Computational Complexity of Judgment Aggregation

Ronald de Haan

Computational Social Choice: Spring 2019

Institute for Logic, Language and Computation University of Amsterdam

Plan for today

 We will look at computational complexity considerations in Judgment Aggregation

Various computational problems arise:

- Outcome determination
- Problems related to strategic behavior
- Agenda safety
- (and more..)

▶ We will use the Kemeny procedure as illustrating example

Computational Complexity

Remember: P, NP, polynomial-time reductions

 $\blacktriangleright \ \Theta_2^p = \mathsf{P}^{\mathsf{NP}}[\mathsf{log}]:$

▶ Solvable in polynomial time with O(log n) NP oracle queries

 $\blacktriangleright \ \Sigma_2^p = \mathsf{NP}^{\mathsf{NP}}:$

Solvable in nondeterministic polynomial time with an NP oracle

 Π^p₂ = coNP^{NP}:

Complement of the problem in NP^{NP}

$$\mathsf{P}\subseteq\mathsf{N}\mathsf{P}\subseteq\Theta_2^\mathsf{p}\subseteq\Sigma_2^\mathsf{p},\Pi_2^\mathsf{p}$$

Judgment Aggregation with an Integrity Constraint

- Agenda: a set Φ = {x₁, ¬x₁,..., x_m, ¬x_m} of propositional variables and their negations
- Integrity constraint: a propositional formula F
- Judgment set: $J \subseteq \Phi$
 - consistent if $J \cup \{\Gamma\}$ is satisfiable
 - complete if $\{x_i, \neg x_i\} \cap J \neq \emptyset$ for each $1 \le i \le m$
 - admissible if consistent and complete
 - $\blacktriangleright \ \mathcal{J}(\Phi,\Gamma)$ denotes the set of all admissible judgment sets
- ▶ Profile: a sequence $J = (J_1, ..., J_n)$ of admissible judgment sets
- ► Judgment aggregation procedure: a function *F* that assigns to each profile *J* a set *F*(*J*) of judgment sets (the outcomes)

The Kemeny Rule in JA

The Kemeny rule selects those admissible judgment sets J that minimize the cumulative distance to the profile J:

$$F_{\text{Kemeny}}(J) = \underset{J \in \mathcal{J}(\Phi, \Gamma)}{\operatorname{argmin}} \sum_{i \in N} H(J, J_i), \text{ where } H(J, J_i) = |J \setminus J_i|$$

Example:

Outcome Determination

▶ Ultimately, we want to find outcomes: this is a search problem

- There are several ways to cast this as a decision problem
- (Note: "Does there exist some $J \in F(J)$?" is trivial)
- ► We will use the following variant:

Outcome-Determination(F)

Input: An agenda Φ , an integrity constraint Γ , a profile $J \in \mathcal{J}(\Phi, \Gamma)^+$, and a formula $\varphi^* \in \Phi$ from the agenda. **Question:** Is there a judgment set $J^* \in F(J)$ such that $\varphi^* \in J^*$?

Membership in $\Theta_2^p = P^{NP}[\log]$

- ► To show that Outcome-Determination(Kemeny) is in Θ₂^p, we describe a polynomial-time algorithm that queries an NP oracle log(n · m) times:
- Find the minimum cumulative Hamming distance k^{*} of any J ∈ J(Φ, Γ) to J:
 - Use binary search to find k^{*} by querying the NP oracle to answer questions "Is there some J ∈ J(Φ, Γ) whose cumulative Hamming distance to J is ≤ k?"
- 2. Then ask the NP oracle: "Is there some $J \in \mathcal{J}(\Phi, \Gamma)$ whose cumulative Hamming distance to **J** is k^* with $\varphi^* \in J$?" and return the same answer
- All oracle queries are problems in NP, so we can do this with a single NP-complete oracle (with polynomial overhead)

Θ_2^p -hardness

► To show that Outcome-Determination(Kemeny) is Θ₂^p-hard, we will give a polynomial-time reduction from the following Θ₂^p-complete problem:

Max-Model

Input: A satisfiable propositional logic formula ψ , and some $x^* \in var(\psi)$.

Question: Is there a maximal model of ψ that sets x^* to true?

A maximal model of ψ is a truth assignment to var(ψ) that satisfies ψ and that sets a maximum number of variables in var(ψ) to true (among those that satisfy ψ)

Θ_2^p -hardness (the reduction)

Let (ψ, x^*) be an instance of Max-Model, with var $(\psi) = \{x_1, \dots, x_m\}$. We construct $\Phi, \Gamma, J, \varphi^*$ as follows:

$$\bullet \quad \Phi = \mathsf{lit}(\psi) \cup \{z_{i,j}, \neg z_{i,j} : 1 \le i \le 3, 1 \le j \le 2m\}$$

$$\blacktriangleright \ \varphi^* = x^*$$

•
$$J = (J_1, J_2, J_3)$$
:

J	<i>x</i> ₁	<i>x</i> ₂	•••	x _m	<i>z</i> _{1,1}	<i>z</i> _{2,1}	<i>z</i> _{3,1}	 <i>z</i> _{1,2m}	<i>Z</i> _{2,2} <i>m</i>	<i>z</i> _{3,2<i>m</i>}
J_1	1	1	• • •	1	1	0	0	 1	0	0
J_2	1	1	• • •	1	0	1	0	 0	1	0
J_3	1	1	•••	1	0	0	1	 0	0	1

Θ_2^{p} -hardness (correctness of the reduction)

For any judgment set J to be Γ -consistent, either (i) $J \cup \{\psi\}$ needs to be consistent, or (ii) $J \cup \{\bigvee_{1 \le i \le 3} \bigwedge_{1 \le j \le 2m} z_{i,j}\}$. In case (i), $\sum_{1 \le i \le n} H(J, J_i) \le 3m$. In case (ii), $\sum_{1 \le i \le n} H(J, J_i) \ge 4m$.

 (\Rightarrow) Suppose x^* is made true by some maximal model α of ψ .

Take $J_{\alpha} = \{x_i : 1 \le i \le m, \alpha(x_i) = 1\} \cup \{\neg x_i : 1 \le i \le m, \alpha(x_i) = 0\} \cup \{\neg z_{i,j} : 1 \le i \le 3, 1 \le j \le 2m\}$. J_{α} is Γ -consistent, contains x^* and has cumulative Hamming distance $\le 3m$ to the profile J.

There is no $J' \in \mathcal{J}(\Phi, \Gamma)$ with smaller cumulative Hamming distance to J—if such a J' would exist, there would be some α' satisfying ψ that sets more variables to true than α . Thus, $J \in F_{\text{Kemeny}}(J)$.

(\Leftarrow) Suppose there is some $J \in F_{\text{Kemeny}}(J)$ with $x^* = \varphi^* \in J$. We know that $J \cup \{\psi\}$ is satisfiable.

Let α be the truth assignment such that $\alpha(x_i) = 1$ if and only if $x_i \in J$, for each $1 \leq i \leq n$. Then α satisfies ψ and sets x^* to true.

There is no α' satisfying ψ that sets more variables to true than α —if such an α' would exists, there would be some J' with smaller cumulative Hamming distance to J. Thus, α is a maximal model of ψ .

Strategic Behavior: Manipulation

- Strategic manipulation: an individual submitting an insincere judgment set to get a preferred outcome
- There are several ways to cast this as a decision problem. We will use the following variant:

Manipulation(F)

Input: An agenda Φ , an integrity constraint Γ , a profile $J = (J_1, \dots, J_n)$, and a set $L \subseteq \Phi$. Question: Is there an admissible judgment set $J' \in \mathcal{J}(\Phi, \Gamma)$ such that for all $J^* \in F_{\text{Kemeny}}(J', J_2, \dots, J_n)$ it holds that $L \subseteq J^*$?

Strategic Behavior: Manipulation

Theorem: Manipulation(Kemeny) is Σ₂^p-complete

• Intuition why the problem is in $\Sigma_2^{p} = NP^{NP}$:

- Guess a (strategizing) judgment set J' (nondeterministic/NP guess)
- Solve the problem of outcome determination for (J', J₂,..., J_n) (using NP oracle queries)
- ► Σ_2^p -hardness by reduction from $\exists \forall$ -TQBF

• One can see this hardness as a barrier against manipulation

R. de Haan. Complexity results for manipulation, bribery and control of the Kemeny judgment aggregation procedure. In: Proceedings of AAMAS 2017, pp. 1151–1159.

Agenda Safety

- An agenda Φ and an integrity constraint Γ are safe for the majority rule if and only if there is no minimally Γ-inconsistent subset L ⊆ Φ of size > 2
 - Safety: for every possible profile J, the outcome is Γ -consistent
 - Minimally Γ-inconsistent set L: L ∪ {Γ} is unsatisfiable, and for each L' ⊊ L, L' ∪ {Γ} is satisfiable
- ► Idea: if there is some minimally Γ-inconsistent L of size ≥ 3, you can construct a "doctrinal paradox" situation

Agenda-Safety

Input: An agenda Φ, and an integrity constraint Γ. **Question:** Is there no minimally Γ-inconsistent $L \subseteq Φ$ of size > 2?

Agenda Safety

- Theorem: Agenda-Safety is Π^p₂-complete
 - Intuition why the problem is in $\Pi_2^{P} = coNP^{NP}$:
 - Quantify over all possible L ⊆ Φ of size ≥ 3 (nondeterministic/coNP guess)
 - 2. Quantify over all truth assignments for $L \cup \{\Gamma\}$, and check that none is satisfying (nondeterministic/coNP guess)
 - 3. Check that all $L' \subsetneq L$ are Γ -consistent (using NP oracle queries)
 - ▶ Π_2^{p} -hardness by reduction from $\forall \exists$ -TQBF

U. Endriss, U. Grandi, and D. Porello. Complexity of Judgment Aggregation. Journal of Artificial Intelligence Research (JAIR), 45, 481–514, 2012.

All bad news?

- Computational complexity results for the Kemeny rule in JA are generally negative
- Similar results for other rules (at least those that work for any agenda and that guarantee consistent outcomes)
- Does this mean that we cannot use Judgment Aggregation to model social choice scenarios in practice?

- No! Research: find particular cases where, say, Outcome-Determination(Kemeny) is efficiently solvable
 - Simple example: if Γ is in DNF, we can solve Outcome-Determination(Kemeny) in polynomial time
 - Idea: iterate over all disjuncts of the DNF and find which one allows for minimum cumulative Hamming distance to the profile

Conclusion

- We looked at several computational problems that arise in the setting of Judgment Aggregation, and their computational complexity (using the Kemeny rule as example)
- Most results are worst-case intractability results
 - Some are obstacles (e.g., for outcome determination)
 - Some can be seen as helpful (e.g., for strategic manipulation)

 To use Judgment Aggregation as an applied general system to model social choice applications, computational complexity considerations are important