
CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Reasoning with Temporal Constraints

From the operating instructions for a big scary machine:

• The red button has to be pressed before phase 4711
— or it’s all going to blow up.

• The green button has to be pressed during phase 4711
— or it’s all going to blow up.

• The red button has to be pressed after phase 0815
— or it’s all going to blow up.

• Make sure phase 0815 overlaps with phase 4711
— or it’s all going to blow up.

What if it get’s more complicated? Can we use a computer to reason
about this kind of information?

Ulle Endriss, King’s College London 1

CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Allen’s Interval Relations

x equals y

x before y
y after x

x meets y
y met-by x

x overlaps y
y overlapped-by x

x starts y
y started-by x

x during y
y contains x

x finishes y
y finished-by x

� y �� x �

� x �

� x �

� x �

� x �

� x �

� x �
� y �

Ulle Endriss, King’s College London 2



CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Obtaining Knowledge through Inference

Transitivity. Interval relations are transitive in the following sense:

If we know that intervals a and b are in relation R1 and
if we know that intervals b and c are in relation R2,
then we can restrict the set of possible relations for a and c.

Examples:

• Given: a starts b and b overlaps c
Infer: a before c or a meets c or a overlaps c
(but certainly not a after c, etc.)

• Given: a after b and b after c
Infer: a after c (this is transitivity in the usual sense of the word)

Transitivity table. The transitivity table in Allen’s paper gives an
overview over all possible inferences of this kind.

Ulle Endriss, King’s College London 3

CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Temporal Constraint Networks

Constraints. Given intervals i and j, a temporal constraint (i, j) : R
(where R is a set of Allen relations) says that i and j are supposed to
stand in one of the relations in R. Example:

(i, j) : {before,meets, overlaps}

TCNs. A temporal constraint network (TCN) over a set of intervals
I is a set of constraints talking about the intervals in I.

Consistency. A TCN over a set of intervals I is called consistent iff
we can map the left and right endpoints of each interval in I to a
(real) number in such a way that all constraints are satisfied (and no
interval has length 0). Example:

(i, j) : {before,meets} ⇒ r(i) < `(j) or r(i) = `(j), `(i) < r(i), etc.

Ulle Endriss, King’s College London 4



CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Normalising TCNs

We can normalise a given TCN:

• Add inverse constraints: for (i, j) : R add (j, i) : R−1. Example:

If (i, j) : {before,meets,finished-by , equals} is in the TCN,
then add (j, i) : {after ,met-by ,finishes, equals}.

• If there are two constraints (i, j) : R1 and (i, j) : R2 (for the same
pair of intervals), replace them with (i, j) : R1 ∩R2. Example:

If both (i, j) : {meets, starts} and (i, j) : {starts,finishes}
are in the TCN, replace them with (i, j) : {starts}.

• Add (i, i) : {equals} for every interval i.

• Add the full constraint (i, j) : {before, after ,meets, . . .} (all 13
relations), if there is no information for (i, j) in the TCN.

A (normalised) TCN containing an empty constraint is inconsistent!

Ulle Endriss, King’s College London 5

CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Checking Consistency

Singleton labellings. A normalised TCN is called a singleton
labelling if it relates any two intervals by just one basic relation.

Checking a singleton labelling for consistency is easy (how? ).

General consistency checking. A general TCN corresponds to a
disjunction of singleton labellings. In principle, we can always check
whether a given TCN is consistent by checking all possible singleton
labellings in turn until we find one that is consistent.

Practical considerations. In practice, this is not possible. Suppose
we have 10 intervals, i.e. (102 − 10)/2 = 45 relevant constraints (plus
another 45 inverse constraints plus 10 trivial equals-constraints).
Further suppose, in each of these 45 constraints we have 3 relations.
Then we get 345 ≈ 2.95 sextillion different singleton labellings!

Ulle Endriss, King’s College London 6



CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Constraint Propagation

Transitivity again. Let tr(r1, r2) denote the entry in the
transitivity table for the interval relations r1 and r2. Example:

tr(starts, overlaps) = {before,meets, overlaps}

We generalise this to sets of relations:

constraints(R1, R2) = {r | r1 ∈ R1 & r2 ∈ R2 & r ∈ tr(r1, r2)}

Constraint propagation. Whenever we find (i, j) : R1 and
(j, k) : R2 in a TCN, we can add (i, k) : constraints(R1, R2). To show
that a given TCN is inconsistent, we apply constraint propagation
and normalise as much as possible and look for an empty constraint.

Soundness. Constraint propagation (together with normalisation) is
a sound operation: a consistent TCN will never be turned into an
inconsistent one (because we only add implied constraints).

Ulle Endriss, King’s College London 7

CS3AUR: Automated Reasoning 2002 Temporal Constraints'

&

$

%

Constraint Propagation is not Complete!

However, constraint propagation does not provide us with a complete
algorithm to detect inconsistencies. The following is an example for
an inconsistent TCN, which cannot be made more specific using
constraint propagation. (check! )

{ (a, b) : {during , contains}, (a, c) : {finishes,finished-by},
(a, d) : {met-by , started-by}, (b, c) : {during , contains},
(b, d) : {overlapped-by}, (c, d) : {met-by , started-by} }

Still, in practice, constraint propagation will often find most
inconsistencies. And for application where we require completeness,
at least, the number of possibilities will be greatly reduced through
constraint propagation.

Ulle Endriss, King’s College London 8


