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Lecture 5

We have already seen several fairness and efficiency criteria for
collective agreements, such as Pareto optimality or envy-freeness.
The field of welfare economics has a more general take on this:

• social welfare orderings and collective utility functions

• introduction to the axiomatisation of social welfare orderings

One application of such criteria is in multiagent resource allocation.
We will give an introduction to MARA mechanisms for the
allocation of indivisible goods. Specifically:

• brief mentioning of some complexity results

• example for a convergence result for a distributed mechanism

• outlook on other research questions
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Notation

• Let A = {1, . . . , n} be our society of agents throughout.

• We have to decide on an agreement . This may be an allocation
of goods, possibly coupled with monetary side payments.

• Each agent i has a utility function ui over alternative
agreements (which also induces a preference ordering �i).

• An agreement x gives rise to a utility vector 〈u1(x), . . . , un(x)〉

• Often, we can define social preference structures directly over
utility vectors u = 〈u1, . . . , un〉 (elements of Rn), rather than
speaking about the agreements generating them.
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Social Welfare Orderings

A social welfare ordering (SWO) � is a binary relation over Rn

that is reflexive, transitive, and complete.

Intuitively, if u, v ∈ Rn, then u � v means that v is socially
preferred over u (not necessarily strictly).

We also use the following notation:

• u ≺ v iff u � v but not v � u (strict social preference)

• u ∼ v iff both u � v and v � u (social indifference)
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Collective Utility Functions

• A collective utility function (CUF) is a function W : Rn → R
mapping utility vectors to the reals.

• Intuitively, if u ∈ Rn, then W (u) is the utility derived from u

by society as a whole.

• Every CUF represents an SWO: u � v ⇔ W (u) ≤ W (v)
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Utilitarian Social Welfare

One approach to social welfare is to try to maximise overall profit.
This is known as classical utilitarianism (advocated, amongst
others, by Jeremy Bentham, British philosopher, 1748–1832).

The utilitarian CUF is defined as follows:

swu(u) =
∑

i∈Agents

ui

Observe that maximising this function amounts to maximising the
average utility enjoyed by agents in the system.
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Egalitarian Social Welfare

The egalitarian CUF measures social welfare as follows:

swe(u) = min{ui | i ∈ Agents}

Maximising this function amounts to improving the situation of the
weakest member of society.

The egalitarian variant of welfare economics is inspired by the work
of John Rawls (American philosopher, 1921–2002) and has been
formally developed, amongst others, by Amartya Sen since the
1970s (Nobel Prize in Economic Sciences in 1998).

J. Rawls. A Theory of Justice. Oxford University Press, 1971.

A.K. Sen. Collective Choice and Social Welfare. Holden Day, 1970.
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Nash Product

The Nash CUF swN is defined as the product of individual utilities:

swN (u) =
∏

i∈Agents

ui

This is a useful measure of social welfare as long as all utility
functions are positive. Named after John F. Nash (Nobel Prize in
Economic Sciences in 1994; Academy Award in 2001).

Remark: The Nash (like the utilitarian) CUF favours increases in
overall utility, but also inequality reductions (2 · 6 < 4 · 4).
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Ordered Utility Vectors

We now need some more notation . . .

For any u ∈ Rn, the ordered utility vector ~u is defined as the vector
we obtain when we rearrange the elements of u in increasing order.

Example: Let u = 〈5, 20, 0〉 be a utility vector.

• ~u = 〈0, 5, 20〉 means that the weakest agent enjoys utility 0, the
strongest utility 20, and the middle one utility 5.

• Recall that u = 〈5, 20, 0〉 means that the first agent enjoys
utility 5, the second 20, and the third 0.
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Rank Dictators

The k-rank dictator CUF for k ∈ A is mapping utility vectors to
the utility enjoyed by the k-poorest agent:

swk(u) = ~uk

Interesting special cases:

• For k = 1 we obtain the egalitarian CUF.

• For k = n we obtain an elitist CUF measuring social welfare in
terms of the happiest agent.

• For k = bn/2c we obtain the median-rank-dictator CUF.
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The Leximin-Ordering

We now introduce an SWO that may be regarded as a refinement
of the SWO induced by the egalitarian CUF.

The leximin-ordering �` is defined as follows:

u �` v ⇔ ~u lexically precedes ~v (not necessarily strictly)

That means: ~u = ~v or there exists a k ≤ n such that

• ~ui = ~vi for all i < k and

• ~uk < ~vk

Example: u ≺` v for ~u = 〈0, 6, 20, 29〉 and ~v = 〈0, 6, 24, 25〉
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Axiomatic Approach

So far we have simply defined some SWOs and CUFs and
informally discussed their attractive and less attractive features.

Next we give a couple of examples for axioms — properties that we
may or may not wish to impose on an SWO.

Interesting results are then of the following kind:

• A given SWO may or may not satisfy a given axiom.

• A given (class of) SWO(s) may or may not be the only one
satisfying a given (combination of) axiom(s).
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Zero Independence

If agents enjoy very different utilities before the encounter, it may
not be meaningful to use their absolute utilities afterwards to
assess social welfare, but rather their relative gain or loss in utility.
So a desirable property of an SWO may be to be independent from
what individual agents consider “zero” utility.

Axiom 1 (ZI) An SWO � is zero independent iff u � v entails
(u + w) � (v + w) for all u, v, w ∈ Rn.

Example: The (SWO induced by the) utilitarian CUF is zero
independent, while the egalitarian CUF is not.

In fact, an SWO satisfies ZI iff it is represented by the utilitarian
CUF. See Moulin (1988) for a precise statement of this result.

H. Moulin. Axioms of Cooperative Decision Making. Econometric Society

Monographs, Cambridge University Press, 1988.

Ulle Endriss 13



Computational Social Choice ESSLLI-2008

Scale Independence

Different agents may measure their personal utility using different
“currencies”. So a desirable property of an SWO may be to be
independent from the utility scales used by individual agents.

Assumption: Here, we use positive utilities only, i.e. u ∈ (R+)n.

Notation: Let u · v = 〈u1 · v1, . . . , un · vn〉.

Axiom 2 (SI) An SWO � is scale independent iff u � v entails
(u · w) � (v · w) for all u, v, w ∈ (R+)n.

Example: Clearly, neither the utilitarian nor the egalitarian CUF
are scale independent, but the Nash CUF is.

By a similar result as the one mentioned before, an SWO satisfies
SI iff it is represented by the Nash CUF.
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Independence of the Common Utility Pace

Another desirable property of an SWO may be that we would like
to be able to make social welfare judgements without knowing what
kind of tax members of society will have to pay.

Axiom 3 (ICP) An SWO � is independent of the common utility
pace iff u � v entails f(u) � f(v) for all u, v ∈ Rn and for every
increasing bijection f : R → R.

For an SWO satisfying ICP, only relative comparisons (ui ≤ uj vs.
ui ≥ uj) matter, but the (cardinal) intensities ui − uj don’t.

Example: The utilitarian CUF does not satisfy ICP, but the
egalitarian CUF does. Any k-rank dictator CUF does.
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Other Fairness and Efficiency Criteria

Recall that we have already seen some other criteria for assessing
fairness and efficiency of a collective agreement:

• Pareto efficiency

• Proportionality

• Envy-freeness

Ulle Endriss 16



Computational Social Choice ESSLLI-2008

Allocation of Indivisible Goods

Next we will consider the problem of allocating indivisible goods.
We can distinguish two approaches:

• In the centralised approach (e.g. combinatorial auctions),
we need to devise an optimisation algorithm to compute an
allocation meeting our fairness and efficiency requirements.

• In the distributed approach, allocations emerge in response to
agents implementing a sequence of local deals. What can we
say about the properties of these emerging allocations?
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Setting

For the remainder of today we will work in this framework:

• Set of agents A = {1, . . . , n}; finite set of indivisible goods G.

• An allocation A is a partitioning of G amongst the agents in A.
Example: A(i) = {r5, r7} — agent i owns resources r5 and r7

• Each agent i ∈ A has got a valuation function vi : 2G → R.
Example: vi(A) = vi(A(i)) = 577.8 — agent i is pretty happy
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Complexity Results

Before we look into the “how”, here are some complexity results:

• Checking whether an allocation is Pareto efficient is coNP-complete.

• Finding an allocation with maximal utilitarian social welfare is

NP-hard. If all valuations are modular then it is polynomial.

• Finding an allocation with maximal egalitarian social welfare is also

NP-hard, even when all valuations are modular.

• Checking whether an envy-free allocation exists is NP-complete;

checking whether a Pareto efficient envy-free allocation exists is

even Σp
2-complete.

References to these results may be found in the “MARA Survey”.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,

J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multia-

gent Resource Allocation. Informatica, 30:3–31, 2006.
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Distributed Approach

Instead of devising algorithms for computing a socially optimal
allocation in a centralised manner, we now want agents to be able
to do this in a distributed manner by contracting deals locally.

• A deal δ = (A,A′) is a pair of allocations (before/after).

• A deal may come with a number of side payments to
compensate some of the agents for a loss in valuation.
A payment function is a function p : A → R with

∑
i∈A

p(i) = 0.

Example: p(i) = 5 and p(j) = −5 means that agent i pays �5,
while agent j receives �5.
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Negotiating Socially Optimal Allocations

We are not going to talk about designing a concrete negotiation
protocol, but rather study the framework from an abstract point of
view. The main question concerns the relationship between

• the local view: what deals will agents make in response to their
individual preferences?; and

• the global view: how will the overall allocation of resources
evolve in terms of social welfare?

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal

Allocations of Resources. Journal of AI Research, 25:315–348, 2006.
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The Local/Individual Perspective

A rational agent (who does not plan ahead) will only accept deals
that improve its individual welfare:

I A deal δ = (A,A′) is called individually rational (IR) iff there
exists a payment function p such that vi(A′)− vi(A) > p(i) for
all i ∈ A, except possibly p(i) = 0 in case A(i) = A′(i).

That is, an agent will only accept a deal iff it results in a gain in
value (money) that strictly outweighs any loss in money (value).
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The Global/Social Perspective

For now, suppose that as system designers we are interested in
maximising utilitarian social welfare:

swu(A) =
∑

i∈Agents

vi(A)

Observe that there is no need to include the agents’ monetary
balances into this definition, because they’d always add up to 0.

While the local perspective is driving the negotiation process, we
use the global perspective to assess how well we are doing.
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Example

Let A = {ann, bob} and G = {chair , table} and suppose our agents
have the following valuation functions:

vann(∅) = 0 vbob(∅) = 0

vann({chair}) = 2 vbob({chair}) = 3

vann({table}) = 3 vbob({table}) = 3

vann({chair , table}) = 7 vbob({chair , table}) = 8

Furthermore, suppose the initial allocation of goods is A0 with
A0(ann) = {chair , table} and A0(bob) = ∅.

Social welfare for allocation A0 is 7, but it could be 8. By moving
only a single good from agent ann to agent bob, the former would
lose more than the latter would gain (not individually rational).

The only possible deal would be to move the set {chair , table}.
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Linking the Local and the Global Perspectives

It turns out that individually rational deals are exactly those deals
that increase social welfare:

Lemma 1 (Rationality and social welfare) A deal δ = (A,A′)
with side payments is individually rational iff swu(A) < swu(A′).

Proof: “⇒”: Rationality means that overall utility gains outweigh
overall payments (which are = 0).

“⇐”: The social surplus can be divided amongst all deal
participants by using, say, the following payment function:

p(i) = vi(A′) − vi(A) − swu(A′)− swu(A)
|A|︸ ︷︷ ︸
> 0 X

Discussion: The lemma confirms that individually rational
behaviour is “appropriate” in utilitarian societies.
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Termination

We can now prove a first result on negotiation processes:

Lemma 2 (Termination) There can be no infinite sequence of
IR deals; that is, negotiation must always terminate.

Proof: Follows from the first lemma and the observation that the
space of distinct allocations is finite. X
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Convergence

It is now easy to prove the following convergence result (originally
stated by Sandholm in the context of distributed task allocation):

Theorem 1 (Sandholm, 1998) Any sequence of IR deals will
eventually result in an allocation with maximal social welfare.

Proof: Termination has been shown in the previous lemma. So let
A be the terminal allocation. Assume A is not optimal, i.e. there
exists an allocation A′ with swu(A) < swu(A′). Then, by our first
lemma, δ = (A,A′) is individually rational ⇒ contradiction. X

Discussion: Agents can act locally and need not be aware of the
global picture (convergence is guaranteed by the theorem).

T. Sandholm. Contract Types for Satisficing Task Allocation: I Theoretical

Results. Proc. AAAI Spring Symposium 1998.
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More MARA

• Convergence only works if arbitrarily complex deals are allowed.

Can simple preferences guarantee convergence by simple deals?

• What about convergence for other social optimality criteria?

• What about other models (e.g. sharable goods, agents on a graph)?

• Can we give bounds on the number of deals required to reach the

optimum (; communication complexity)?

• How close can we get to the optimum (and how fast) if full

convergence cannot be guaranteed? Maybe simulation can help.

• What would be suitable logics for specifying MARA mechanisms

and, say, verifying convergence results (; social software)?

Ulle Endriss 28



Computational Social Choice ESSLLI-2008

Summary

What we have covered today:

• social welfare orderings and collective utility functions for

formalising fairness and efficiency criteria

• a first taste of the “axiomatic method” in welfare economics

• introduction to multiagent resource allocation, specifically

distributed mechanisms for allocating indivisible goods

Some remarks in relation to earlier lectures:

• MARA with indivisible goods is an example for collective decision

making in combinatorial domains (observe that for cake-cutting the

number of alternatives is infinite)

• MARA and fair division problems are more specialised collective

decision making problems than voting: “no externalities” means

that agents will be indifferent between a large number of

alternatives (all allocations where they receive the same bundle)
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Literature

Moulin (1988) provides an excellent introduction to welfare
economics, covering the axiomatics of SWOs in detail.

The “MARA Survey” (Chevaleyre et al., 2006) covers most of the
material discussed today, and more.

To find out more about convergence in distributed negotiation you
may start by consulting the JAIR-2006 paper cited below.

H. Moulin. Axioms of Cooperative Decision Making. Econometric Society

Monographs, Cambridge University Press, 1988.

Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemâıtre, N. Maudet,

J. Padget, S. Phelps, J.A. Rodŕıguez-Aguilar and P. Sousa. Issues in Multia-

gent Resource Allocation. Informatica, 30:3–31, 2006.

U. Endriss, N. Maudet, F. Sadri and F. Toni. Negotiating Socially Optimal

Allocations of Resources. Journal of AI Research, 25:315–348, 2006.
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Last Slide

I hope I convinced you: COMSOC is an exciting interdisciplinary
research area. This is a good time to get into it.

Besides the papers cited on the slides, particularly the survey
papers, a good source of information are the proceedings of the
COMSOC Workshops (Amsterdam 2006 and Liverpool 2008).

I teach a full-semester course on COMSOC at the ILLC, and you
can find more slides, references, and exercises here:

http://www.illc.uva.nl/~ulle/teaching/comsoc/

Subscribe to the COMSOC mailing list for announcements:

http://lists.duke.edu/sympa/info/comsoc
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