
CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Normal Forms

Recall: Conjunctive Normal Form (CNF) and Disjunctive Normal
Form (DNF) for propositional logic

Prenex Normal Form. A FOL formula ϕ is said to be in Prenex
Normal Form iff all its quantifiers (if any) ‘come first’. The
quantifier-free part of ϕ is called the matrix of ϕ.

Every sentence can be transformed into a logically equivalent
sentence in Prenex Normal Form.

Ulle Endriss, King’s College London 1

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Transformation into Prenex Normal Form

If necessary, rewrite the formula first to ensure that no two
quantifiers bind the same variable and no variable has both a free
and a bound occurrence (variables need to be ‘named apart’)!

¬(∀x)A ≡ (∃x)¬A

((∀x)A) ∧B ≡ (∀x)(A ∧B)

((∀x)A) ∨B ≡ (∀x)(A ∨B)

¬(∃x)A ≡ (∀x)¬A

((∃x)A) ∧B ≡ (∃x)(A ∧B)

((∃x)A) ∨B ≡ (∃x)(A ∨B)

etc.

To avoid mistakes, formulas involving → or ↔ should first be
translated into formulas involving only ¬, ∧, and ∨ (besides
quantifiers).

Ulle Endriss, King’s College London 2

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Skolemisation

Skolemisation is the process of removing existential quantifiers from
a given formula in Prenex Normal Form (without affecting
satisfiability).

Algorithm. Given: a formula in Prenex Normal Form.

(1) If necessary, turn the formula into a sentence by adding (∀x) in
front for every free variable x (‘universal closure’).

(2) While there are still existential quantifiers, repeat: replace

• (∀x1) · · · (∀xn)(∃y)ϕ with

• (∀x1) · · · (∀xn)ϕ[y ← f(x1, . . . , xn)],
where f is a new function symbol.

Ulle Endriss, King’s College London 3

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Skolemisation (2)

Definition 1 (Skolem Normal Form) A formula ϕ is said to be
in Skolem Normal Form iff it is of the following form:

ϕ = (∀x1)(∀x2) · · · (∀xn)ϕ′,

where ϕ′ is a quantifier-free formula in CNF (with n ∈ N0).

Theorem 1 (Skolemisation) For every formula ϕ there is a
formula ϕsk in Skolem Normal Form such that ϕ is satisfiable iff ϕsk

is satisfiable. ϕsk can be obtained from ϕ through the process of
Skolemisation.

Proof. [omitted]

Ulle Endriss, King’s College London 4

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Clauses

Resolution is a deduction system for formulas in Skolem Normal
Form. Traditionally, formulas are written as sets of so-called clauses.

Clauses. A clause is a set of literals. Logically, it corresponds to the
disjunction of these literals.

Sets of clauses. A set of clauses logically corresponds to the
conjunction of the clauses in the set.

This means, any formula in Skolem Normal Form can be written as a
set of clauses. Variables are understood to be implicitly universally
quantified.

Recall: In Prolog rules, facts, and queries are also called clauses.

Ulle Endriss, King’s College London 5

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Binary Resolution with Factoring

Aim. Show ∆ |= ϕ (for a set of sentences ∆ and a sentence ϕ).

Preparation. Compute Skolem Normal Form of formulas in ∆ and
of ¬ϕ and write them as a set of clauses (variables named apart).

Input. Set of clauses (which we want to show to be unsatisfiable).

Rules.
Binary Resolution Rule

{L1} ∪ C1

{Lc
2} ∪ C2

µ(C1 ∪ C2)

Lc
2 is the complement of L2

µ is an mgu of L1 and L2

Factoring

{L1, . . . , Ln} ∪ C
σ({L1} ∪ C)

σ unifies {L1, . . . , Ln}

Success. We succeed if we can derive the empty clause 2.

Ulle Endriss, King’s College London 6

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Why Factoring?

Try to derive the empty clause from the following (obviously
unsatisfiable) set of clauses without using the factoring rule.

{{P (x), P (y)}, {¬P (u),¬P (v)}}

⇒ It’s not possible!

This means that our binary resolution rule alone (without factoring)
would not be a complete deduction system for FOL.

Remark. The general resolution rule allows us to resolve using
sub-clauses (rather than just literals). In that case we can do without
factoring.

Ulle Endriss, King’s College London 7

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Horn Clauses

Same old problem. We still have the same problem of a sometimes
huge search space (as before with Tableaux): There is no general
strategy to tell us which two clauses to resolve next.

Horn fragment. The situation can be improved if we restrict
ourselves to interesting fragments of first-order logic. An important
fragment is the so-called Horn fragment, namely those formulas of
FOL that correspond to (sets of) Horn clauses:

Definition 2 (Horn clause) An (implicitly universally quantified)
clause is called a Horn clause iff it contains at most one positive
literal.

We distinguish positive Horn clauses (one positive literal) and
negative Horn clauses (no positive literals).

Ulle Endriss, King’s College London 8

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

SLD Resolution for Horn Clauses

SLD Resolution stands for Selective Linear Resolution for Definite
clauses, where:

• linear means we always use the latest resolvent in the next step,

• we have a selection function telling us which literal to use, and

• the input is restricted to Horn clauses, exactly one of which has
to be negative (definite clause is another word for positive Horn
clause).

SLD Resolution is complete for the Horn fragment [proof omitted].

Ulle Endriss, King’s College London 9

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Logic Programming

Programs. As we will see, a logic program corresponds to a set of
fist-order sentences ∆.

Submitting queries. Submitting a query ϕ (which also corresponds
to a sentence) to a logic programming system means asking whether
ϕ can be inferred from the information given in the program ∆, that
is, whether the following holds:

∆ |= ϕ (i.e. whether ∆ ∪ {¬ϕ} is unsatisfiable)

⇒ Logic Programming is an application of Automated Deduction.

Prolog. Prolog is a logic programming language which extends this
basic idea with additional control structures (such as negation as
failure and cuts). In this course, however, we are only concerned with
the theoretical foundations of ‘pure’ Prolog.

Ulle Endriss, King’s College London 10

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Logic Programming (2)

Translation. Programs in ‘pure’ Prolog can be translated into FOL:

• Prolog rules of the form q :- p1, ..., pn. are translated as
(∀x1) · · · (∀xn)(P1 ∧ · · · ∧ Pn → Q), where x1, . . . , xn are the
variables appearing in the rule.

• Prolog facts of the form q. are translated as (∀x1) · · · (∀xn)Q,
where x1, . . . , xn are the variables appearing in the fact.

• Prolog queries of the form ?- p1, ..., pn. are translated as
(∃x1) · · · (∃xn)(P1 ∧ · · · ∧ Pn), where x1, . . . , xn are the variables
appearing in the query. So the negation of a query has the form
(∀x1) · · · (∀xn)¬(P1 ∧ · · · ∧ Pn).

Observation. All the above formulas correspond to Horn clauses. In
fact, rules and facts correspond to positive Horn clauses and negated
queries correspond to negative ones.

Ulle Endriss, King’s College London 11

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Logic Programming (3)

Prolog implements SLD Resolution:

• Linearity: we start with the only negative clause (the negated
query) and then always use the previous resolvent (new query).

• The selection function is very simple: it always chooses the first
literal (in the current ‘query’).

• The input is restricted to one negative Horn clause (negated
query) and a number of positive Horn clauses (rules and facts).

Backtracking. In practice, one problem remains: if there is more
than one way to resolve with the selected literal (i.e. more than one
matching rule or fact) then we don’t know which one will eventually
lead to a successful refutation. In Prolog, always the first one is
chosen and if this turns out not to be successful, backtracking is used
to try another one.

Ulle Endriss, King’s College London 12

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Worked Example

Consider the following Prolog program:

parent(elisabeth, charles).

parent(charles, harry).

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

What will happen if we submit the following query after the above
program has been consulted by Prolog?

?- ancestor(elisabeth, harry).

Ulle Endriss, King’s College London 13

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Step 1: Translate into FOL

For the program we get the following formulas:

(1) P (e, c)

(2) P (c, h)

(3) (∀x)(∀y)(P (x, y)→ A(x, y))

(4) (∀x)(∀y)(∀z)(P (x, y) ∧A(y, z)→ A(x, z))

For the negation of the query we get:

(5) ¬A(e, h)

Remark. The above query is very simple. In the general case, the
translation of a query is the universal closure of the negation of the
conjunction of the subgoals of the query.

Ulle Endriss, King’s College London 14

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Step 2: Rewrite Formulas as Clauses

Formulas we get from translating a Prolog program already are in
Prenex Normal Form and we don’t need to Skolemise either (because
there are no existential quantifiers).

We have to rewrite the implications as disjunctions. Here, we directly
give the clauses (which correspond to disjunctions!). Remember that
variables have to be renamed!

(1) {P (e, c)}

(2) {P (c, h)}

(3) {¬P (x1, y1), A(x1, y1)}

(4) {¬P (x2, y2), ¬A(y2, z2), A(x2, z2)}

(5) {¬A(e, h)}

Ulle Endriss, King’s College London 15

CS3AUR: Automated Reasoning 2002 Resolution'

&

$

%

Step 3: Use Resolution to Derive the Empty Clause

(1) {P (e, c)}
(2) {P (c, h)}
(3) {¬P (x1, y1), A(x1, y1)}
(4) {¬P (x2, y2), ¬A(y2, z2), A(x2, z2)}
(5) {¬A(e, h)}

(6) {¬P (e, y3), ¬A(y3, h)} from (4,5) with [x2 ← e, z2 ← h]

(7) {¬A(c, h)} from (1,6) with [y3 ← c]

(8) {¬P (c, h)} from (3,7) with [x1 ← c, y1 ← h]

(9) 2 from (2,8)

Remark. If there had been variables in our query, then the
substitutions made to them would have been part of the answer.

Ulle Endriss, King’s College London 16

