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Lecture 4

Today will be an introduction to cake-cutting procedures. These are
algorithms for fairly dividing a single good (the “cake”) amongst
several players. We will cover:

• Definition of different notions of fairness

• Review of several classical cake-cutting procedures and
discussion of their properties

• Open problems (many!)

• Brief discussion of complexity questions and possibilities to
formally specify procedures using suitable logics
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The Problem of Fair Division

Consider a set of agents and a set of goods. Each agent has their
own preferences over alternative allocations of goods to agents.

I What constitutes a good allocation and how do we find it?

What goods? One or several? Available in single or multiple units?
Divisible or indivisible? Can goods be shared? Are they static or
do they change properties (e.g. consumable or perishable goods)?

What preferences? Ordinal or cardinal preference structures?
Are side payments possible, and how do they affect preferences?
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Cake-Cutting Problems

We will discuss the division of a single divisible good, commonly
referred to as a cake (amongst n players). It’s the sort of cake
where you can cut off slices with a single cut (so not a round tart).

More abstractly, you may think of a cake as the unit interval [0, 1]:

|----------------------|

0 1

Each player i has a valuation function vi mapping finite unions of
subintervals (slices) to the reals, satisfying the following conditions:

• Non-negativity: vi(X) ≥ 0 for all X ⊆ [0, 1]

• Additivity: vi(X ∪ Y ) = vi(X) + vi(Y ) for disjoint X, Y ⊆ [0, 1]

• vi is continuous (the Intermediate-Value Theorem applies) and
single points do not have any value.

• Normalisation: vi([0, 1]) = 1
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Cut-and-Choose

The classical approach for dividing a cake between two players:

One player cuts the cake in two pieces (which she considers
to be of equal value), and the other one chooses one of the
pieces (the piece she prefers).

The cut-and-choose procedure satisfies two important properties:

• Proportionality: Each player is guaranteed at least one half
(general: 1/n) according to her own valuation.

Discussion: In fact, the first player (if she is risk-averse) will
receive exactly 1/2, while the second will usually get more.

• Envy-freeness: No player will envy (any of) the other(s).

Discussion: Actually, for two players, proportionality and
envy-freeness amount to the same thing.
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Further Properties

We may also be interested in the following properties:

• Equitability: Under an equitable division, each player assigns
the same value to the slice they receive.

Discussion: Cut-and-choose clearly violates equitability.
Furthermore, for n > 2, equitability is often in conflict with
envy-freeness, and we shall not discuss it any further today.

• Pareto efficiency: Under an efficient division, no other division
will make somebody better and nobody worse off.

Discussion: Generally speaking, cut-and-choose violates Pareto
efficiency: suppose player 1 really likes the middle of the cake
and player 2 really like the two outer parts (then no one-cut
procedure will be efficient). But amongst all divisions into two
contiguous slices, the cut-and-choose division will be efficient.
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Operational Properties

The properties discussed so far all relate to the fairness (or efficiency) of

the resulting division of the cake. Beyond that we may also be interested

in the “operational” properties of the procedures themselves:

• Does the procedure guarantee that each player receives a single

contiguous slice (rather than the union of several subintervals)?

• Is the number of cuts minimal? If not, is it at least bounded?

• Does the procedure require an active referee, or can all actions be

performed by the players themselves?

• Is the procedure a proper algorithm (a.k.a. a protocol), requiring a

finite number of specific actions from the participants (no need for a

“continuously moving knife”—to be discussed)?

Cut-and-choose is ideal and as simple as can be with respect to all of

these properties. For n > 2, it won’t be quite that easy though . . .
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Proportionality and Envy-Freeness

For n ≥ 3, proportionality and envy-freeness are not the same
properties anymore (unlike for n = 2):

Fact 1 Any envy-free division is also proportional, but there are
proportional divisions that are not envy-free.

Over the next few slides, we are going to focus on cake-cutting
procedures that achieve proportional divisions.
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The Steinhaus Procedure

This procedure for three players has been proposed by Steinhaus around

1943. Our exposition follows Brams and Taylor (1995).

(1) Player 1 cuts the cake into three pieces (which she values equally).

(2) Player 2 “passes” (if she thinks at least two of the pieces are ≥ 1/3)

or labels two of them as “bad”. — If player 2 passed, then players 3,

2, 1 each choose a piece (in that order) and we are done. X

(3) If player 2 did not pass, then player 3 can also choose between

passing and labelling. — If player 3 passed, then players 2, 3, 1 each

choose a piece (in that order) and we are done. X

(4) If neither player 2 or player 3 passed, then player 1 has to take (one

of) the piece(s) labelled as “bad” by both 2 and 3. — The rest is

reassembled and 2 and 3 play cut-and-choose. X

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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Properties

The Steinhaus procedure —

• Guarantees a proportional division of the cake (under the
standard assumption that players are risk-averse: they want to
maximise their payoff in the worst case).

• Is not envy-free.

• Is a discrete procedure that does not require a referee.

• Requires at most 3 cuts (as opposed to the minimum of 2 cuts).
The resulting pieces do not have to be contiguous (namely if
both 2 and 3 label the middle piece as “bad” and 1 takes it;
and if the cut-and-choose cut is different from 1’s original cut).
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The Banach-Knaster Last-Diminisher Procedure

In the first ever paper on fair division, Steinhaus (1948) reports on his

own solution for n = 3 and a generalisation to arbitrary n proposed by

Banach and Knaster.

(1) Player 1 cuts off a piece (that she considers to represent 1/n).

(2) That piece is passed around the players. Each player either lets it

pass (if she considers it too small) or trims it down further (to what

she considers 1/n).

(3) After the piece has made the full round, the last player to cut

something off (the “last diminisher”) is obliged to take it.

(4) The rest (including the trimmings) is then divided amongst the

remaining n−1 players. Play cut-and-choose once n = 2. X

The procedure’s properties are similar to that of the Steinhaus procedure

(proportional; not envy-free; not contiguous; bounded number of cuts).

H. Steinhaus. The Problem of Fair Division. Econometrica, 16:101–104, 1948.
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The Dubins-Spanier Procedure

Dubins and Spanier (1961) proposed an alternative proportional
procedure for arbitrary n. It produces contiguous slices (and hence
uses a minimal number of cuts), but it is not discrete anymore and
it requires the active help of a referee.

(1) A referee moves a knife slowly across the cake, from left to
right. Any player may shout “stop” at any time. Whoever does
so receives the piece to the left of the knife.

(2) When a piece has been cut off, we continue with the remaining
n−1 players, until just one player is left (who takes the rest). X

Observe that this is also not envy-free. The last chooser is best off
(she is the only one who can get more than 1/n).

L.E. Dubins and E.H. Spanier. How to Cut a Cake Fairly. American Mathe-

matical Monthly, 68(1):1–17, 1961.
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Discretising the Dubins-Spanier Procedure

We may “discretise” the Dubins-Spanier procedure as follows:

• Ask each player to make a mark at their 1/n point. Cut the
cake at the leftmost mark (or anywhere between the two
leftmost marks) and give that piece to the respective player.

• Continue with n−1 players, until only one is left. X

This also removes the need for an (active) referee.

This is a discrete procedure guaranteeing a proportional contiguous
division (in this sense it is superior to both Dubins-Spanier and
Banach-Knaster). The number of actual cuts is minimal (although
purists will object to this: the marks are like virtual cuts).
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The Even-Paz Divide-and-Conquer Procedure

Even and Paz (1984) investigated upper bounds for the number of
cuts required to produce a proportional division for n players,
without allowing either a moving knife or “virtual cuts” (marks).

They conjectured the following divide-and-conquer protocol to be
optimal in this sense (at least for n > 4):

(1) Ask each player to cut the cake at her bn
2 c / dn

2 e mark.

(2) Associate the union of the leftmost bn
2 c pieces with the players

who made the leftmost bn
2 c cuts (group 1), and the rest with

the others (group 2).

(3) Recursively apply the same procedure to each of the two
groups, until only a single player is left. X

S. Even and A. Paz. A Note on Cake Cutting. Discrete Applied Mathematics,

7:285–296, 1984.
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Complexity of Divide-and-Conquer

Fact 2 The Even-Paz procedure requires O(n log n) cuts.

Proof: The procedure may be understood as taking place along a
binary tree. Branching corresponds to dividing the remaining set of
players into two groups. At each node, the number of cuts is equal
to the number of players in the respective group. At each level of
the tree, the number of cuts adds up to n. The overall depth of the
tree is dlog2 ne: the number of times we can divide n by 2 before
we get down to a single player. X

So O(n log n) is certainly an upper bound . Sgall and Woeginger
(2003) give a matching lower bound of Ω(n log n) — under some
technical restrictions (you need to be more precise about what is
and what is not allowed if you want to prove a lower bound . . . ).

J. Sgall and G.J. Woeginger. A Lower Bound for Cake Cutting. ESA-2003.
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Envy-Free Procedures

Next we discuss procedures for achieving envy-free divisions.

• For n = 2 the problem is easy: cut-and-choose does the job.

• For n = 3 we will see two solutions. They are already quite

complicated: either the number of cuts is not minimal (but > 2),

or several simultaneously moving knives are required.

• For n = 4, to date, no procedure producing contiguous pieces is

known. Barbanel and Brams (2004), for example, give a

moving-knife procedure requiring up to 5 cuts.

• For n ≥ 5, to date, only procedures requiring an unbounded number

of cuts are known (see e.g. Brams and Taylor, 1995).

J.B. Barbanel and S.J. Brams. Cake Division with Minimal Cuts. Mathemat-

ical Social Sciences, 48(3):251–269, 2004.

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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The Selfridge-Conway Procedure

The first discrete protocol achieving envy-freeness for n = 3 has been

discovered independently by Selfridge and Conway (around 1960). Our

exposition follows Brams and Taylor (1995).

(1) Player 1 cuts the cake in three pieces (she considers equal).

(2) Player 2 either “passes” (if she thinks at least two pieces are tied for

largest) or trims one piece (to get two tied for largest pieces). —

If she passed, then let players 3, 2, 1 pick (in that order). X

(3) If player 2 did trim, then let 3, 2, 1 pick (in that order), but require

2 to take the trimmed piece (unless 3 did). Keep the trimmings

unallocated for now (note: the partial allocation is envy-free).

(4) Now divide the trimmings. Whoever of 2 and 3 received the

untrimmed piece does the cutting. Let players choose in this order:

non-cutter, player 1, cutter. X

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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The Stromquist Procedure

Stromquist (1980) has come up with an envy-free procedure for
n = 3 producing contiguous pieces, albeit requiring the use of four
simultaneously moving knifes:

• A referee slowly moves a knife across the cake, from left to
right (supposed to cut somewhere around the 1/3 mark).

• At the same time, each player is moving her own knife so that it
would cut the righthand piece in half (wrt. her own valuation).

• The first player to call “stop” receives the piece to the left of
the referee’s knife. The righthand part is cut by the middle one
of the three player knifes, and the other two pieces are
allocated in the obvious manner (ensuring proportionality). X

W. Stromquist. How to Cut a Cake Fairly. American Mathematical Monthly,

87(8):640–644, 1980.
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Degree of Envy

If we cannot achieve envy-freeness, maybe we can at least reduce
envy. But what does that actually mean?

Systematic approach to defining metrics for degree of envy:

• define e(i, j) = 1 if i envies j and e(i, j) = 0 otherwise;

• and aggregate twice to get envy of i and envy of society

For example, aggregators sum and max yield these metrics:

• emax,sum = maxi

∑
j e(i, j) — worst number of envies

• esum,sum =
∑

i

∑
j e(i, j) — sum of all envy relations

• esum,max =
∑

i maxj e(i, j) — number of envious players

Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Reaching Envy-free

States in Distributed Negotiation Settings. Proc. IJCAI-2007.
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Bounds on Degree of Envy

The Even-Paz divide-and-conquer procedure works along a
(balanced) binary tree, applying a local procedure at each internal
node. Brams et al. (2007) investigate bounds on the degree of envy
for such procedures. One nice result shows that the shape of the
binary tree does not affect one particular bound (proof omitted):

Theorem 3 (Brams et al., 2007) esum,sum ≤ (n−1) · (n−2)/2
for any divide-and-conquer procedure based on a binary tree.

In ongoing work we investigate similar questions for general (not
just binary) trees.

S.J. Brams, M.A. Jones, and C. Klamler. Divide-and-Conquer: A Propor-

tional, Minimal-Envy Cake-Cutting Procedure. Working Paper, 2007.

U. Endriss and E. Pacuit. Tree-based Cake-Cutting Procedures. Draft, 2008.
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Social Software

Logic has long been used to formally specify computer systems, enabling

formal or even automatic verification (e.g. via model checking). Maybe

we can apply a similar methodology to social choice mechanisms?

Rohit Parikh has coined the term social software for this research agenda.

He proposes logics based on PDL as a good starting point and succeeds

in (partly) modelling the Banach-Knaster last-diminisher procedure.

Example for a formula from his formalisation of the procedure:

F (m, k) → 〈c〉(F (m, k−1) ∧ F (x, 1))

This says: if the main piece is large enough (Fair) for k agents, then

there exists a cut such that the remaining main piece is fair for k−1

players and the piece x that has been cut off is fair for 1 player.

R. Parikh. Social Software. Synthese, 132(3):187–211, 2002.

R. Parikh. The Logic of Games and its Applications. Annals of Discrete

Mathematics, 24:111–140, 1985.

Ulle Endriss 21



Computational Social Choice ESSLLI-2008

Summary

We have discussed various procedures for fairly dividing a cake
(a metaphor for a single divisible good) amongst several players.

• Fairness criteria: proportionality and envy-freeness
(but other notions, such as equitability, Pareto efficiency,
strategy-proofness . . . are also of interest)

• Distinguish discrete procedures (protocols) and continuous
(moving-knife) procedures.

• The problem becomes non-trivial for more than two players,
and there are many open problems related to finding
procedures with “good” properties for larger numbers.

• COMSOC Perspective: What is the complexity of a given
procedure (number of cuts)? What logics are suitable for
modelling cake cutting problems (“social software”)?
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Overview of Procedures

Procedure Players Type Division Pieces Cuts

Cut-and-choose n = 2 protocol envy-free (∗) contiguous minimal

Steinhaus n = 3 protocol proportional not contig. min.+1

Banach-Knaster any n protocol proportional not contig. bounded

(last-diminisher) (but could be)

Dubins-Spanier any n 1 knife proportional contiguous minimal

Discrete D-S any n protocol proportional contiguous min.(∗∗)

Even-Paz any n protocol proportional contiguous O(n log n)

(divide-and-conquer)

Selfridge-Conway n = 3 protocol envy-free (∗) not contig. ≤ 5

Stromquist n = 3 4 knives envy-free (∗) contiguous minimal

(∗) Recall that envy-freeness entails proportionality.

(∗∗) Count does not include marks (virtual cuts).
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Literature

Both the book by Brams and Taylor (1996) and that by Robertson
and Webb (1998) cover the cake-cutting problem in great depth.

The paper by Brams and Taylor (1995) does not only introduce
their procedure for envy-free division for more than three players
(not covered today), but is also very nice for presenting several of
the classical procedures in a systematic and accessible manner.

S.J. Brams and A.D. Taylor. Fair Division: From Cake-Cutting to Dispute

Resolution. Cambridge University Press, 1996.

J. Robertson and W. Webb. Cake-Cutting Algorithms: Be Fair if You Can.

A.K. Peters, 1998.

S.J. Brams and A.D. Taylor. An Envy-free Cake Division Protocol. American

Mathematical Monthly, 102(1):9–18, 1995.
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Thursday Morning Quiz

Describe a discrete minimal-cut procedure for dividing a cake
between 4 players that guarantees that each player believes they
received at least 1/6 of the cake.

(Moving knifes are not allowed and “marks” count as cuts.)
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