix a metric to measure the distance between two profiles.

• This induces a voting rule: for a given profile, find the closest

consensus profile(s) and elect the corresponding winner(s).

T. Meskanen and H. Nurmi. Closeness Counts in Social Choice. In M. Braham

and F. Steffen (eds.), Power, Freedom, and Voting, Springer-Verlag, 2008.

E. Elkind and A. Slinko. Rationalizations of Voting Rules. In F. Brandt et al.

(eds.), Handbook of Computational Social Choice. CUP, 2016.
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Notions of Consensus

Four natural definitions for what constitutes a consensus profile:

• Condorcet Winner : there exists a Condorcet winner x (; x wins)

• Majority Winner : there exists an alternative x that is ranked first

by an absolute majority of the voters (; x wins)

• Unanimous Winner : there exists an alternative x that is ranked

first by all voters (; x wins)

• Unanimous Ranking: all voters report exactly the same ranking

(; the top alternative in that unanimous ranking wins)

(Other definitions are possible.)
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Ways of Measuring Distance

Two natural definitions of distance between profiles R and R′:

• Swap distance: minimal number of pairs of adjacent alternatives

that need to get swapped to get from R to R′.

Equivalently: distance between two ballots = number of pairs of

alternatives with distinct relative ranking (so-called Kendall tau

distance); sum over voters to get distance between two profiles.

1

2
·
∑
i∈N

#{(x, y) ∈ X2 | 1i∈NR
x�y
6= 1

i∈NR′
x�y
}

• Discrete distance: distance between two ballots is 0 if they are the

same and 1 otherwise; sum over voters to get profile distance.

#{i ∈ N | Ri 6= R′i}

(Other definitions are possible.)
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Examples

Two voting rules for which the standard definition is already

formulated in terms of consensus and distance:

• Dodgson Rule = Condorcet Winner + Swap Distance

• Kemeny Rule = Unanimous Ranking + Swap Distance

How about other rules? Borda? Plurality?

Writings of C.L. Dodgson. In I. McLean and A. Urken (eds.), Classics of Social

Choice, University of Michigan Press, 1995.

J. Kemeny. Mathematics without Numbers. Daedalus, 88:571–591, 1959.
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Characterisation of the Borda Rule

Recall: the Borda rule is the PSR with vector (m−1,m−2, . . . , 0).

Proposition 4 (Farkas and Nitzan, 1979) Borda is characterised by

the unanimous winner consensus criterion and the swap distance.

Proof sketch: The swap distance between a given ballot that ranks x

at position k and the closest ballot that ranks x at the top is k−1.

Thus, if voter i ranks x at position k, she gives −(k−1) points to x.

This corresponds to the PSR with vector (0,−1,−2, . . . ,−(m−1)),
which is equivalent to the Borda rule. X

Remark: So Dodgson, Kemeny, and Borda are all rationalisable via the

same notion of distance!

D. Farkas and S. Nitzan. The Borda Rule and Pareto Stability: A Comment.

Econometrica, 47(5):1305–1306, 1979.
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Characterisation of the Plurality Rule

Recall: the plurality rule is the PSR with scoring vector (1, 0, . . . , 0).

Proposition 5 (Nitzan, 1981) Plurality is characterised by the

unanimous winner consensus criterion and the discrete distance.

Proof: Immediate. X

Remark 1: to be precise, Nitzan used a slightly different distance

Remark 2: also works with Majority Winner + discrete distance, but

doesn’t work with Condorcet Winner or Unanimous Ranking

S. Nitzan. Some Measures of Closeness to Unanimity and their Implications. The-

ory and Decision, 13(2):129–138, 1981.
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Summary

We have seen three approaches to characterising a voting rule:

• as the only rule satisfying certain axioms;

• as returning the most likely “true” winner , given the noisy signals

the voters have received about the “true” ranking; and

• as computing the closest consensus profile (w.r.t. some distance)

with a clear winner and returning that winner.

All three approaches are (potentially) useful

• to better understand particular voting rules;

• to explain why there are so many “natural” voting rules; and

• to help prove general results about families of voting rules.

What next? More applications of the axiomatic method.
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